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Abstract

Discretization algorithms have played an important role in data mining and knowledge discovery. They not only pro-
duce a concise summarization of continuous attributes to help the experts understand the data more easily, but also make
learning more accurate and faster. In this paper, we propose a static, global, incremental, supervised and top-down dis-
cretization algorithm based on Class-Attribute Contingency Coefficient. Empirical evaluation of seven discretization algo-
rithms on 13 real datasets and four artificial datasets showed that the proposed algorithm could generate a better
discretization scheme that improved the accuracy of classification. As to the execution time of discretization, the number
of generated rules, and the training time of C5.0, our approach also achieved promising results.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

With the rapid development of information technology, electronic storage devices are widely used to record
transactions. Since people are often unable to extract useful knowledge from such huge datasets, data mining
[16] has become a research focus in recent years. Among the several functions of data mining, classification is
crucially important and has been applied successfully to several areas such as automatic text summarization
and categorization [17,38], image classification [15], and virus detection of new malicious emails [31]. Although
real-word data mining tasks often involve continuous attributes, some classification algorithms such as AQ
[18,26], CLIP [6,7] and CN2 [8] can only handle categorical attribute, while others can handle continuous attri-
butes but would perform better on categorical attributes [36]. To deal with this problem, a lot of discretization
algorithms have been proposed [11,12,22,28].
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Discretization is a technique to partition continuous attributes into a finite set of adjacent intervals in order
to generate attributes with a small number of distinct values. Assuming that a dataset consisting of M exam-
ples and S target classes, a discretization algorithm would discretize the continuous attribute A in this dataset
into n discrete intervals {[d0,d1], (d1,d2], . . . , (dn�1,dn]}, where d0 is the minimal value and dn is the maximal
value of attribute A. Such a discrete result {[d0,d1], (d1,d2], . . . , (dn�1,dn]} is called a discretization scheme D

on attribute A. This discretization scheme should keep the high interdependency between the discrete attribute
and the target class to carefully avoid changing the distribution of the original data [2,25,33].

Discretization is usually performed prior to the learning process and has played an important role in data
mining and knowledge discovery. The modern classification systems such as CLIP4 [7] had also implemented
some discretization algorithms as built-in functions. A good discretization algorithm not only can produce a
concise summarization of continuous attributes to help the experts and users understand the data more easily,
but also make learning more accurate and faster [24]. There are five different axes by which the proposed dis-
cretization algorithms can be classified [24]: supervised versus unsupervised, static versus dynamic, global versus
local, top-down (splitting) versus bottom-up (merging), and direct versus incremental.

1. Supervised methods discretize attributes with the consideration of class information, while unsupervised
methods do not.

2. Dynamic methods consider the interdependence among the features attributes and discretize continuous
attributes when a classifier is being built. On the contrary, the static methods consider attributes in an iso-
lated way and the discretization is completed prior to the learning task.

3. Global methods, which use total instances to generate the discretization scheme, are usually associated with
static methods. On the contrary, local methods are usually associated with dynamic approaches in which
only parts of instances are used for discretization.

4. Bottom-up methods start with the complete list of all continuous values of the attribute as cut-points and
remove some of them by merging intervals in each step. Top-down methods start with an empty list of cut-
points and add new ones in each step.

5. Direct methods, such as Equal Width and Equal Frequency [5], require users to decide on the number of
intervals k and then discretize the continuous attributes into k intervals simultaneously. On the other hand,
incremental methods begin with a simple discretization scheme and pass through a refinement process
although some of them may require a stopping criterion to terminate the discretization.

In recent years, many researchers put their attentions on developing the dynamic discretization algo-
rithms for some particular learning algorithms. For example, Berzal et al. [14] built multi-way decision
trees by using a dynamic discretization method in each internal node to reduce the size of the resulting
decision trees. Their experiments showed that the accuracy of these compact decision trees was also pre-
served. Wu et al. [36] defined a distributional index and then proposed a dynamic discretization algorithm
to enhance the decision accuracy of naı̈ve Bayes classifiers. However, the advantage of static approaches
as opposed to dynamic approaches is the independence from the learning algorithms [24]. In other words,
a dataset discretized by a static discretization algorithm can be used in any classification algorithms that
deal with discrete attributes. Besides, since the bottom-up method starts with the complete list of all con-
tinuous values of the attribute as cut-points, and then remove some of them by merging intervals in each
step, its computational complexity is usually worse than the top-down method. For example, the time
complexity for discretizing a single attribute in Extended Chi2, which is the newest bottom-up method,
is O(km logm) [33], while that of the newest top-down method CAIM is O(m logm) [21], where m is
the number of distinct values of the discretized attribute and k is the number of incremental steps. This
condition will get worse when the difference between the number of values in a continuous attribute and
the number of produced intervals is large. Supposing that a continuous attribute contains 1000 different
values and this attribute is discretized into 50 intervals, in general, a top-down approach requires only
50 steps, but a bottom-up approach would need 950 steps. Finally, supervised discretization algorithms
are expected to lead to better performance as compared to unsupervised ones since they take the class
information into account. Based on the above-mentioned reasons, we aimed at developing a static, global,
incremental, supervised and top-down discretization algorithm. For the rest of the present paper, our
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discussion of proposed discretization algorithms will follow the axis of top-down versus bottom-up. More
detailed discussions about the five axes can be found in [24].

CAIM is the newest top-down discretization algorithm. In comparison with six state-of-the-art top-down
discretization algorithms, experiments showed that on the average, CAIM can generate a better discretiza-
tion scheme. These experiments also showed that a classification algorithm, which uses CAIM as a prepro-
cessor to discretize the training data, can on the average, produce the least number of rules and reach the
highest classification accuracy [21]. However, the general goals of a discretization algorithm should be: (a)
generating a high quality discretization scheme to help the experts understand the data more easily (the
quality of a discretization scheme can be measured byCAIR criterion which is discussed in Section 2); (b)
the generated discretization scheme should lead to the improvement of accuracy and the efficiency of a
learning algorithm (for a decision tree algorithm, the efficiency is evaluated by the number of rules and
training time); and, (c) the discretization process should be as fast as possible. Although CAIM outperforms
the other top-down methods in these aspects, it still has two drawbacks. First of all, CAIM algorithm gives
a high factor to the number of generated intervals when it discretizes an attribute. Thus, CAIM usually gen-
erate a simple discretization scheme in which the number of intervals is very close to the number of target
classes. Secondly, for each discretized interval, CAIM considers only the class with the most samples and
ignores all the other target classes. Such a consideration would decrease the quality of the produced discret-
ization scheme in some cases. The two observations motivated us to propose our Class-Attribute Contin-
gency Coefficient (CACC) discretization algorithm. The detailed discussions and examples about CAIM
were presented in Section 2.3.

CACC is inspired by the contingency coefficient. The main contribution of CACC is that it can generate a
better discretization scheme (i.e., higher cair value) and its discretization scheme can lead to the improvement
of classifier accuracy like that of C5.0. As regards to the time complexity of discretization, the number of gen-
erated rules and the execution time of a classifier, our approach also achieved promising results. The rest of the
paper is organized as follows. In Section 2, we review some related works. Section 3 presents our Class-Attri-
bute Contingency Coefficient discretization algorithm. The experimental comparisons of seven discretization
algorithms on 13 real datasets and four artificial datasets and a further evaluation of CACC are presented in
Section 4. Finally, the conclusions are presented in Section 5.

2. Related works

In this section, we review some of the related works. Since we evaluated the performance of several discret-
ization algorithms in Section 4 by using the famous classification algorithm C5.0, we first gave a brief intro-
duction of classification in Section 2.1. Then, we reviewed the proposed discretization algorithms on the axis
of top-down versus bottom-up in Section 2.2. Finally, the detailed discussions of CAIM were given in Section
2.3.

2.1. Classification

In the field of classification, there are many branches that are developing decision trees [9],bayesian classi-

fication [37], neural networks [3], and genetic algorithms [32]. Among them, the decision tree has become a pop-
ular tool for several reasons [30]: (a) compared to neural networks or a bayesian based approach, it is more
easily interpreted by humans; (b) it is more efficient for large training data than neural networks which would
require a lot of time on thousands of iterations; (c) a decision tree algorithm does not require a domain knowl-
edge or prior knowledge; and, (d) it displays good classification accuracy as compared to other techniques. A
decision tree like C5.0 [29] is a flow-chart-like tree structure, which is constructed by a recursive divide-and-
conquer algorithm that generates a partition of the data. In a decision tree, each internal node denotes a test on
an attribute, each branch represents an outcome of the test, and each leaf node is associated with a target class

(or class). The topmost node in a tree is called the root, and each path forming from the root to a leaf node
represents a rule. Classifying an unknown example begins with the root node, and successive internal nodes are
visited until this example has reached a leaf node. Then the class of this leaf node is assigned to this example as
a prediction.
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2.2. Discretization algorithms

Proposed discretization algorithms can be divided into top-down versus bottom-up, while the top-down
methods can be further divided into unsupervised versus supervised [24]. Famous unsupervised top-down algo-
rithms are Equal Width and Equal Frequency [5], while the state-of-the-art supervised top-down algorithms
include Paterson–Niblett [27], maximum entropy [35], CADD (Class-Attribute Dependent Discretizer algo-
rithm) [4], Information Entropy Maximization [13], Class-attribute Interdependence Maximization (CAIM)
[21], and Fast Class-attribute Interdependence Maximization (FCAIM) [20]. Experiments in [21] showed that
CAIM discretization algorithm is superior to the other top-down discretization algorithms since its discreti-
zation schemes can generally maintain the highest interdependence between target class and discretized attri-
butes, result to the least number of generated rules, and attain the highest classification accuracy. FCAIM [20],
which is an extension of CAIM algorithm, have been proposed to speed up CAIM. The main framework,
including the discretization criterion and the stopping criterion, as well as the time complexity between CAIM
and F-CAIM are all the same. The only difference is the initialization of the boundary point in two algorithms.
Compared to CAIM, F-CAIM was faster and had a similar C5.0 accuracy, but obtained a slightly worse cair

value. Since the main goal of our approach is to reach a higher cair value and attain an improvement in the
accuracy of classification, we compared our approach to CAIM instead of F-CAIM in our experiments. Of
course, CACC can be easily extended to F-CACC with the same considerations as in F-CAIM if the readers
consider that a faster discretization is more important than the quality of a discretization scheme.

In the bottom-up branch, famous algorithms include ChiMerge [19], Chi2 [23], Modified Chi2 [34] and
Extended Chi2 [33]. The computational complexity of bottom-up methods is usually larger than top-down
ones, since they start with the complete list of all the continuous values of the attribute as cut-points and then
removing some of them by merging intervals in each step. Another common characteristic of these methods is
in the use of the significant test to check if two adjacent intervals should be merged. ChiMerge [19] is the most
typical bottom-up algorithm. In addition to the problem of high computational complexity, the other main
drawback of ChiMerge is that users have to provide several parameters during the application of this algo-
rithm that include the significance level as well as the maximal and minimal intervals. Hence, Chi2 was pro-
posed based on the ChiMerge. Chi2 improved the ChiMerge by automatically calculating the value of the
significance level. However, Chi2 still requires the users to provide an inconsistency rate to stop the merging
procedure and does not consider the freedom which would have an important impact on the discretization
schemes. Thereafter, Modified Chi2 takes the freedom into account and replaces the inconsistency checking
in Chi2 by the quality of approximation after each step of discretization. Such a mechanism makes the Mod-
ified Chi2 a completely automated method to attain a better predictive accuracy than Chi2. After the Modified
Chi2, the Extended Chi2 takes into consideration that the classes of instances often overlap in the real world.
Extended Chi2 determines the predefined misclassification rate from the data itself and considers the effect of
variance in two adjacent intervals. With these modifications, Extended Chi2 can handle an uncertain dataset.
Experiments on these bottom-up approaches by using C5.0 also showed that the Extended Chi2 outperformed
the other bottom-up discretization algorithms since its discretization scheme, on the average, can reach the
highest accuracy [33].

2.3. CAIM discretization algorithm and CAIR criterion

Given the two-dimensional quanta matrix (also called a contingency table) in Table 1, CAIM defined the
interdependency between the target class and the discretization scheme of a continuous attribute A as
caim ¼
Pn

r¼1
max2

r
Mþr

n
; ð1Þ
where qir (i = 1,2, . . . ,S, r = 1,2, . . . ,n) denotes the total number of examples belonging to the ith class that are
within interval (dr�1,dr], Mi+ is the total number of examples belonging to the ith class, M+r is the total num-
ber of examples that are within the interval (dr�1,dr], n is the number of intervals, maxr is the maximum value
among all qir values, and M+r is the total number of continuous values of attribute A that are within the inter-
val (dr�1,dr].The larger the value of caim is, the better the generated discretization scheme D will be. It is worth



Table 1
The quanta matrix for attribute F and discretization scheme D

Class Interval Sum of class
[d0,d1] . . . (dr�1,dr] . . . (dn�1,dn]

C1 q11 . . . q1r . . . q1n M1+

: : . . . : . . . : :
Ci qi1 . . . qir . . . qin Mi+

: : . . . : . . . : :
Cs qs1 . . . qsr . . . qsn Ms+

Sum of intervals M+1 . . . M+r . . . M+n M
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noting that in order to generate a simpler discretization scheme,
Pn

r¼1
max2

r
Mþr

is divided by the number of intervals
nin Formula 1.

CAIM is a progressing discretization algorithm that does not require users to provide any parameter. For a
continuous attribute, CAIM will test all possible cutting points and then generate one in each loop. The loop is
stopped until a specific condition is met. For each possible cutting point in each loop, the corresponding caim

value is computed according to Formula 1, and the one with the highest caim value is chosen. Since finding the
discretization scheme with the globally optimal caim value would require a lot computation cost, CAIM algo-
rithm only finds a local maximum caim to generate a sub-optimal discretization scheme.

In the experiments, CAIM adopts the CAIR criterion [4,35] as shown in Formula 2 to evaluate the quality
of a generated discretization scheme. The CAIR criterion is used in the CADD algorithm. CADD has several
disadvantages, such as the need for a user-specified number of intervals and requires training for the selection
of a confidence interval. Experimental results also showed that the CAIR criterion is not a good discretization
formula since it can suffer from the overfitting problem [21]. However, the CAIR criterion can effectively rep-
resent the interdependency between the target class and discretized attributes, and thus, is widely used to mea-
sure the quality of a discretization scheme.
Table
Age da

ID

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
cair ¼
Xs

i¼1

Xn

r¼1

pirlog2

pir

piþpþr

,Xs

i¼1

Xn

r¼1

pirlog2

1

pir

; ð2Þ
where pir ¼
qir
M ; piþ ¼ Miþ

M , and pþr ¼ Mþr
M in Table 5.

Although CAIM outperformed the other top-down methods, it still has two drawbacks. In the first place,
CAIM gives a high factor to the number of generated intervals when it discretizes an attribute. Hence, CAIM
usually generates a simple discretization scheme in which the number of intervals is very close to the number of
2
taset

Age Target class

3 Care
5 Care
6 Care
15 Edu
17 Edu
21 Edu
35 Work
45 Work
46 Work
51 Edu
56 Edu
57 Edu
66 Care
70 Care
71 Care
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target classes. For example, if we take the age dataset in Table 2 as the training data, the discretization scheme
of CAIM is presented in Table 3. In Table 3 CAIM divided the age dataset into three intervals: [3.00, 10.50],
(10.50,61.50], and (61.50,71.00]. Interval [3.00, 10.50] contains samples 1–3, interval (10.50,61.50] contains
samples 4–12, and interval (61.50,71.00] has samples 13–15. However, this discrete result is not good and
the age dataset should obviously be discretized into five intervals: samples 1–3, 4–6, 7–9, 10–12, and 13–15.
If a classifier is learning with such a discretized dataset produced by CAIM, the accuracy would be worse.
Secondly, CAIM considers only the distribution of the major target class. Such a consideration is also unrea-
sonable in some cases. Take Table 4 as an example, for the interval I1 of both datasets D31 and D32. Since the
CAIM discrete formula uses only the five samples belonging to target class C1 to compute the caim value (the
two samples with class C2 and the three samples with class C3 are ignored), the two datasets have the same
caim value in spite of the different data distribution. Such an unreasonable condition also occurs when the
CAIR criterion is considered. As shown in Table 5, the two datasets D41 and D42 have the same caim value
even if their cair values are different.
Table 3
The discretization scheme of age dataset by CAIM

Class Interval sum

[3.00,10.50] (10.50,61.50) (61.50,71.00]

Care 3 0 3 6
Edu 0 6 0 6
Work 0 3 0 3
Sum 3 9 3 15

Table 4
Two datasets with equal caim values but different data distribution

Class Interval sum

I1 I2

Dataset D31: caim(I1) = caim(I2) = 2.5
C1 5 5 10
C2 2 3 5
C3 3 2 5
sum 10 10 20

Dataset D32: caim(I1) = caim(I2) = 2.5
C1 5 5 10
C2 1 4 5
C3 4 1 5
Sum 10 10 20

Table 5
Two datasets with equal caim value but different cair values

Class Interval sum

I1 I2

Dataset D41: caim(I1) = caim(I2) = 5; cair(I1) = cair(I2) = 0.
C1 5 5 10
C2 0 0 0
sum 5 5 10

Dataset D42: caim(I1) = caim(I2) = 5; cair(I1) = cair(I2) = 1.
C1 5 0 5
C2 0 5 5
sum 5 5 10
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3. Class-Attribute Contingency Coefficient discretization algorithm

As stated in the Introduction, a good discretization algorithm should generate a discretization scheme
which maintains a high interdependence between the target class and the discretized attribute. As described
in Section 2.3, CAIM gives a high factor to the number of generated intervals and does not consider the data
distribution, whereas CDD can suffer from the overfitting problem. Thus, both methods could generate irra-
tional discrete results in some cases. Let us review the age dataset in Table 3, wherein CAIM discretizes sam-
ples 4 to 6 (with class ‘‘Edu’’), samples 7 to 9 (with class ‘‘Work’’), and samples 10–12 (with class ‘‘Edu’’) into
the same interval. Such a result seriously changes the original data distribution. However, if we discretize the
15 samples into 15 intervals to actually represent the distribution of the original dataset, there will be an over-
fitting. In summary, a discrete formula should not only avoid overfitting but also consider the distribution of
all samples to generate an ideal discretization scheme.

Given the quanta matrix in Table 1, researchers usually use the contingency coefficient as shown in Formula
3 to measure the strength of dependence between the variables.
C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y
y þM

r
; ð3Þ
where y¼M
PS

i¼1

Pn
r¼1

q2
ir

MiþMþr

� �
� 1

h i
;M is the total number of samples, n is the number of intervals, qir is the

number of samples with class i (i = 1,2, . . . ,S, and r = 1,2, . . . ,n) in the interval (dr�1,dr], Mi+ is the total num-
ber of samples with class i, and M+r is the total number of samples in the interval (dr�1,dr]. From Formula 3,
we can see that the contingency coefficient indeed takes the distribution of all samples into account by using
[(qir)

2/ Mi+M+r]. In other words, if we regard the target class and discretized attribute as two variables, the
contingency coefficient is a very good criterion to measure the interdependence between them. However, in
the present paper we do not directly use the contingency coefficient C but instead, we divide y by log(n) and
define the cacc value as
cacc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0

y 0 þM

s
; ð4Þ
where y0 ¼ M
PS

i¼1

Pn
r¼1

q2
ir

MiþMþr

� �
� 1

h i
= logðnÞ.

We divide the y by log(n) for two main reasons: (a) speed up the discretization process; (b) as described in
the first paragraph of Section 3, a discretization scheme containing too many intervals could suffer from an
overfitting problem. In fact, CAIM also took these reasons into account, so that in the CAIM criterion in
Eq. (1), the summed value was divided by the number of intervals n. However, as described in the example
in Table 2, CAIM makes its discretization schemes unreasonable due to the huge influence of variable n. In
our experiments in Section 4, we can also find that CAIM almost always generate a discretization scheme
in which the number of intervals is very close to the number of target classes. Hence, we use log(n) in Eq.
(4) instead of n to reduce its influence.

With Formula 4, we can now detail our Class-Attribute Contingency Coefficient (CACC) discretization
algorithm. The pseudo-code of CACC is shown in Fig. 1. Given a dataset with i continuous attributes, M

examples, and S target classes, for each attribute Ai, CACC first finds the maximum dn and minimum d0 of
Ai in Line 4 and then forms a set of all distinct values of Ai in the ascending order in Line 5. As a result,
all possible interval boundaries B with the minimum and the maximum, and all the midpoints of all the adja-
cent boundaries in the set are obtained in Lines 6 and 7. Then, CACC would iteratively partition the attribute
Ai from Line 10 to Line 18. In the kth loop, CACC would compute for all possible cutting points to find the
one with the maximum cacc value and then partition this attribute accordingly into k + 1 intervals. In order to
reduce the computation cost of discretization, CACC also uses a greedy method as in CAIM to generate the
sub-optimal discretization scheme. In other words, for every loop, CACC not only finds the best division point
but also records a Globalcacc value. If the generated cacc value in loop k + 1 is less than the Globalcacc

obtained in loop k, CACC would terminate and output the discretization scheme. Besides, to generate a
rational discrete result, such a greedy mechanism is ignored if the number of generated intervals is less than



1  Input:  Dataset with i continuous attribute, M examples and S target classes; 
2  Begin 
3      For each continuous attribute Ai

4          Find the maximum dn and the minimum d0 values of Ai;
5          Form a set of all distinct values of A in ascending order; 
6          Initialize all possible interval boundaries B with the minimum and maximum 
7          Calculate the midpoints of all the adjacent pairs in the set; 
8          Set the initial discretization scheme as D: {[d0,dn]}and Globalcacc = 0; 
9          Initialize k = 1; 
10             For each  inner boundary B which is not already in  scheme D,
11 Add it into D;
12                    Calculate the corresponding cacc value;
13             Pick up the scheme D’ with the highest cacc value;
14             If cacc  > Globalcacc or k < S  then
15                   Replace D with D’; 
16 Globalcacc = cacc;
17 k = k + 1; 
18                   Goto Line 10;
18             Else
19 D’ = D;
20             End If 
21     Output the Discretization scheme D’  with k intervals for continuous attribute Ai;
22  End 

Fig. 1. The pseudo-code of CACC.
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the number of target classes. Since the main framework of CACC is similar to that of CAIM, the complexity
of CACC for discretizing a single attribute is still O(m log(m)), where m is the number of distinct values of the
discretized attribute.

Note that, the main goal and contribution of CACC is to propose a criterion to generate better discreti-
zation schemes that can lead to the improvement of accuracy of a learning algorithm. In order to make the
readers easily understand the difference between CACC and CAIM, we did not obviously use different
pseudo-codes to confuse the readers. Similar conditions had occurred in the research field of discretization
algorithms. For example, the pseudo-code of Chi2 is similar to that of ChiMerge since the former only adds
a procedure that automatically calculates the significance level. The pseudo-code of Modified Chi2 is also sim-
ilar to that of Chi2 except that the Modified Chi2 replaces the inconsistency checking criterion in Chi2 with its
approximation measurement.

To clearly explain the process of our CACC algorithm, we again use the age dataset in Table 2 as the exam-
ple. First, CACC finds the minimum (d0 = 3) and maximum (dn = 71) of the age attribute, and then sorts all
values in ascending order. The Globalcacc is set to 0 as default. In the first loop, CACC gets the cutting point
for which the maximum cacc (= 0.5045) is age = 10.50. Since 0.5045 > Globalcacc (=0), CACC updates the
Globalcacc = 0.5045 and runs the second loop. At this point, the attribute age is discretized into two intervals:
[3.00, 10.50] and (10.50,71]. Similarly, CACC generates the second cutting point at 61.50 and its corresponding
cacc (= 0.6473) > Globalcacc (= 0.5045), so that Globalcacc is updated to 0.6473 and the third loop is pro-
cessed. CACC continues to follow the same process for the third cutting point (age = 28.00) with the corre-
sponding Globalcacc = 0.6612, and for the fourth cutting point (age = 48.50) with the corresponding
Table 6
The discrete result for the age dataset in every loop

# of loop # of intervals Cutting point Maximum cacc

1 2 10.50 0.5045
2 3 61.50 0.6473
3 4 28.00 0.6612
4 5 48.50 0.7263



Table 7
The discretization scheme of the age dataset by CACC

Class Interval Total

[3.00,10.50] (10.50,28.00] (28.00,48.50] (48.50,61.50] (61.50,71.00]

Care 3 0 0 0 3 6
Edu 0 3 0 3 0 6
Work 0 0 3 0 0 3
Total 3 3 3 3 3 15
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Globalcacc = 0.7263. However, in the fifth loop, the maximum cacc generated is less than Globalcacc = 0.7263
and thus, CACC terminates. The discrete result and the corresponding cacc of the age dataset are detailed in
Table 6. Table 7 is the final discrete result for the age dataset. We find CACC groups ages 15, 17, 21 in interval
(10.50, 28.00], ages 35, 45, 46 in interval (28.00, 48.50], and ages 51, 56, 57 in interval (48.50,61.50]. This result
is obviously much more reasonable than that generated by CAIM in Table 2.

4. Performance analysis

In this section, we compare the following seven discretization algorithms in Microsoft Visual C++ 6.0 for
performance analysis.

1. Equal Width and Equal Frequency: two typical unsupervised top-down methods;
2. CACC: the method proposed in this paper;
3. CAIM: the newest top-down method;
4. IEM: a famous and widely used top-down method;
5. ChiMerge: a typical bottom-up method;
6. Extended Chi2: the newest bottom-up approach.

Among the seven discretization algorithms, Equal Width, Equal Frequency and ChiMerge require the user
to specify in advance some parameters of discretization. For the ChiMerge algorithm, we set the level of sig-
nificance to 0.95. For the Equal Width and Equal Frequency methods, we adopted the heuristic formula used
in CAIM to estimate the number of discrete interval [21,35]. All experiments were run on a PC equipped with
Windows XP operating system, Pentium IV 1.8 GHz CPU, and 512mb SDRAM memory.

Our experimental data includes 13 UCI real datasets and four artificial datasets. As regards to the 13 UCI
real dataset, seven of them were used in CAIM and the rest were gathered from the U.C. Irvine repository [1].
The details of the 13 UCI experimental datasets are listed in Table 8. In order to further analyze the
Table 8
The summary of 13 UCI real datasets in our experiments

Dataset Number of continuous attributes Number of attributes Number of classes Number of examples

breast 9 9 2 699
bupa 6 6 2 345
glass 10 10 6 214
hea 6 13 2 270
ion 32 34 2 351
iris 4 4 3 150
optdigit 64 64 10 5620
page-blocks 10 10 5 5473
pendigit 16 16 10 10992
pid 8 8 2 768
sat 36 36 6 6435
thy 6 21 3 7200
wav 21 21 3 5000
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performance of CACC, we also encoded a program to generate four artificial datasets. The details of the arti-
ficial datasets are introduced in Section 4.3. The 10-fold cross-validation test method was applied to all exper-
imental datasets. In other words, each dataset was divided into ten parts of which nine parts were used as
training sets and the remaining one as the testing set. The discretization was done using the training sets
and the testing sets were discretized using the generated discretization scheme. In addition, we also used
C5.0 [29] to evaluate the generated discretization schemes. In our experiments, C5.0 was chosen since it
was conveniently available and widely used as a standard for comparison in machine learning literature.
Finally as suggested by Demsar [10], we used the Friedman test and the Holm’s post-hoc tests with significance
level a = 0.05 to statistically verify the hypothesis of improved performance.

4.1. The comparison of discretization schemes

In this section we used the seven discretization algorithms to discretize the 10-fold training sets of each
dataset in Table 8. The comparisons of the generated discretization schemes are shown in Table 9. Due to
the content limit, we only showed for each dataset the mean of cair value, the mean of execution time
and the mean number of discrete intervals. Quick comparisons of the seven methods can be obtained by check-
ing the mean ranks in the last column in Table 9. With this column, we then used the Friedman test to check if
the measured mean ranks reached statistically significant differences. If the Friedman test showed that there
was a significant difference, the Holm’s post-hoc test was used to further analyze the comparisons of all the
methods against CACC. Although we also showed the number of discrete intervals in this experiment, it
was not our main concern. Recall that in the Introduction, we stated that the general goals of a discretization
algorithm should be: (a) generate a discretization scheme with a higher cair value; (b) the generated discret-
ization scheme should lead to the improvement of accuracy and efficiency of a learning algorithm; and, (c)
the discretization process should be as fast as possible. A discretization scheme with fewer intervals may
not only lead to a worse quality of discretization scheme and a decrease in the accuracy of a classifier, but also
increase the produced rules in a classifier. This condition was demonstrated in next sub-section using C5.0.

The comparison results in Table 9 showed that on the average, CACC reached the highest cair value from
among the seven discretization algorithms. This was a very exhilarating result that demonstrated that the
CACC criterion can indeed produce a high quality discretization scheme. In order to obtain the statistical sup-
port, the Friedman and the Holm’s post-hoc test was used. The corresponding value of Friedman test was
58.714 (p-value < 0.0001), which was larger than the threshold 12.592. The visualizations of the Holm’s
post-hoc test are illustrated in Fig. 2. In Fig. 2 the top line in the diagram is the axis on which we plotted
the average ranks of all the methods while a method on the right side means that it performs better. A method
with rank outside the marked interval in Fig. 2 means that it is significantly different from CACC. From
Fig. 2a we can see that the mean cair of CACC was statistically comparable to that of CAIM and significantly
better than that of all the other five methods. The comparison between CAIM and CACC did not achieve
significant difference since we compared all seven algorithms. If we removed the two unsupervised algorithms
from this comparison, we can obtain Fig. 2b in which CACC performed significantly better than all of the
other four methods. It is also worth noting that although we only showed the mean cair in the present paper,
for all of the 228 continuous attributes in Table 8, the cair value of CACC is always equal to or better than
that of CAIM.

Regarding the number of discrete intervals, on the average CAIM generated the least number of intervals.
This result was not surprising since CAIM usually generated a simple discretization scheme in which the num-
ber of intervals was very close to the number of classes. The corresponding value of Friedman test was 8.192
(p-value = 0.228), which was smaller than the threshold 12.592, and meant that there were no significant dif-
ferences among the number of generated intervals of the seven algorithms. However, if we removed the two
unsupervised algorithms, in which the number of generated intervals was decided in advance, from this com-
parison, the Friedman test reached statistical significance and we obtained Fig. 2c. From Fig. 2c, we can see
that the generated number of intervals of CACC was significantly less than that of ChiMerge and comparable
to that of CAIM, IEM and Extended chi2.

Finally, the two unsupervised methods were the fastest since they did not consider the processing of any
class related information. The discretization time of CACC was a little longer than that of CAIM but the



Table 9
The comparison of discretization schemes on UCI real datasets

Criterion Algorithm Dataset Mean rank

breast bupa glass hea ion iris optdigit page-
blocks

pendigit id sat thy wav

Mean cair value Equal-W 0.198 0.013 0.156 0.076 0.084 0.376 0.053 0.042 0.116 0.051 0.201 0.050 0.047 6.1
Equal-F 0.214 0.011 0.147 0.074 0.089 0.398 0.056 0.037 0.117 0.048 0.177 0.024 0.043 6.2
CACC 0.323 0.024 0.261 0.122 0.185 0.554 0.058 0.138 0.130 0.839 0.269 0.174 0.074 1.1

CAIM 0.310 0.015 0.239 0.103 0.169 0.535 0.057 0.125 0.129 0.813 0.264 0.169 0.071 2.6
IEM 0.283 0.004 0.213 0.096 0.175 0.507 0.061 0.097 0.128 0.794 0.219 0.135 0.063 3.5
ChiMerge 0.241 0.020 0.243 0.056 0.132 0.485 0.055 0.060 0.118 0.032 0.169 0.090 0.047 5.1
Ex-Chi2 0.292 0.021 0.234 0.103 0.177 0.488 0.054 0.063 0.121 0.823 0.217 0.119 0.056 3.5

Mean number of intervals Equal-W 14.0 10.0 8.0 10.0 20.0 4.0 13.0 18.0 18.0 4.0 7.0 21.0 20.0 5.0
Equal-F 14.0 10.0 8.0 10.0 20.0 4.0 13.0 18.0 18.0 4.0 7.0 21.0 20.0 5.0
CACC 2.0 3.7 14.6 6.4 4.3 3.0 8.9 5.0 10.0 1.2 6.0 5.7 18.1 2.7
CAIM 2.0 2.0 6.0 2.0 2.0 3.0 8.9 5.0 10.0 2.0 6.0 3.0 3.0 1.5

IEM 2.4 1.2 2.7 1.5 4.0 3.0 4.0 6.3 10.2 2.1 11.4 3.8 5.0 2.1
ChiMerge 4.6 6.3 5.3 7.8 21.4 3.5 5.7 41.9 19.1 5.6 19.2 17.7 28.5 5.4
Ex-Chi2 3.3 12.2 5.0 2.3 8.8 7.5 10.4 36.0 15.9 0.0 16.4 11.3 12.2 4.7

Mean Discretization time (s) Equal-W 0.26 0.18 0.29 0.12 1.72 0.02 31.63 4.92 21.94 0.33 29.84 5.33 9.06 1.5

Equal-F 0.27 0.17 0.33 0.12 1.84 0.03 31.89 4.89 21.86 0.33 29.09 5.31 9.33 1.5

CACC 0.58 0.24 0.84 0.22 3.62 0.08 58.75 14.44 70.66 0.90 58.28 12.22 61.41 4.2
CAIM 0.58 0.21 0.63 0.20 3.43 0.08 58.83 15.42 71.53 0.80 58.34 12.13 52.38 3.6
IEM 0.58 0.21 0.52 0.20 3.81 0.08 56.77 16.44 72.83 0.91 57.75 11.09 54.52 3.7
ChiMerge 0.66 0.41 0.68 0.39 4.28 0.09 61.13 18.39 105.41 0.94 73.61 22.81 64.33 5.9
Ex-Chi2 1.91 1.53 1.30 1.68 11.11 0.11 173.59 61.16 189.72 3.23 155.78 89.83 136.03 7.0
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Fig. 2. The comparison of CACC against the other discretization methods with the Holm’s post-hoc tests (a = 0.05): (a) and (b) cair value;
(c) number of intervals; (d) and (e) execution time.
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difference did not reach statistical significance. If we compare all seven algorithms, the Holm’s post-hoc test in
Fig. 2d showed that CACC was significantly faster than Extended Chi2, significantly slower than Equal Width
and Equal Frequency, and comparable to CAIM, IEM and ChiMerge. When we removed the two unsuper-
vised algorithms from this comparison, we obtained a little different result as shown in Fig. 2e. In Fig. 2e,
CACC was significantly faster than both bottom-up approaches Extended Chi2 and ChiMerge, and compa-
rable to CAIM, IEM. This result corresponded to our discussions in Section 2.2 that the computational com-
plexity of the bottom-up methods is usually worse than that of the top-down methods. It is also worth noting
that compared to the ChiMerge algorithm, although the Extended Chi2 algorithm had a better discretization
quality and generated fewer intervals, it required more execution time to check the merged inconsistency rate
in every step.

4.2. The comparison of discretization schemes by using C5.0

To evaluate the effect of generated discretization schemes on the performance of the classification algo-
rithm, we used the discretized datasets in Section 4.1 to train C5.0. The testing datasets were then used to cal-
culate the accuracy, the number of rules, and the execution time as shown in Table 10. Similarly, the Friedman
test and the Holm’s post-hoc tests with significance level a = 0.05 were used to check if these comparisons
reached significant differences.

The comparison results in Table 10 show that on the average, CACC reached the highest accuracy from
among the seven discretization algorithms. It is worth noting that CACC always reaches a higher C5.0 accu-
racy than the CAIM in all 13 datasets. This was a very exhilarating result that demonstrated that the discret-
ization schemes generated by CACC can indeed improve the accuracy of classification. Since the Friedman
test achieved the statistical significance, we then used the Holm’s post-hoc tests to further analyze the compar-
isons of all the methods against CACC. The visualizations of the Holm’s post-hoc test are illustrated in
Fig. 3a. In Fig. 3a we can see that the accuracy of CACC was significantly better than Equal Width, Equal
Frequency and ChiMerge, and comparable to CAIM, IEM and Extended Chi2. However, when we removed
the two unsupervised methods and the two slowest bottom-up methods from this comparison, we obtained a
little different result. The mean rank of CACC, CAIM and IEM was 1.2, 2.3, and 2.5 respectively. The Fried-
man test and the Holm’s post-hoc tests in Fig. 3b showed that among the tree top-down approaches, the accu-
racy of CACC was significantly better than that of CAIM and IEM.

As regards to the number of generated rules of C5.0, the CAIM reached the best performance and CACC
was ranked secondly. The Friedman test and the Holm’s post-hoc tests in Fig. 3c showed that C5.0 produced



Fig. 3. The comparison of C5.0 performance on CACC against C5.0 performance on the other discretization methods with the Holm’s
post-hoc test (a = 0.05): (a) and (b) accuracy; (c) and (d) number of rules; (e) and (f) execution time.

Table 10
The comparison of C5.0 performance on 13 UCI real datasets

Criterion Algorithm Dataset Mean
rankbreast bupa glass hea ion iris optdigit page-

blocks
pendigit pid sat thy wav

Mean accuracy
(%)

Equal-W 91.3 63.0 86.1 70.3 88.0 91.4 69.7 93.4 86.0 70.1 74.2 92.4 73.2 6.4
Equal-F 90.8 56.1 87.0 72.6 86.6 90.8 70.4 94.7 86.5 72.8 73.8 92.6 69.3 6.3
CACC 94.1 69.7 90.9 78.6 91.5 93.5 76.6 96.2 90.6 77.0 77.2 97.5 79.2 1.3

CAIM 93.8 69.1 90.6 77.1 91.2 93.0 75.0 95.7 90.4 75.6 77.0 96.7 78.4 3.0
IEM 93.6 63.7 89.6 75.2 90.8 92.5 79.8 96.0 90.2 75.4 77.4 97.2 77.9 3.2
ChiMerge 93.0 67.3 88.5 76.5 89.8 90.7 72.5 94.9 87.1 76.1 74.7 96.4 69.1 4.9
Ex-Chi2 92.3 69.4 90.8 78.4 90.2 94.6 77.3 95.1 88.9 76.8 77.2 97.1 76.2 2.8

Mean number
of rules

Equal-W 12.6 18.2 20.2 38.6 22.6 6.2 435.6 44.4 617.6 66.8 342.6 29.8 72.6 5.7
Equal-F 10.1 16.2 22.1 44.4 26.8 5.3 394.0 63.5 544.3 72.3 366.2 42.2 65.4 5.8
CACC 6.8 12.8 13.2 26.4 10.4 3.2 369.2 25.6 484.2 23.4 312.4 9.4 44.6 2.1
CAIM 9.2 11.4 12.6 32.1 10.4 3.2 357.4 23.4 442.5 21.2 309.6 11.2 52.8 1.9

IEM 7.4 10.2 9.4 16.4 11.1 3.2 338.6 40.6 478.2 23.6 378.4 28.4 98.8 2.8
ChiMerge 12.4 19.3 14.4 33.2 26.2 4.3 402.1 39.6 621.4 36.6 385.8 33.2 62.6 5.5
Ex-Chi2 7.4 9.2 10.2 32.4 18.4 3.5 388.4 36.2 525.6 25.6 380.2 31.8 82.6 3.8

Mean building
time (s)

Equal-W 1.04 1.03 1.04 1.06 1.04 1.02 41.69 3.77 62.45 1.08 16.44 3.56 9.25 4.8
Equal-F 1.05 1.03 1.04 1.07 1.06 1.02 36.31 3.83 52.75 1.08 15.94 3.66 11.44 5.3
CACC 1.02 1.02 1.03 1.05 1.03 1.00 35.74 3.13 44.41 1.03 16.52 2.53 8.25 2.0
CAIM 1.02 1.02 1.02 1.05 1.03 1.00 34.64 3.13 44.14 1.02 16.42 2.57 9.22 1.6

IEM 1.06 1.02 1.00 1.04 1.03 1.00 27.64 3.16 45.41 1.02 17.47 3.56 11.22 2.7
ChiMerge 1.04 1.03 1.03 1.06 1.06 1.01 32.40 3.95 65.70 1.14 19.92 3.54 12.49 5.3
Ex-Chi2 1.02 1.02 1.01 1.05 1.04 1.00 36.74 3.73 58.42 1.08 19.46 3.54 10.25 3.3
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significantly more rules when it used the discretization schemes of ChiMerge, Equal Width and Equal Fre-
quency. Fig. 3c also showed that C5.0 generated statistically comparable numbers of rules when it used the
discretization schemes of CACC, CAIM, IEM and Extended Chi2. When we only compared the three top-
down approaches, the Holm’s post-hoc tests also showed that there were no significant differences among
them as shown in Fig. 3d. Note that in Section 4.1, we stated that a discretization scheme with fewer intervals
does not mean that it will result to a simpler decision tree. On the contrary, it might even increase the produced
rules. Our inference can be found in Table 10. For example, CACC generated more intervals than CAIM but
resulted to fewer rules in the datasets thy, wav and hea.

Finally as illustrated in Fig. 3e, when C5.0 used the training data discretized by CACC, CAIM, IEM and
Extended Chi2, the training times were statistically comparable. C5.0 required significantly more training time
when the training data were discretized by ChiMerge, Equal Width and Equal Frequency. When we only com-
pared the three top-down approaches, the Holm’s post-hoc tests also showed that there were no significant
differences among CACC, CAIM and IEM.

4.3. Artificial datasets

In this section, we encoded a program to generate four artificial datasets as shown in Table 11 to further
evaluate the difference between CACC and the newest top-down method, CAIM. Every artificial dataset con-
tains ten continuous attributes, one target class attribute, and 1000 examples. In order to produce a meaning-
ful artificial dataset which contains patterns for mining, each example in all datasets was generated
independently, i.e., in each loop of our data generator, a sample was generated. The attribute values and class
of this sample were randomly selected from the attribute domain in Table 12. As a result, each artificial dataset
formed a Bernoulli distribution. The domains of all the attributes are shown in Table 12 with the four datasets
1, 2, 3 and 4 containing 2, 3, 5, and 8 target classes, respectively.

The comparison of the cair value between CAIM and CACC is presented in Table 13 wherein the result of
each attribute is given. Just like the results in Section 4.1, the cair value of all 40 attributes discretized by
CACC is always equal to or better than those discretized by CAIM, and the number of intervals and the dis-
cretization time of CACC are higher than or equal to those of CAIM. Again, C5.0 was used to evaluate the
discretized schemes of CACC and CAIM. The comparisons of the accuracy, number of rules, and execution
Table 11
Four artificial datasets

Dataset # of attributes # of samples # of target class

Dataset 1 10 1000 2
Dataset 2 10 1000 3
Dataset 3 10 1000 5
Dataset 4 10 1000 8

Table 12
The interval of each attribute of artificial datasets

Attribute Interval

Attribute 1 �1.0–1.0
Attribute 2 0.0–1.0
Attribute 3 2.0–4.0
Attribute 4 3.0–6.0
Attribute 5 4.0–7.0
Attribute 6 5–8
Attribute 7 0–10
Attribute 8 10–20
Attribute 9 20–80
Attribute 10 120–150



Table 13
The comparison of discretization schemes on four artificial datasets

Criterion Algorithm Attribute

1 2 3 4 5 6 7 8 9 10

Dataset 1 (2 target classes)

cair value CACC 0.0017 0.0026 0.0084 0.0038 0.0042 0.0008 0.0030 0.0031 0.0055 0.0048

CAIM 0.0008 0.0015 0.0013 0.0015 0.0008 0.0008 0.0024 0.0028 0.0016 0.0018
number of intervals CACC 9 3 8 16 8 3 2 2 18 2

CAIM 2 2 2 2 2 2 2 2 2 2

Time (s) CACC 1.282
CAIM 1.043

Dataset 2: (3 target classes)

cair value CACC 0.0066 0.0019 0.0039 0.0054 0.0069 0.0006 0.0026 0.0022 0.0132 0.0067

CAIM 0.0016 0.0009 0.0015 0.0018 0.0018 0.0006 0.0019 0.0014 0.0031 0.0024
number of intervals CACC 17 3 12 8 18 3 3 8 32 16

CAIM 3 3 3 3 3 3 3 3 3 3

Time (s) CACC 2.274
CAIM 1.547

Dataset 3: (5 target classes)

cair value CACC 0.0069 0.0041 0.0484 0.0112 0.0088 0.0012 0.0042 0.0046 0.0251 0.0096

CAIM 0.0032 0.0025 0.0250 0.0033 0.0026 0.0012 0.0022 0.0034 0.0066 0.0066
number of rules CACC 18 6 12 19 26 4 9 11 40 14

CAIM 5 5 5 5 5 4 5 5 5 5

Time (s) CACC 3.282
CAIM 2.013

Dataset 4: (8 target classes)

cair value CACC 0.0132 0.0037 0.1302 0.0169 0.0220 0.0018 0.0093 0.0074 0.0426 0.0180

CAIM 0.0079 0.0033 0.0866 0.0086 0.0105 0.0018 0.0081 0.0051 0.0118 0.0080
number of rules CACC 15 8 14 28 30 4 11 12 54 29

CAIM 8 8 8 8 8 4 8 8 8 8

Time (s) CACC 4.463
CAIM 3.222
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time are shown in Table 14. Obviously, the accuracy of CACC is significantly higher than that of CAIM. As
regards to the number of rules, both CACC and CAIM achieved statistically comparable results. Finally the
C5.0 building times of the two algorithms were very close and showed no significant differences.

4.4. Detailed analysis of CACC

To avoid computing all possible discretization schemes, CACC uses the greedy approach to generate a
sub-optimal discrete result. To evaluate the effectiveness of such a mechanism, we randomly selected one con-
tinuous attribute from each of the UCI datasets in Table 8. Discretization was done for the 13 selected con-
tinuous attributes even if the condition cacc > Globalcaccwas met. Among the 13 attributes, eleven of them
had the highest cacc when the discretization was terminated. The remaining two attributes were selected from
the sat and thy dataset.

From the analysis, we found that the randomly selected attribute from the sat dataset had the highest cacc

value when the number of intervals was less than the number of classes. In other words, although CACC ter-
minated without the optimal cacc value, it could get a more reasonable discrete result. For the randomly
selected attribute of the thy dataset, CACC terminated when the number of intervals was three, although
the highest cacc value occurred when the number of intervals was five. By analyzing the distribution of its ori-
ginal data as shown in Fig. 4, we found that the interval [0,0.026] contains the target classes C1, C2, C3, the
interval (0.026, 0.041] contains C2, C3, and the interval (0.041, 0.18] contains only C3. Since the target classes
were seriously overlaid and very disorderly distributed, it was hard for any discretization algorithm to produce
a good discretization scheme. Moreover, the number of instances when C1, C2, and C3 were within



Fig. 4. The data distribution of a randomly selected attribute in thy dataset.

Table 14
The comparison of C5.0 performance on four artificial datasets

Performance Algorithm Artificial dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Mean accuracy (%) CACC 61.8.0 59.4 58.9 58.5

CAIM 58.2 57.4 57.2 56.7

Mean number of rules CACC 28.6 163.5 121.4 136.8

CAIM 18.6 103.2 185.9 182.4

Mean building time (s) CACC 1.28 1.69 1.55 1.71

CAIM 1.20 1.58 1.72 1.84

Table 15
The discretization scheme of randomly selected attribute from the dataset thy by CACC: (a) three intervals; (b) five intervals

Class Interval Total

[0.00,0.0095] (0.0095,0.0098] (0.0098,0.18]

(a)

C3 300 0 6366 6666
C2 30 0 338 368
C1 71 42 53 166

Total 401 42 6757 7200

Interval Total

[0.00,0.0095] (0.0095,0.0098) (0.0098,0.0172] (0.0172,0. 0177] (0.0177,0.18]

(b)

C3 300 0 1330 0 5036 6666
C2 30 0 177 34 127 368
C1 71 42 33 0 20 166

Total 401 42 1540 34 5183 7200
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(0.0098, 0.041] were 53, 338, and 6154, respectively. Due to the serious overlap and disorderly distribution of
the three classes, CACC did not form any interval within (0.0098,0.041]. Since (0.0098,0.041] was dominated
by C3, the interval [0.041,0.18] which contains purely C3 was combined with the interval (0.0098, 0.041] to
form one interval [0.0098,0.041]. The corresponding discretization schemes containing three and five intervals
are illustrated in Table 15. In summary, we can conclude from this experiment that CACC can, on the average,
generate a good discretization scheme even if it uses a greedy approach.

5. Conclusions

Discretization algorithms have played an important role in data mining and knowledge discovery. They not
only produce a concise summarization of continuous attributes to help the experts understand the data more
easily, but also make learning more accurate and faster. In this paper, we proposed a static, global, incremen-
tal, supervised and top-down discretization algorithm called CACC, in order to raise the quality of the gen-
erated discretization scheme by extending the idea of contingency coefficient and combining it with the greedy
method. Empirical evaluation of seven discretization algorithms on 13 real datasets and four artificial datasets
showed that our CACC algorithm generated a better discretization scheme to obtain the improvement of accu-
racy of C5.0. As regards to the execution time of discretization, the number of generated rules, and the exe-
cution time of C5.0, CACC also achieved promising results.
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[15] D. Gómez, J. Montero, J. Yáñez, A coloring fuzzy graph approach for image classification, Information Sciences 176 (24) (2006)

3645–3657.
[16] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufman, 2001.

http://www.ics.uci.edu


C.-J. Tsai et al. / Information Sciences 178 (2008) 714–731 731
[17] T. Hidekazu, A.E. Sayed, F. Masao, M. Kazuhiro, T. Kazuhiko, J.I. Aoe, Estimating sentence types in computer related new product
bulletins using a decision tree, Information Sciences 168 (1–4) (2004) 185–200.

[18] K.A. Kaufman, R.S. Michalski, Learning from inconsistent and noisy data: the AQ18 approach, in: Proceeding of Eleventh
International Symposium on Methodologies for Intelligent Systems, 1999.

[19] R. Kerber, ChiMerge: discretization of numeric attributes, in: Proceeding of Ninth International Conference on Artificial Intelligence,
1992, pp. 123–128.

[20] L. Kurgan, K.J. Cios, Fast Class-Attribute Interdependence Maximization (CAIM) Discretization Algorithm, in: Proceeding of
International Conference on Machine Learning and Applications, 2003, pp. 30–36.

[21] L. Kurgan, K.J. Cios, CAIM discretization algorithm, IEEE Transactions on Knowledge and Data Engineering 16 (2) (2004) 145–
153.

[22] C.I. Lee, C.J. Tsai, Y.R. Yang, W.P. Yang, A top-down and greedy method for discretization of continuous attributes, in:
Proceedings of Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 2007.

[23] H. Liu, R. Setiono, Feature selection via discretization, IEEE Transactions on Knowledge and Data Engineering 9 (4) (1997) 642–645.
[24] H. Liu, F. Hussain, C.L. Tan, M. Dash, Discretization: an enabling technique, Journal of Data Mining and Knowledge Discovery 6

(4) (2002) 393–423.
[25] S. Mehta; S. Parthasarathy, H. Yang, Correlation preserving discretization data mining, in: Proceeding of Fourth IEEE International

Conference on Data Mining, 2004, pp. 479–482.
[26] R.S. Michalski, I. Mozetic, J. Hong, N. Lavrac, The multipurpose incremental learning system AQ15 and its testing application to

three medical domains, in: Proceeding of Fifth National Conference on Artificial Intelligence, 1986, pp. 1041–1045.
[27] A. Paterson, T.B. Niblett, ACLS manual, Edinburgh: Intelligent Terminals, Ltd., 1987.
[28] B. Pfahringer, Compression-based discretization of continuous attributes, in: Proceeding of Twelfth International Conference on

Machine Learning, 1995, pp. 456–463.
[29] R. Quinlan, Data Mining Tools, 2005. <http://www.rulequest.com/see5-info.html>.
[30] R. Rastogi, K. Shim, PUBLIC: a decision tree classifier that integrates building and pruning, in: Proceedings of the 24th International

Conference on Very Large Databases, 1998, pp. 404–415.
[31] D.H. Shih, H.S. Chiang, C.D. Yen, Classification methods in the detection of new malicious emails, Information Sciences 172 (1–2)

(2005) 241–261.
[32] K.G. Srinivasa, K.R. Venugopal, L.M. Patnaik, A self-adaptive migration model genetic algorithm for data mining applications,

Information Sciences 177 (20) (2007) 4295–4313.
[33] C.T. Su, J.H. Hsu, An extended chi2 algorithm for discretization of real value attributes, IEEE Transactions on Knowledge and Data

Engineering 17 (3) (2005) 437–441.
[34] F. Tay, L. Shen, A modified chi2 algorithm for discretization, IEEE Transactions on Knowledge and Data Engineering 14 (3) (2002)

666–670.
[35] A.K.C. Wong, D.K.Y. Chiu, Synthesizing statistical knowledge from incomplete mixed-mode data, IEEE Transactions on Pattern

Analysis and Machine Intelligence 9 (1987) 796–805.
[36] Q. Wu, D.A. Bell, T.M. McGinnity, G. Prasad, G. Qi, X. Huang, Improvement of decision accuracy using discretization of

continuous attributes, in: Proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, Lecture
Notes in Computer Science 4223, 2006, pp. 674–683.

[37] R.R. Yager, An extension of the naive Bayesian classifier, Information Sciences 176 (5) (2006) 577–588.
[38] S. Zadro_zny, J. Kacprzyk, Computing with words for text processing: an approach to the text categorization, Information Sciences

176 (4) (2006) 415–437.

http://www.rulequest.com/see5-info.html

	A discretization algorithm based on Class-Attribute Contingency Coefficient
	Introduction
	Related works
	Classification
	Discretization algorithms
	CAIM discretization algorithm and CAIR criterion

	Class-Attribute Contingency Coefficient discretization algorithm
	Performance analysis
	The comparison of discretization schemes
	The comparison of discretization schemes by using C5.0
	Artificial datasets
	Detailed analysis of CACC

	Conclusions
	Acknowledgement
	References


