Synthesizing Knowledge: A Cluster Analysis Approach Using Event Covering

DAVID K. Y. CHIU AND ANDREW K. C. WONG, MEMBER, IEEE

Abstract—An event-covering method [1] for synthesizing knowledge gathered from empirical observations is presented. Based on the detection of statistically significant events, knowledge is synthesized through the use of a special clustering algorithm. This algorithm, employing a probabilistic information measure and a subsidiary distance, is capable of clustering ordered and unordered discrete-valued data that are subject to noise perturbation. It consists of two phases: cluster initiation and cluster refinement. During cluster initiation, an analysis of the nearest-neighbor distance distribution is performed to select a criterion for merging samples into clusters. During cluster refinement, the samples are regrouped using the event-covering method, which selects subsets of statistically relevant events. For performance evaluation, we tested the algorithm using both simulated data and a set of radiological data collected from normal subjects and spina bifida patients.

I. INTRODUCTION

Knowledge acquisition is a difficult, yet important process in the construction of knowledge-based systems. In most of the existing knowledge acquisition schemes, knowledge is either put into the system by experts or acquired through inductive learning or automatic deduction [2], [3]. For example, the acquisition of knowledge by learning from examples has been successfully applied to the concept formation of toy blocks [4]. In this paper we propose an approach whereby knowledge can be synthesized by extracting from empirical observations the statistical or deterministic patterns inherent in the data. The newly developed method is capable of synthesizing a large amount of data into statistical independence patterns through an event-covering [1] and data-clustering technique.

Clustering and classification methods have been constantly used in exploring new ways for constructing automated data analysis systems [1], [2], [5]–[15]. These methods can be used to detect patterns for concept acquisition, partitioning, and classification. The rationale is that if new patterns can be detected with high reliability, valuable additional insights on the data may be acquired. We have used an event-covering method to detect statistically significant amino acid groups in cytochrome c biomolecules and have used the information to classify taxonomical patterns in living organisms [1]. We believe that our proposed methodology can play an important role in extending some of the existing knowledge-based systems for decision-support applications.

Among the clustering algorithms, numerical taxonomy methods, such as the construction of the dendogram [9], cluster data according to a distance or similarity measure. These methods normally apply to data of the continuous type and usually do not perform very well on discrete-valued data due to the lack of a sensitive similarity measure. The conceptual clustering methods [5] group discrete-valued data using a set of predefined criteria. But problems arise when a set of relevant and reliable criteria is not easily available, and when the given set of observed data is very large. Other significant attempts include the decision-directed clustering algorithm [11] and DECA [12], both of which use a probability measure and the subsidiary Hamming distance. These methods are designed to cluster both ordered and unordered discrete-valued data, DECA uses Hamming distance in initiating clusters and a second-order probability estimate to group samples into clusters based on the Bayes’ decision rule. It requires no assumed parameters. However, it too has some drawbacks. According to DECA, data that are closer to the mode in the probability–distance (P–D) space are grouped to form an initial cluster. Since the distances from the mode of the samples are all projected onto one axis in the P–D space, it may fail to separate the overlapping clusters in that space.

Knowledge involves the ability to select relevant action or information for a particular goal [16]. Thus, to a certain extent, feature extraction in pattern recognition can be considered as a form of knowledge acquisition. For discrete-valued data, even though relevant features can be identified using techniques in [5], [7], [8], [17], only limited effort has been made in developing techniques capable of discriminating between relevant and irrelevant events of a single variable or a joint variable. Though feature variables are selected for clustering or classification purposes, irrelevant events associated with these variables can still affect the effectiveness of an analysis. In this paper we will use an event-covering method to select useful statistical information (at the event representation level) for cluster analysis on discrete-valued data. By event-covering, we mean covering or selecting statistically significant events that are a subset of outcomes of the variable, disregarding whether or not the variable as a whole is statistically significant. This new approach eliminates the effect of “noise” at the event.
representation level. And when subsequent pattern analysis is performed, only this subset of relevant events is used.

With the event-covering method, we introduce a new cluster analysis algorithm that utilizes only significant statistical information in the data. It consists of a cluster initiation process based on an analysis of the nearest-neighbor distribution, followed by a regrouping process using the event-covering method. This algorithm can be extended to cluster incomplete multivariate data with mixed discrete and continuous values [18]. The extended work will be reported in a separate paper.

In the next section, we discuss how our approach can be used to acquire knowledge. Since the detection of statistical interdependency is a form of useful knowledge, inherent clusters extracted based on these relationships can be viewed as a synthesis of statistical knowledge. Section III introduces our cluster initiation method based on the distance measure. Section IV presents our cluster regrouping algorithm and the event-covering method. The event-covering method is a statistical method that can detect significant interdependent relationships at the event-representation level. This is used to select relevant events for clustering. In Section V, we use simulated data to evaluate the method in detail. Then in Section VI, we apply this method to real-life data and show that important medical knowledge can be extracted using our method.

II. SYNTHESIS OF STATISTICAL KNOWLEDGE

With our approach, knowledge is acquired by means of systematic observations rather than through deductions from a body of theory. However, through observations alone, some relevant knowledge is not immediately apparent since many useful interdependent relationships in the data are unknown. For example, in the diagnosis of a disease by observing the symptoms of a single patient, we may not fully comprehend the significance of some diagnostic features if previous knowledge of the relationships between the symptoms and the disease is unavailable. In this paper, we propose a method to detect the interdependence relationships on the event level and use this information as "primitive" knowledge for further analysis.

Since this knowledge of event interdependence usually cannot be acquired by a single observation but can be synthesized through repeated observations, we extract this information based on a given set of observed samples. When the observed events are tabulated according to their frequency of occurrence, such as in the construction of a contingency table, the frequency will reflect their inherent interdependent relationship. However, some of these associations indicated by the frequency of occurrence are just random associations, and do not necessarily indicate any of their true relationships. Hence, associations for which the frequency of occurrence significantly deviates from the random situations are most important. Using statistical tests on ordered and unordered discrete-valued data, we can ascertain this independent relationship for further analysis.

When the statistical interdependent relationships are determined, we can gain further knowledge by observing the clustering patterns that take into consideration these acquired interdependent relationships. When the clustering subgroups are formed, the significance of the events within the subgroups can be analyzed. Patterns of the clustering subgroups are thus knowledge-synthesized. Further, the data have a structure described by their event interdependent relationships.

With these in mind, we now introduce our cluster analysis algorithm and the event-covering method. But first, we shall describe how a cluster can be initiated using analysis on the distance between observations.

III. CLUSTER INITIATION

A. Relationship Between Nearest-Neighbor Distance Distribution and Cluster Characteristics

The cluster initiation process involves the analysis of the nearest-neighbor distance distribution on a subset of samples, the selection of which is based on a mean probability criterion. To describe the cluster initiation process, a few definitions and notations must first be introduced.

Let \(x = (x_1, x_2, \ldots, x_n) \) be a random \(n \)-tuple of related variables and \(x = (x_1, x_2, \ldots, x_n) \) be its realization. Then a sample can be represented as \(x \). We call \(x \) a pattern \(n \)-tuple since it is analogous to the pattern vector in the Euclidean space. 1 Let \(S \) be an ensemble of observed samples represented as \(n \)-tuples.

Definition 1: The nearest-neighbor distance of a sample \(x_i \) with respect to a set of samples \(S \) is defined as

\[
D(x_i, S) = \min_{x_j \in S \setminus \{x_i\}} d(x_i, x_j)
\]

where \(d(x_i, x_j) \) is a distance measure.

Definition 2: Let \(C \) be a set of samples forming a single cluster. We define the maximum within-cluster nearest-neighbor distance as

\[
D^*_C = \max_{x, y \in C} D(x, y)
\]

\(D^*_C \) reflects an interesting characteristic of the cluster configuration; that is, the smaller the \(D^*_C \), the denser the cluster. If the clusters in \(S \) are unknown, we do not know the value of \(D^*_C \). However, we can estimate \(D^*_C \) with the following analysis (Fig. 1). The estimation will depend on our conception of a cluster, which is as follows.

- If all the clusters \(C_i \) in an ensemble \(S \) have the same degree of denseness, then \(D^*_C \) is the same for all \(C_i \) in \(S \) and also the same as the maximum of all the \(D(x, S) \) values (Cases 1 and 2 in Fig. 1).

1 For data represented as a string, a tree, or a graph, the \(n \)-tuple representation can also be used if the data can be mapped into a particular ordering scheme [10], [14], [15].
If the clusters in S have different degrees of density, then when all $D(x, S)$ values are projected onto a real axis, distinct groups will result. An isolated sample x, which does not belong to any cluster (i.e., an "outlier"), will have a relatively large $D(x, S)$ value. Thus one way to characterize the density of all distinct clusters is by the maximum value of $D(x, S)$ for all x in S after the large values associated with isolated samples are removed (Case 3 in Fig. 1). We represent this value as D^*. Using a mean probability criterion to select a similar subset of samples, the isolated samples can be easily detected by observing the wide gaps in the nearest-neighbor distance space. The probability distribution from which the criterion is derived for the samples can be estimated using a second-order probability estimation [19], [20]. An estimation of $P(x)$, known as the dependence tree product approximation [19], can be expressed as

$$
\hat{P}(x) = \prod_{j=1}^{n} P(x_m| x_{m_k}), \quad 0 < k(j) < j
$$

where (1) the index set $\{m_1, m_2, \ldots, m_n\}$ is a permutation of the integer set $\{1, 2, \ldots, n\}$, (2) the ordered pairs $\{x_{m_i}, x_{m_k}\}$ are so chosen that they represent the set of branches of a spanning tree defined on X with their summed mutual information maximized, and (3) $P(x_m| x_{m_k}) = P(x_{m_k})$. The probability defined above is known to be the best second-order approximation of the high-order probability distribution [19]. Then corresponding to each x in the ensemble, a probability $P(x)$ can be estimated.

In general, it is more likely for samples of relatively high probability to form clusters. By introducing the mean probability as below, samples can be divided into two subsets: those above the mean and those below. Samples above the mean will be considered first for cluster initiation.

Definition 3: Let $S = \{x\}$. The mean probability is defined as

$$
\mu_x = \frac{\sum_{x \in S} P(x)}{|S|}
$$

where $|S|$ is the number of samples in S.

B. Cluster Initiation Algorithm

When distance is considered for cluster initiation, we can use the following criteria in assigning a sample x to a cluster.

1) If there exists more than one cluster, say $\{C_k| k = 1, 2, \ldots\}$, such that $D(x, C_k) \leq D^*$ for all k, then all these clusters together with x can be merged.
2) If there exists exactly one cluster C_x, such that $D(x, C_x) \leq D^*$, then x can be grouped into C_x.
3) If $D(x, C_x) > D^*$ for all clusters C_x, then x may not belong to any cluster.
We use the mean probability to control this merging process at each iteration in the algorithm outlined below:

1) Calculate $P(x)$ for all x in S.
2) Set $K = 0; t = 0$.
3) Let C_0 be a dummy subgroup representing samples of unknown cluster. Initially C_0 is empty.
4) If $|S| > T$ then $P' = \mu$, else $P' = 0$ (T is a size threshold indicating the smallest size of a cluster. \[2\])
5) List all $x \in S$ in a table L, if $P(x) > P'$.
6) Calculate $D(x, L)$ for all x in L.
7) $D^* = \max_{x \in L} D(x, L)$ and assume that x is not isolated.\[3\]
8) For all x in L do the following.
 a) Find x such that $P(x)$ is the highest.
 b) If $D(x, C_k) < D^*$ for more than one cluster, say $C_{k_1}, i = 1, 2, \ldots$, then do
 i) if one of the cluster, say C_{k_1}, is found at a previous iteration, i.e. $k < K$, then $C_0 = C_0 \cup \{x\}$
 ii) else all the clusters, $C_{k_1}, i = 1, 2, \ldots$, are merged.
 c) If $D(x, C_k) \leq D^*$ for exactly one cluster C_k, then $C_k = C_k \cup \{x\}$.
 d) If $D(x, C_k) > D^*$ for all clusters $C_k, k = 1, 2, \ldots, t$, then $t = t + 1$ and $C_t = \{x\}$.
 e) Remove x from L and S.
9) $K = t$.
10) Go to 4 until $S = 0$.
11) For $k = 1$ to t do the following.
 If $|C_k| < T$, then $C_k = C_0 \cup C_k$.

IV. CLUSTER REFINEMENT

The cluster regrouping process uses a decision rule based on statistical significant events obtained through event-covering method. In this section, we describe how this can be achieved.

A. Event-Covering and Covered-Subset

The event-covering method can be conceptualized as a mapping which maps events onto a binary decision state which indicates whether or not they are relevant for clustering. Let $C = \{a_{i_1}, a_{i_2}, \ldots, a_{i_p}\}$ be the set of labels for all possible clusters to which x can be assigned. Initially, C is the set of cluster labels found after the initiation process. Since each x in S is a realization of $X = (X_1, X_2, \ldots, X_n)$ and also associates with a value in C, C can be considered as an additional variable associated with X. The information of significant events associated with the cluster configuration is obtained by analyzing the frequency of events observed in the ensemble through the use of a contingency table. For X_i in X, we can form a contingency table between X_i and C. Let a_{k_1} and a_{k_2} be possible outcomes of X_i and C_i respectively, and let $\text{obs}(a_{k_1})$ and $\text{obs}(a_{k_2})$ be the respective marginal frequencies of their observed occurrences. The expected relative frequency of (a_{k_1}, a_{k_2}) is expressed as

$$\exp(a_{k_1}, a_{k_2}) = \frac{\text{obs}(a_{k_1}) \times \text{obs}(a_{k_2})}{|S|}$$

Let $\text{obs}(a_{k_1}, a_{k_2})$ represent the actual observed frequency of (a_{k_1}, a_{k_2}) in S. The expression

$$D = \sum_{j=1}^{q} \frac{(\text{obs}(a_{k_1}, a_{k_2}) - \exp(a_{k_1}, a_{k_2}))^2}{\exp(a_{k_1}, a_{k_2})}$$

summing over the outcomes of C in the contingency table, possesses an asymptotic chi-square property with $(q - 1)$ degrees-of-freedom. D can then be used in a criterion for testing the statistical dependency between a_{k_1} and C at a predetermined significant level as described below. For this purpose, we define a mapping

$$h_k(a_{k_1}, C) = \begin{cases} 1, & \text{if } D > \chi^2(q - 1) \\ 0, & \text{otherwise} \end{cases}$$

where $\chi^2(q - 1)$ is the tabulated chi-square value. The subset of selected events of X_i, which has statistical interdependency with C, is defined as

$$E^C_k = \{a_{k_1} | h_k(a_{k_1}, C) = 1\}.$$

We call E^C_k the covered event subset of X_i with respect to C. Likewise, the covered event subset E^C_k of C with respect to X_i can be defined.

B. Selection of Significant Variables using Event-Covering

After finding the covered event subsets of E^C_k and E^C_k between a variable-pair (C, X_i), information measures can be used to detect the statistical pattern of these subsets. These information measures are based on an incomplete probability scheme [21] defined over the subset of significant events in the outcome space of the variables. Let X^C_k and C^k represent the restricted variables of the covered event subsets E^C_k and E^C_k respectively. An interdependence redundancy measure [17] between X^C_k and C^k can be defined as

$$R(X^C_k, C^k) = \frac{I(X^C_k, C^k)}{H(X^C_k, C^k)}$$

where $I(X^C_k, C^k)$ is the expected mutual information and $H(X^C_k, C^k)$ is the Shannon's entropy defined respectively.
on \(X_i \) and \(C_k \). Mathematically, they are expressed as

\[
I(X_i, C_k) = \sum_{a_{cv} \in E_i} \sum_{a_{kv} \in E_k} P(a_{cv}, a_{kv}) \log \frac{P(a_{cv}, a_{kv})}{P(a_{cv})P(a_{kv})}
\]

and

\[
H(X_i, C_k) = \sum_{a_{cv} \in E_i} \sum_{a_{kv} \in E_k} P(a_{cv}, a_{kv}) \log P(a_{cv}, a_{kv}).
\]

The interdependence redundancy measure has a chi-square distribution [17]:

\[
I(X_i, C_k) \sim \chi^2_{df(2|S|H(X_i, C_k))}
\]

where \(df \) is the corresponding degree of freedom having the value \(((E_i^c - 1)|E_k^c - 1)\). A chi-square test is then used to select interdependent variables in \(X \) at a presumed significant level.

C. Second-Order Event Selection using Event-Covering

For a data set with low-noise level, analysis based on the marginal probability distribution of the first-order events (events of a single variable) may be adequate. However, for data with higher noise level, the second-order probability distribution, defined on the joint events corresponding to a variable pair, may be needed. We call these joint events of a variable-pair the second-order events. The second-order events are of particular importance because 1) reliable probability estimates can be obtained in an ensemble of a reasonable size and 2) random noise which may affect the outcome of one variable is less likely to simultaneously affect the joint outcome of two variables. Thus during the clustering process, it is desirable that only second-order events are included.

When selecting joint events for clustering purposes, those reflecting interdependency usually contain more information. In other words, their observed frequency should deviate significantly from the expected marginal relative frequency derived from its first-order event. Thus the second-order event corresponding to \((X_i^c, X_j^c)\) must be in \(E_i^c \times E_j^c\), if they contain additional information as compared to the marginal events. Hence, we accept only these second-order events for further testing while the others are disregarded. Since only a subset of second-order events is now involved, the number of events for analysis during the regrouping phase is substantially reduced.

Now, a new variable corresponding to a variable-pair \((X_i^c, X_j^c)\) in \(X\) can be used to associate with the second-order events in the outcome space of \(E_i^c \times E_j^c\). For samples represented as \(X = (X_1, X_2, \ldots, X_n)\), we can construct a new representation \(X_c = (X_1, X_2, \ldots, X_n)\). \(X_c\) consists of all the variables in \(X\) as well as those representing all the possible combination of the variable-pairs. Thus, \(N\) has the value \(n + n(n-1)/2\). We call \(X_c\) the extended tuple of \(X\). We can then extend the selection of significant events and variables for clustering as described before to \(X_c\).

D. Cluster Regrouping Algorithm

Since not all the components in a sample are statistically relevant for clustering purposes, components (first- and second-order events) of a sample \(x\) are chosen based on the subsets of events selected in the event-covering process. The component of a sample is selected if it has significant interdependency with the hypothesized cluster label. Let \(x'(a_{c}) = (x'_1, x'_2, \ldots, x'_m) (m > 0)\) be the set of selected components of \(x\) in estimating the cluster label as \(a_{c}\). The event \(x_k\) in the set \(x'(a_{c})\) is chosen if the following conditions are satisfied.

1) The value of \(x_k\) is not a second-order event that is disregarded.
2) The value of \(x_k\) is in \(E_i^c\) and \(a_{c}\) is in \(E_k^c\).
3) \(R(X_k, C_k)\) is significant.

The cluster regrouping process uses an information measure to regroup data iteratively. In [1] we have proposed an information measure called normalized surprisal (NS) to indicate significant joint information. Using this measure, the information conditioned by an observed event \(x_k\) is weighted according to \(R(X_k, C_k)\), their measure of interdependency with the cluster label variable. Therefore, the more relevant the event is. NS measures the joint information of a hypothesized value based on the selected set of significant components. It is defined as

\[
NS(a_{c}|x'(a_{c})) = \frac{I(a_{c}|x'(a_{c}))}{m \sum_{k=1}^{m} R(X_k, C_k)}
\]

where \(I(a_{c}|x'(a_{c}))\) is the summation of the weighted conditional information defined on the incomplete probability distribution scheme [1] as

\[
I(a_{c}|x'(a_{c})) = \sum_{k=1}^{m} R(X_k, C_k) I(a_{c}|x_k)
\]

\[
= \sum_{k=1}^{m} R(X_k, C_k) \left\{ -\log \frac{P(a_{c}|x_k)}{\sum_{a_{cv} \in E_k^c} P(a_{cv}|x_k)} \right\}
\]

\[
\geq \sum_{a_{cv} \in E_k^c} P(a_{cv}|x_k) > 0.
\]

In rendering a meaningful calculation in the above incomplete probability scheme formulation, \(x_k\) is selected if

\[
\sum_{a_{cv} \in E_k^c} P(a_{cv}|x_k) > T
\]

where \(T > 0\) is a size threshold for meaningful estimation. NS can be used in a decision rule as given below in the regrouping process. Let \(C = \{a_{c1}, a_{c2}, \ldots, a_{cn}\}\) be the set of possible cluster labels. We assign \(a_{c}\) to \(x_k\) if

\[
NS(a_{c}|x'(a_{c})) = \min_{a_{c} \in C} NS(a_{c}|x'(a_{c}))
\]
If no component is selected with respect to all hypothesized cluster labels, or if there are more than one label associated with the same minimum NS, then the sample is assigned a dummy label, indicating that the estimated cluster label is still uncertain. Also, zero probability may be encountered in the probability estimation, an unbiased probability estimate based on [22] is adopted.

In the regrouping algorithm, the cluster label for each sample is estimated iteratively until a stable set of label assignments is attained. The cluster regrouping algorithm is outlined as follows.

1) Construct \(x_t \) from \(x \) in the ensemble.
2) Identify \(\{E_1\}, \{E_2\}, \ldots, \{E_n\} \) and compute the finite probability schemes based on the current cluster labels \(C \).
3) Set number of change = 0.
4) For each \(x_t \) in the ensemble do the following.
 a) If estimation is uncertain, then assign the dummy label \(a_{e_j} \).
 b) Otherwise assign \(x_t \) to cluster \(a_{e_j} \) if

\[
\text{NS}(a_{e_j} | x(a_{e_j})) = \min_{a_{e_j} \in C} \text{NS}(a_{e_j} | x(a_{e_j})).
\]

5) If number of change > 0 then go to 2; else stop.

V. EXPERIMENTS USING SIMULATED DATA

For comparing and evaluating the algorithm, four sets of simulated data taken form [12] are used. They are labeled \(E_1, E_2, E_3, \) and \(E_4 \) and have the form \(X = (X_1, X_2, \ldots, X_6) \). The possible discrete values taken up by the variables are from the set \(\{A, B, C\} \). Thus there are nine possible second-order events. To test the algorithm’s sensitivity to cluster size, the sample sizes of the subgroups in \(E_2 \) and \(E_4 \) are made uneven and all the subgroups in \(E_3 \) are made specially small. The sample sizes of the subgroups in the four data sets are tabulated in Table I.

Each of the data sets are stochastically generated tuples consisting of three subgroups. The subgroups in \(E_1 \) and \(E_3 \) are generated using the same probability distribution scheme; whereas the subgroups in \(E_2 \) and \(E_4 \) are generated using different probability distribution scheme. As an illustration, let us look at the data set \(E_1 \). \(E_1 \) is generated according to the following probability distribution scheme:

\[
P(X) = P(X_1)P(X_2|X_1)P(X_3|X_1)P(X_4|X_3)P(X_4|X_1)
\]

When generating the value for the variables in the ensemble, first, 40 \(A’s, 40 \) \(B’s, \) and 40 \(C’s \) are generated for \(X_1 \). Then we predetermine a fixed value for the joint probability \(P(X_j, X_j), j = 2, 3, \ldots, 6 \) and generate the outcome for the rest of the variables.

The experiment is to detect the subgroups and their membership. We use the unnormalized Hamming distance in the cluster initiation phase. Thus, the distance has integer value ranging from zero through six. In the recharging phase, a 95-percent significance level is used in all the chi-square tests. After several iterations, the algorithm terminates with the cluster result.

The clustering results in both phases together with the final result obtained from DECA [12] are tabulated in Table II. It is noted that even in the cluster initiation phase, the cluster members with high correct rate are detected, though some samples still have unknown cluster label. The sizable group of unknown cluster labels may be due to the insensitivity of the clustering distance. The final result shows a significant improvement over the previous studies [11]–[12] and gives a 100-percent correct rate in all four data sets. The superiority of the information measure using event-covering is thus obvious. The use of probability and distance criterion for clustering discrete-valued data, however, is better than the result obtained using the distance measure alone.

In the above experiment, we choose the value 10 for \(T \) in the cluster initiation algorithm. The choice of this value has two major effects on the execution of the algorithm: 1) the determination of the smallest cluster size (step 11) and 2) the termination of the cluster initiation process (step 4). Although a rule of thumb has been proposed in footnote 2 to select the value of \(T \), a smaller value can be used to
obtain clusters of smaller sizes if the clusters are distinct. To evaluate the performance sensitivity of the algorithm over a range of T values, we apply the algorithm on all four data sets using different T values. First, we choose T to be five. We find that there is no change in the result for all four data sets. Then we choose T to be 15. We find that for E_1 and E_2, which have clusters of size greater than 15, the result remains the same as before. However, for E_3 and E_4, which originally have small clusters (less than 15) and the cluster label of some of the samples remains unknown, this criterion will cause the small clusters to be rejected. If we apply the cluster regrouping to small clusters as well, we achieve the same final result as in Table II. In brief, from our experiment we find that the choice of this value is not sensitive in altering the clustering result.

Next, we evaluate the effect of sample size on the statistical stability of the cluster result. Our cluster regrouping consists of the event-covering process and the decision rule which combines the information from the significant events. By the use of the event-covering method and the selection of significant events, better results can be achieved when the complete set of outcomes is considered without statistical screening. The event-covering method is basically a statistical method and subject to two types of statistical errors: type 1 error, which rejects an event even though it is relevant for clustering and type 2 error, which accepts an event even though it is irrelevant. Needless to say, the more samples we have, the more reliable our method is. Since our method combines the information from multiple events, the effect of the statistical errors committed can be minimized.

However, an experiment is set up to evaluate the stability of our method using data sets of different sizes. We choose the data set E_2 for this experiment since it has uneven number of samples in the subgroups. In our experiment, we attempt to show that the reduction of sample size, to a certain degree, will not change the results significantly. From the ensemble of the original 200 samples, we obtain smaller subensembles by incrementally taken out 25 samples randomly each time. The resulting five data sets then consist of 175, 150, 125, 100, and 75 samples. The clustering result is tabulated in Table III. It is noted that change in the sample size of the ensemble does not deteriorate the overall performance of the method in both the cluster initiation and the regrouping phase (Table III). The gradual decrease in the samples of unknown cluster label during cluster initiation probably reflects the decrease in sample size, whereas the number of incorrect cluster label samples remains fairly stable. From this result, we have shown statistical stability on the performance of the algorithm.

VI. Experiment Using Clinical Data

To demonstrate the feasibility of the algorithm when applied to real-life data with fairly high noise level, a set of clinical data [23] is used. It consists of features diagnosed from X-ray plates of both normal subjects and spina bifida
patients by a radiologist. Spina bifida is a family of spinal disorders that occur when a section of spine is left exposed by vertebral abnormalities. Seven features on X-ray plates of the bladder are diagnosed on each sample. They are 1) shape of bladder, 2) presence of trabeculation, 3) divert
sacculation, 4) outlet (indicating filling), 5) thickness of bladder wall, 6) presence of right reflux (i.e. reverse urine flow to the right kidney), and 7) presence of left reflux. These features are described for each X-ray plate indicating the different degrees of severity or abnormality (Fig. 2).

It happens that all the features selected have four possible different descriptions except for features 3 and 4, which have only three. The data is then represented as $X = (X_1, X_2, \ldots, X_7)$. When the clustering algorithm is applied, it is found that the noise level of this data set is fairly high. Since the features are rank-ordered values, Euclidean distance measure is used in the cluster initiation phase. After cluster initiation, interdependence redundancy is calculated between each variable in the extended tuples and the cluster label variable. The tests indicate a low interdependence level and that only the first four variables together with some of their second-order variables are significant. In order to improve the distance measure, we include only the first four variables and apply cluster initiation again. When the cluster regrouping algorithm is applied on the extended tuples of the four variables, a normal subgroup and an abnormal subgroup are found. The result remains the same when the clusters are regrouped based on the extended tuples of the seven variables, since the other variables are not found to be significant. The interdependency patterns are described for the first four significant restricted variables (Fig. 3). When the events are analyzed, a set of unique events (first order or second order) is found in each subgroup. The significance of the events detected by the event-covering and the clustering process is described in more detail in Figs 4 and Table IV. The characteristic of spina bifida having trabeculate bladder is consistent with what has been reported in [24].

Next, the samples of the subgroups are clustered separately based on the first 4 variables. After cluster initiation, nine abnormal subgroups and eight normal subgroups are identified. The abnormal subgroups have sample sizes ranging from four to 19 and the normal subgroups naturally have a dominant one. When the abnormal subgroups are regrouped based on this small sample result, only variable 3 is found to be significant in estimating any further groupings. The regrouping algorithm merges some of the initial clusters and identifies two abnormal subgroups and one normal subgroup. They are described in Table V. These subgroups identified seem to provide a meaningful grouping and may be useful for medical diagnosis.

Table IV

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Size</th>
<th>Unique characteristics found in the subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal subgroup</td>
<td>295</td>
<td>1) No trabeculation.</td>
</tr>
<tr>
<td>Abnormal subgroup</td>
<td>139</td>
<td>1) Severe trabeculation, 2) Saculation in the bladder wall, 3) Divert refux sacculation with a bell shape bladder.</td>
</tr>
<tr>
<td>Unknown subgroup</td>
<td>18</td>
<td>4) Saculation outside of the bladder wall with a bell shape bladder.</td>
</tr>
<tr>
<td>Total</td>
<td>452</td>
<td></td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Size</th>
<th>Unique Characteristics Found in the Subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal subgroup 1</td>
<td>116</td>
<td>1) Saculation in the bladder wall.</td>
</tr>
<tr>
<td>Abnormal subgroup 2</td>
<td>19</td>
<td>2) Saculation out of the bladder wall. No divert sacculation.</td>
</tr>
<tr>
<td>Unknown subgroup</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>139</td>
<td></td>
</tr>
</tbody>
</table>
VII. Conclusion

It is generally accepted in philosophy that knowledge is a true belief (or a fact, with justification [25]). Our method uses statistical tests as evidence to detect "primitive" knowledge in the form of event association. We then select the relevant events for clustering to reflect the inherent data interdependence relationship. Once the clustering subgroups are found, subsequent analysis on the class pattern can be performed. This synthesized knowledge cannot be obtained by observing individual events in isolation, but it must be based on a set of observations. We have tested the algorithm using simulated data, and both the cluster initiation and the regrouping process show superior results. When we tested the algorithm in a real-life pattern recognition problem using clinical data, we became convinced that the patterns indicated by the clusters and the covered event subsets may be very useful for diagnostic study.

References

