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Abstract—In this paper, evolutionary fuzzy systems are dis-
cussed in which the membership function shapes and types and
the fuzzy rule set including the number of rules inside it are
evolved using a genetic (evolutionary) algorithm. In addition,
the genetic parameters (operators) of the evolutionary algorithm
are adapted via a fuzzy system. Benefits of the methodology are
illustrated in the process of classifying the iris data set. Possible
extensions of the methods are summarized.

Index Terms—Fuzzy expert systems, genetic algorithm, mem-
bership.

I. INTRODUCTION

A. Background

FUZZY systems are being used successfully in an in-
creasing number of application areas; they use linguistic

rules to describe systems. These rule-based systems are more
suitable for complex system problems where it is very difficult,
if not impossible, to describe the system mathematically.
One of the most important considerations in designing any
fuzzy system is the generation of the fuzzy rules as well
as the membership functions for each fuzzy set. In most
existing applications, the fuzzy rules are generated by experts
in the area, especially for control problems with only a few
inputs. With an increasing number of variables, the possible
number of rules for the system increases exponentially, which
makes it difficult for experts to define a complete rule set for
good system performance. An automated way to design fuzzy
systems might be preferable.

There are many ways to attack this problem. A straightfor-
ward approach is to use clustering algorithms (like the c-means
clustering algorithm, fuzzy c-means clustering algorithm, etc.
[2]) or similar methods to partition the pattern space into
many subspaces with or without overlaps among them, then
map the center of each cluster into a rule according to the
definitions of fuzzy variables [1], [24]. One disadvantage
of this approach is that the extracted rules are independent
of the membership functions so there is no guarantee that
the fuzzy system obtained will have sufficiently good per-
formance, especially for a complex system problem with a
large number of input variables. In many cases, however, the
system’s performance can be improved by further tuning the
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membership functions and selecting suitable fuzzification and
defuzzification methods.

The design of a fuzzy system can be formulated as a
search problem in high-dimensional space where each point
represents a rule set, membership functions, and the corre-
sponding system’s behavior. Given some performance criteria,
the performance of the system forms a hypersurface in the
space. Developing the optimal fuzzy system design is equiv-
alent to finding the optimal location of this hypersurface. The
hypersurface has the following characteristics.

• The hypersurface isinfinitely large since the number of
possible fuzzy sets for each variable is unbounded.

• The hypersurface isnondifferentiablesince changes in
the number of fuzzy sets are discrete and can have a
discontinuous effect on the fuzzy system’s performance.

• The hypersurface iscomplexandnoisysince the mapping
from a fuzzy rule set to its performance is indirect and
dependent on the evaluation method used.

• The hypersurface ismultimodal since different fuzzy
rule sets and/or membership functions may have similar
performance.

• The hypersurface isdeceptivesince similar fuzzy rule
sets and membership functions may have quite different
performances.

These characteristics seem to make evolutionary algorithms
such as genetic algorithms (GA’s) better candidates for search-
ing the hypersurface than conventional methods such as hill-
climbing search methods.

B. Previous Approaches

GA’s are commonly used evolutionary algorithms that pro-
vide a way to search poorly understood, irregular spaces. One
of the key issues in the evolutionary design of fuzzy systems
using GA’s is their genotype representation; that is, what is
encoded into the chromosomes.

Thrift [23] and Hwang and Thompson [11] encode all
the rules into the chromosome while fixing the membership
functions. Using several critical points to represent each mem-
bership function while using all the possible rules, Karr [15]
and Karr and Gentry [16] use GA’s to evolve these critical
points; that is, to adjust the membership functions. Since in
a fuzzy system the membership functions and rule set are
codependent, they should be designed or evolved at the same
time. Homaifar and McCormick [10] use GA’s to tune the
membership functions and evolve the rule set at the same
time. The base length of each triangular membership function
and all possible rules are encoded into the chromosomes.
Similar to [10], Lee and Takagi [17] also encode membership
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functions and all the rules into the chromosome, but have a
different way to encode the triangular membership functions.
They restrict adjacent membership functions to fully overlap
and also constrain one membership function to have its center
resting at the lower boundaries of the input range. By using
this coding, only membership function centers need to
be encoded, where is the maximum number of partitions for
a given dimension. The above-mentioned methods encode all
possible rules into the chromosome. There are some drawbacks
by doing so [3]: first, the computational efficiency associated
with fuzzy logic is lost using a high number of rules and
second, the robustness decreases with increasing the number
of rules. This is especially true when the dimension of the
inputs and the number of fuzzy sets for each input variable
become great since the number of possible rules exponentially
increases with the these numbers.

In most applications, not all possible rules need to be used;
only a portion of the rules are needed. So only this portion
of rules should be encoded into the chromosome and evolved.
By doing so, the length of the chromosome will be reduced
greatly and, therefore, will be suitable for larger problems.
Karr [14] considers a very special case where the number of
rules is provided by an expert, together with many complete
rules forming the rule set and the antecedents for the remaining
ones so only the consequent parts of the latter type need to be
evolved and, therefore, need to be encoded in the chromosome.
This is not the case for many applications. Most of the time,
it will be difficult, if not impossible, to knowa priori exactly
how many rules are required to be included in the rule set;
only a maximal number can be guessed or estimated.

It is better to encode the number of rules to be included in
the rule set together with rules and/or membership functions
into the chromosome to be evolved. There are several ways
to do this. Lee and Takagi [18], [19] proposed encoding
membership functions and fitness functions in chromosomes.
Shimojimaet al. [22] and Inoueet al. [12] defined membership
functions for each rule and encoded effectiveness information
for each rule and membership function. Shimojimaet al. used
fitness functions that encouraged minimizing the number of
rules; Inoueet al. used a method they called ‘‘forgetting.’’

Due to the highly complex and nonlinear characteristic of
the problem space, uniform distribution of the fuzzy sets is
usually not optimal. The performance of a fuzzy classification
system based on fuzzy if–then rules depends on the choice
of a fuzzy partition. If a fuzzy partition is too coarse, the
performance may be low. If a fuzzy partition is too fine,
many fuzzy if–then rules cannot be generated because of the
lack of training patterns in the corresponding fuzzy subspaces.
For a problem, some parts of pattern space might require
fine partition, while other parts require only coarse partition.
Therefore, the choice of an appropriate fuzzy partition is
important and difficult. To cope with this difficulty, Ishibuchi,
Nozaki et al. [13] introduce the concept of distributed fuzzy
if–then rules. They encode all fuzzy if–then rules corre-
sponding to several different fuzzy partitions into a tri-value
string and apply GA’s to remove the unnecessary
rules from fuzzy if–then rules corresponding to the different
fuzzy partitions. Since each possible rule for each subspace

is coded into the chromosome, the length of the chromosome
is very large when the number of input dimensions and/or
of different partitions is large. Other ways to tackle the
nonlinear distribution problem should be sought. A natural
and better way is to employ nonlinear functions in addition to
linear functions as membership functions. Natural choices are
Gaussian functions, sigmoid functions, etc. Through inclusion
of linear and nonlinear functions, the type of membership
function for each fuzzy set will not be predetermined, but
instead be evolved during the design process.

GA behavior is determined by the exploitation and explo-
ration relationships kept throughout the run [8]. Given fixed
settings for parameters such as crossover and mutation rates
through the run, the GA may have its exploitation/exploration
relationship (EER) disproportioned and produce a lack of
diversity in the population [8]. Accordingly, GA parameter
settings should be adapted through the run. Since the interac-
tion between GA parameter settings and GA performance is
complex and unknown, finding algorithms to achieve optimal
adaptive parameter settings is very difficult, if not impossible.
This suggests the use of fuzzy systems for adapting GA
parameters. The main idea is to use a fuzzy system whose
inputs are any combination of GA performance measures or
current control parameters and whose outputs are GA control
parameters [8]. Lee and Takagi [17] propose an automatic
learning technique to design fuzzy rules for tuning GA’s. Due
to the heavy computation requirement, they first apply this
technique to design a fuzzy system to tune a GA for solving
the simple DeJong F1 function, then apply the obtained fuzzy
system to tune the GA to solve other different and more
complex problems. This technique is very similar to the meta
GA of Grefenstette [7]. This implies that the robustness of the
obtained fuzzy rules strongly depends on the problems to be
solved and the performance measures used by the technique.
As we know from the literature, there exist a lot of adaptive
GA’s to tackle the lack of diversity problem and a certain body
of expertise, experience, and knowledge on GA’s has become
available as a result of empirical studies conducted over a
number of years [9]. This human expertise and knowledge is
very useful and should be the first choice for designing a fuzzy
system to tune a GA to reach a suitable EER for avoiding
premature convergence and improving GA behavior.

C. Current Approach

In this paper, a GA-based method to evolve a fuzzy expert
system is discussed. It not only can evolve the rule set
(including the optimal number of rules inside the rule set),
tune the membership functions, and evolve the membership
function types, but also scales well and is, therefore, useful for
large complex problems. In addition, a fuzzy expert system is
designed from our experience and knowledge and is used to
adapt the genetic parameters of the GA.

The paper is organized as follows. Section II describes
the GA. Section III describes the fuzzy expert system. In
Section IV, details are given on how to design the fuzzy
system using a GA. In Sections II–IV, the implementations
described are related to the simulation example of Section V.
Example results are given in Section V, which demonstrate
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that the method discussed in this paper is effective and
efficient.

II. GENETIC ALGORITHMS

GA’s are search algorithms that reflect in aprimitive way
some of the processes of natural evolution including crossover,
mutation, and survival of the fittest. They are analogous
to neural networks’ status as primitive approximations to
biological neural processing. GA’s provide powerful search
mechanisms that can be used in optimization or classification
applications. While stochastic in nature, GA’s perform a
highly effective search of the problem hyperspace, efficiently
directing the search to promising regions. GA paradigms
are effective in a wide variety of applications; they are not
designed to solve only a narrow class of problems. GA’s
work with a population of points rather than a single point.
Each ‘‘point’’ is a vector in hyperspace representing one
potential (or candidate) solution to the optimization problem.
A population is, thus, just an ensemble or set of hyperspace
vectors. Each vector is called achromosomein the population.
The number of elements in each vector (chromosome) depends
on the number of parameters in the optimization problem
and the way to represent the problem. How to represent the
problem as a string of elements is one of the critical factors in
successfully applying a GA (or other evolutionary algorithm)
to a problem.

GA paradigms do not require information that is auxiliary
or related to the problem such as function derivatives, while
many hill-climbing search paradigms, for example, require
the calculation of derivatives in order to successfully explore
the local maximum or minimum. So GA’s can be applied
to wider areas, especially those difficult for traditional hill-
climbing methods. A typical series of operations carried out
when implementing a GA paradigm is:

1) initialize the population;
2) calculate fitness for each chromosome in population;
3) reproduce selected chromosomes to form a new popu-

lation;
4) perform crossover and mutation on the population;
5) loop to step 2) until some condition is met.

Initialization of the population is commonly done by seeding
the population with random values. The fitness value is propor-
tional to the performance measurement of the function being
optimized. The calculation of fitness values is conceptually
simple. It can, however, be quite complex to implement in a
way that optimizes the efficiency of the GA’s search of the
problem space. It is this fitness that guides the search of the
problem space.

It is not unusual for most (if not all) of the fitness values
after, say, a few dozen to a few hundred generations, to be
quite high. In cases where the fitness value can range from 0
to 1, for example, most or all of the fitness values may be 0.9
or higher. This lowers the differential between fitnesses that
provides the impetus for effective reproduction, i.e., ensuring
that higher fitness values have a significantly higher probability
of reproduction. One way around this problem is to shift the
fitness values in some manner.

After fitness calculation, the next step is reproduction.
Reproduction comprises forming a new population, usually
with the same total number of chromosomes, by selecting
from members of the current population using a stochastic
process that is weighted by each of their fitness values. The
higher the fitness, the more likely it is that the chromosome
will be selected for the new generation. One commonly used
way is a ‘‘roulette wheel’’ procedure that assigns a portion of
a roulette wheel to each population member where the size of
the portion is proportional to the fitness value. This procedure
is often combined with theelitist strategy, which ensures that
the chromosome with the highest fitness is always copied into
the next generation.

The next operation is called crossover. To many evolu-
tionary computation practitioners, crossover is what distin-
guishes a GA from other evolutionary computation paradigms.
Crossover is the process of exchanging portions of the strings
of two ‘‘parent’’ chromosomes. An overall probability is
assigned to the crossover process, which is the probability
that given two parents, the crossover process will occur.
This probability is often in the range of 0.65–0.80. The final
operation in the typical GA procedure is mutation. Mutation
consists of changing an element’s value at random, often with
a constant probability for each element in the population.
The probability of mutation can vary widely according to the
application and the preference of the person exercising the GA.
However, values of between 0.001 and 0.01 are not unusual
for mutation probability.

In the example simulation in this paper, the ‘‘roulette
wheel’’ procedure with theelitist strategy [6] is used for
reproduction, where the portions of the roulette wheel assigned
to population members are proportional to theshiftedfitness
values [4]. The original fitness values are linearlyshifted
with the minimal fitness mapping to 0.1. The crossover op-
erator used is two-point crossover with a default crossover
probability of 0.75 [6]. The mutation operator used in this
paper depends on our chromosome representation and will be
explained later. Note that in our evolutionary fuzzy system
described in Section IV, fuzzy rules can be used to adapt
crossover probability and mutation rate.

III. FUZZY EXPERT SYSTEMS

Fuzzy logic provides a general concept for description
and measurement. Most fuzzy logic systems encode human
reasoning into a program to make decisions or control a
system. Fuzzy logic comprises fuzzy sets, which are a way
of representing nonstatistical uncertainty and approximate rea-
soning, which includes the operations used to make inferences
in fuzzy logic. Unlike traditional Aristotelian two-valued logic,
in fuzzy logic, fuzzy set membership occurs by degree over the
range [0,1], which is represented by a membership function. It
is this function that is the fuzzy set. The function can be linear
or nonlinear. Commonly used areleft triangle, right triangle,
triangle, Gaussian, andsigmoidfunctions, as shown in Fig. 1.
Definitions of these membership functions as used in this paper
are as follows.
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Fig. 1. Six commonly used membership functions.
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Other definitions are possible, of course, but the authors
have found these to be useful for a variety of problems.
From the definitions, it can be seen that each membership
function is determined by two values—thestart point and
the end point .

Theoretically, each fuzzy variable can have many fuzzy sets
with each having its own membership function, but commonly
used are three, five, seven, or nine fuzzy sets for each fuzzy
variable. Fig. 2 shows a fuzzy variabletemperaturehaving
five fuzzy sets with triangular membership functions.

The general form of a Mamdani-type fuzzy rule in a fuzzy
expert system is

If is and is is

then is and is

Fig. 2. Membership functions of variable temperature.

where each is the consequent (output) variable whose value
is inferred, each is an input variable (an antecedent), and
each and is a fuzzy set represented by a membership
function. For simplicity, only Mamdani-type fuzzy rules are
considered in this paper. A fuzzy system is defined if and
only if its rule set and its membership functions associated
with its fuzzy sets are defined. An example definition of a
fuzzy system as used in this paper is given in List I.

The number ‘‘5’’ in the first line specifies the number of
rules listed in the rule set. The next line contains the number
of input fuzzy variables (4) followed by the number of output
fuzzy variables (1). Next, the fuzzy sets for all input and output
variables are defined. In accordance with the second line, we
define four input and one output fuzzy variables. The next
line, input one 5 0.4 1.0, defines the first fuzzy input variable’s
name asinput one, specifies the variable’s domain to have five
fuzzy sets and defines the variable’s dynamic range (domain)
to be 0.4–1.0. The dynamic range is generally related to the
variable’s minimum and maximum, respectively, in the data
set. In the next five lines, each line defines one of the fuzzy
sets for the variableinput one. Two main kinds of membership
functions are available: nonlinear and linear. The variable
input one is represented by the nonlinear fuzzy membership
functionsGaussian, Triangle, Triangle, TriangleandGaussian
with the first value in the same row beingstart point
and the second beingend point , respectively. The other
three input variables,input two, input three, and inputfour,
are specified following the first input variable. Then comes
the output variable, which is named output in the List I and is
defined by five fuzzy membership functions over the domain
[0,1]. The next five lines define the five fuzzy rules included
in the rule set as specified by the number ‘‘5’’ in the first line,
the meaning of which will be explained in the next section.
All the fuzzy rules in a fuzzy expert system are (theoretically)
fired in parallel. The fuzzy expert system works as follows.

1) Determine the fuzzy membership values activated by
the inputs.

2) Determine which rules are fired in the rule set.
3) Combine the membership values for each activated rule

using the AND operator.
4) Trace rule activation membership values back through

the appropriate output fuzzy membership functions.
5) Utilize defuzzification to determine the value for each

output variable.
6) Make decision according to the output values.
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LIST I
AN EXAMPLE OF A FUZZY EXPERT SYSTEM

Determination of the fuzzy membership values activated by the
inputs is often called fuzzification. Each input may activate
one or more fuzzy sets of that input variable according to
the definitions of the fuzzy membership functions. Only the
rules with at least one antecedent set activated are said to
be fired by the inputs. TheAND operator is typically used
to combine the membership values for each fired rule to
generate the membership values for the fuzzy sets of output
variables in theconsequentpart of the rule. Since there may
be several rules fired in the rule sets, for some fuzzy sets of
the output variables there may be different membership values
obtained from different fired rules. There are many ways to
combine these values. One commonly used way is to use
the OR operator, that is to take the maximum value as the
membership value of that fuzzy set. Next, a defuzzification
method is used to produce a single scalar value for each
output variable. A common way to do the defuzzification is
called theclipped center of gravityor centroid method. Then
according to the output values, some decisions can be made to
solve the problem. For example, for the-class classification
problem, the output variable range can be divided intoevenly

distributed parts, then the input pattern belongs to classif
the inferred output value is located inside theth part. This is
the approach taken for the iris data set classification system
described in this paper.

IV. EVOLUTIONARY FUZZY SYSTEMS

A. Representation

When designing a fuzzy system using a GA, the first
important consideration is the representation strategy, that is
how to encode the fuzzy system into the chromosome. A fuzzy
system is specified only when the rule set and the membership
function associated with each fuzzy set are specified. To
completely represent a fuzzy system, each chromosome must
encode all the needed information about the rule set and the
membership functions as shown in List I. For the purpose
of discussion, assume that we have a fuzzy system like the
one shown in List I with four input variables and one output
variable, and that each variable has five fuzzy sets representing
the linguistic descriptions:very low, low, medium, high,and
very high. We can use the integers 1–5 to represent each of
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Fig. 3. Three uniformly distributed membership functions.

these five terms, use the integer 0 to represent the absence of
a term, and use a minus sign ‘‘’’ to encode the term ‘‘not.’’
For example, 1 means ‘‘not very low’’ while 1 means ‘‘very
low.’’ In this way, a fuzzy rule can be completely represented
by eleven integers. For example, the rule ifinput 1 is not low,
input 2 is not medium, and input4 is high, then output is very
high can be encoded as2 3045. (Note, only Mamdani-type
rules are considered here for simplicity.) If the rule set includes
20 rules, then an integer string of length 100 can represent the
rule set completely.

In this paper, a total of six types of functions (defined in the
last section) are used as the membership function candidates;
each is represented by an integer from 1 to 6. A membership
function in our example is completely determined by three
values: thestart point , the end point , and the function
type value. In order to have a homogeneous chromosome,
integers are chosen to represent thestart point and the
end point instead of real values. Assume for the variable
that its dynamic range is [a, b] and that it has fuzzy sets. If
the fuzzy membership functions are uniformly distributed over
the range with half-way overlap as shown in Fig. 3, then the
center point of the ith membership function
is located at

where

We constrain thestart point of the ith membership function
to vary only between and , and theend point of the
ith membership function can vary only betweenand .
Assume an integer is used to represent
and , then and can be calculated from the integer
using the following formula:

For an unknown fuzzy system, we generally have no idea
how many rules should be included in the rule set before the
system is designed. A maximum acceptable number can be
guessed and/or given, however. Within the maximum number
constraint, the number of fuzzy rules in the rule set should also
be evolved. Assume for our example system that the maximum
acceptable number is 30, then the total length (in integers) of
the chromosome representing the system is

and the system can be represented as

where represents the number of rules varying between 1 and
30, , represent the start point and end point for the first
fuzzy set of the first input variable and can vary between zero
and ten, represents the membership function type for the
first fuzzy set of the first input variable and can vary between
one and six, to encode the remaining fuzzy membership
functions (start point, end point, type), to represent the
first fuzzy rule and to represent the last possible rule.
Since specifies how many possible rules are encoded in the
chromosome, only the first rules are used to form the rule
set, but it may be that not each of them is feasible. Each
possible rule is therefore checked to see whether it represents
a feasible rule or not. A rule without a nonzero antecedent or
consequent part is not a feasible rule and will not be included
in the rule set. For example, assume we have a rule encoded
as 12320. This has no nonzero consequent part, so it will not
be included in the rule set as a rule and the number of feasible
rules will be . If all possible rules are infeasible
(this mostly happens at the beginning of the GA run), then
this chromosome contains no feasible rules, does not form a
usable fuzzy system, and is assigned a small (around 0.0001)
positive random value as its fitness value.

B. Fitness Function

The next important consideration following the represen-
tation is the choice of the fitness function. The genotype
representation encodes the problem into a string while the
fitness function measures the performance of the system. To
find a good fitness measurement for a system is quite important
for evolving practical systems using GA’s. Unlike traditional
gradient-based methods, GA’s can be used to evolve systems
with any kind of fitness measurement functions including
those that are nondifferentiable, discontinuous, etc. Finding
a good fitness measurement can make it easier for the GA to
evolve a useful system. How to define the fitness measurement
function for a system to be evolved is problem dependent.
For prediction and estimation problems, a commonly used
function is a mean-square error or absolute difference error
related function

where is the number of training data, and and are
the ith obtained and target outputs, respectively. Assume the
maximum error is ; then one possible fitness function is

These kind of error functions reflect absolute error; that is, the
error is dependent only on the difference between the obtained
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output and target output. For example, for a target output of ten
and obtained output of nine, and for a target output of two and
obtained output of one, the same absolute error of one results
and each will have the same contribution to the error function.
But nine is generally a better estimation of ten than one is of
two. Using the above error functions to calculate the fitness,
the obtained system will thus have better accuracy for large
target outputs than for small ones. To have the system have
similar accuracy for any target output, relative error functions
can be introduced. Examples of these functions are

For classification problems, the above error functions are
generally not good candidates. If classA is misclassified as
classB, the same error results as whenA is misclassified as any
other class. Normally, for classification problems, the number
of misclassified classes and the number of correctly classified
classes are used in the error function and fitness functions. This
approach is used in the problem addressed later in this paper.
Other requirements for the system can also be encoded into the
fitness function. For example, if we prefer a fuzzy system with
a low number of rules, then the rule number can be encoded
as a factor of the fitness normally through summation.

C. Mutation Operator

From the encoding methods illustrated, we see that the chro-
mosome representing the fuzzy expert system is integer based
instead of binary based. Each element in a chromosome has
an integer range according to which component or parameter
it is representing in the original fuzzy system. For example,
has a integer range from 1 to 30 to encode the number of rules
inside the rule set; has a integer range from5 to 5 to
encode the selected fuzzy set; etc. The mutation operator used
is thus a little different than that used in a binary encoding.
Each time an element is chosen to be mutated, it is increased
or decreased by one randomly inside its range. The mutation
rate used is fixed at 0.01 if it is not adapted during the GA run.

D. Adaptive Genetic Algorithm

Crossover and mutation are two critical operators. Although
they are potentially disruptive, they facilitate an efficient
search and guide the search into new regions. Crossover
facilitates exploration, while mutation facilitates exploitation
of the space. The probabilities of crossover and mutation are
often held constant for the entire run of a GA, although this
approach will not produce optimal results in many cases. They
can be varied during the run, often starting out by running the
GA with a relatively higher value for crossover and lower
value for mutation, then tapering off the crossover value and
increasing the mutation rate toward the end of the run, ending
with values of, say, one half and twice the initial values,
respectively.

LIST II
DEFINITION OF THE FUZZY SYSTEM THAT ADAPTS GA PARAMETERS

Since the process to vary these two parameters to obtain
good performance is unknown, it is unclear how to vary
the parameters during the run. Normally, they are changed
linearly. From experience, we know when the fitness is high,
e.g., at the end of the run, low crossover rate and high
mutation rate are often preferred. Also, when the best fitness
is stuck at one value for a long time, the system is often
stuck at a local minimum in a local neighborhood, so the
system should probably concentrate on exploiting rather than
exploring; that is, the crossover rate should be decreased and
mutation rate should be increased. A similar situation exists
for the variance of the fitnesses of the population. When
variance is low, mutation should be emphasized, while when
variance is high, crossover should be stressed. According to
this kind of knowledge, we develop a fuzzy system to adjust
the crossover and mutation rates with best fitness (BF), number
of generations for unchanged best fitness (UN), and variance of
fitnesses (VF) as the input variables, and mutation rate (MR)
and crossover rate (CR) as output variables. For simplicity,
each variable has three fuzzy sets:low, medium,and high.
The definition of the fuzzy system that adapts GA parameters
is given in List II.

Eight fuzzy rules are used to adjust the mutation and
crossover rates. For clearness, the linguistic descriptions of
these eight rules are listed below.

• If BF is low, then MR islow and CR ishigh.
• If BF is mediumand UN islow, then MR islow and CR

is high.
• If BF is mediumand UN ismedium, then MR ismedium

and CR ismedium.
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• If UN is high and VF ismedium, then MR ishigh, and
CR is low.

• If BF is high and UN is low, then MR is low and CR
is high.

• If BF is high and UN ismedium, then MR ismediumand
CR is medium.

• If UN is high and VF is low, then MR ishigh and CR
is low.

• If UN is high and VF ishigh, then MR is low and CR
is low.

Other rules and definitions of membership functions are possi-
ble, of course. These were selected based upon the experience
of the authors for the example described in the next section.
They have also proven useful for other problems.

V. SIMULATION AND DISCUSSION

The implementation of the evolutionary fuzzy system is
written in C and compiled using the Borland C 4.5
compiler. An example system has been evolved for the classifi-
cation of the well-known iris data set, which consists of feature
measurements for iris flowers measured by Anderson and
popularized by Fisher [5]. It consists of 150 four-dimensional
vectors representing 50 plants of each of three speciesiris
setosa, iris versicolor,and iris virginica

where is the sepal length, is the sepal width, is the
petal length, and is the petal width [5]. All of the attribute
values have been normalized into real numbers in the range
[0,1]. The problem is to discriminate the species according
to the feature vectors. Thus, this is a three-class classification
problem. For this problem, the fitness chosen is the percent
correct.

Assuming each variable has three fuzzy sets associated with
triangular membership functions uniformly distributed over
[0,1], we originally used learning vector quantization (LVQ)
[4] to extract fuzzy rules from the data set. First, LVQ was used
to cluster the iris data into 16 subclasses. Using the centers of
the 16 subclasses and the definitions of the fuzzy sets, 16 rules
were formed. Since there were three occurrences of the same
rule for two out of the 16 rules, all but one was eliminated
due to the fuzzy operators used in this paper. Also there were
three rules which were merged into one rule by using zero
to represent the absence of a term. A fuzzy system with ten
rules resulted. This system gave 17 errors out of 150 patterns
classified.

Next, we adjusted the membership functions’ shapes man-
ually. By trial-and-error, the best system we evolved gave 11
errors. This is still not acceptable for this data set compared
with most other classification methods. Finally, more efforts
were made to adjust the membership functions’ shapes and
types manually. We finally got the best system we thought
we could obtain using this approach. This system gave seven
errors out of 150 patterns classified. This result is acceptable
for some purposes, but we were not satisfied with it, and were
thus motivated to evolve the fuzzy system using a GA.

Fig. 4. Membership functions obtained for iris data.

Simulations were done to design a fuzzy classification
system using the methods discussed previously for the iris
data set. Three fuzzy sets were associated with each input
variable. In one of the runs, a fuzzy system with four rules
was evolved, which yields only three misclassifications. This
is a good result compared with results obtained by most other
classification methods. The four rules are as follows with the
membership functions as shown in Fig. 4.

1) If sepal length is high and sepal width is not low and
petal length is high and petal width is low then output
is high.

2) If sepal width is not medium and petal length is not high
and petal width is high then output is not high.

3) If sepal length is not medium and sepal width is high and
petal length is not medium and petal width is medium
then output is medium.

4) If sepal length is not high and petal length is low then
output is low.

.Since the classification system has been developed using fuzzy
rules, we can explain each classification and understand the
relationship between the inputs (the four features of an iris
flower) and the output (the iris flower’s specie). This is an
important advantage to evolving a fuzzy rule system.

Note the output representation. There is a single output
with three fuzzy sets. The centroid method of defuzzification
is used. The classifications are arbitrarily assigned to outputs
zero, one, and two (low, medium, and high) in the order they
appear in the data set. Although good results were obtained,
it was noted that most of the time errors were due to class 1
being misclassified as class 2, or vice versa. It is possible that
even better results could have been obtained by reordering the
data so that classes 1 and 2 were not adjacent (results could
also have been worse; reordering was not tried). It should,
therefore, be noted that when using this output representation,
ordering of output classes may be significant.

Since several operations were involved in evolving the final
system, we attempted to (at least approximately) isolate the
operations by looking at the effect of each by itself. The goal
was to ensure that each was indeed contributing to improved
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TABLE I
THE FUZZY RULE SET WAS EVOLVED USING FIXED MEMBERSHIP FUNCTIONS, AND WITH FIXED

CROSSOVER ANDMUTATION RATES (NO FUZZY SYSTEM TO ADAPT CROSSOVER ANDMUTATION)

TABLE II
THE FUZZY RULE SET WAS EVOLVED USING FIXED MEMBERSHIPFUNCTIONS WITH A FUZZY EXPERT SYSTEM ADDED TO ADAPT THE CROSSOVER ANDMUTATION RATES

TABLE III
THE FUZZY EXPERT SYSTEM INCLUDING MEMBERSHIP FUNCTIONS WAS EVOLVED, BUT WITHOUT FUZZY

RULES TO ADAPT THE CROSSOVER ANDMUTATION RATES (CROSSOVER ANDMUTATION HELD CONSTANT)

system performance. The emphasis of the simulations is on
convergence speed rather than generalization. All 150 patterns
were, therefore, used for system training. A division into
training and test sets would be required to examine the
system’s ability to generalize. (The question of generalization
is addressed in Shi and Eberhart [21].)

In all experiments, the number of generations needed to
reach a specified number of errors (out of 150) within 1000
generations was determined for each of ten runs. These num-
bers appear in Tables I–IV. The right-most column of each
table is the average number of generations needed to achieve
the error level listed in the left-most column. If more than
1000 generations were required, the average is for only those
found within 1000 generations.

First, a fuzzy expert system was evolved, but the mem-
bership functions were fixed (linear triangular functions with
uniform distribution over the range) and the crossover and

mutation rates were held constant during the run (no fuzzy
rules were used to adapt crossover and mutation). The results
are shown in Table I.

Next, the fuzzy rule set was evolved with fixed membership
functions, but the fuzzy system (shown in List II) was used to
adapt the crossover and mutation rates of the GA. The results
are given in Table II.

Next, the fuzzy rule set and membership functions were
evolved, but crossover and mutation rates were held constant
during each run (no fuzzy expert system was used to adapt
the crossover and mutation rates). The results are given in
Table III.

Comparing Table I with Tables II–IV, we can see that the
system with fixed membership functions and without a fuzzy
system to adapt crossover and mutation rates requires the most
generations on average and only one of the ten runs was
successful in evolving a system with the best performance
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TABLE IV
THE ENTIRE SYSTEM WAS EVOLVED INCLUDING MEMBERSHIP FUNCTIONS WITH A FUZZY EXPERT SYSTEM TO ADAPT THE CROSSOVER ANDMUTATION RATES

(three errors) within 1000 generations. Furthermore, it fails
in one out of ten runs to evolve a system with four or five
misclassifications.

Comparing Tables II and IV, we can see that for relatively
higher numbers of errors, they take similar numbers of gen-
erations to get the same performance. In order to get better
performance, however, the system with fixed membership
functions requires many more generations and half of the runs
fail to evolve a system with the best performance within 1000
generations.

Comparing Tables III and IV, we can see that by using a
fuzzy expert system to adapt the crossover and mutation rates,
significantly fewer generations are required to get the same
performance compared to holding crossover and mutation
constant. Therefore, it appears that a fuzzy expert system can
be a good way to adapt GA operators. We have used this
approach for other projects, and are continuing to explore it.
Several approaches might lead to improved performance, such
as the use of nonsymmetric membership functions. It would be
interesting to compare this approach with other evolutionary
computation paradigms such as particle swarm optimization
[4] and modular evolutionary fuzzy expert systems [21], but
such comparisons are beyond the scope of this paper.

VI. CONCLUSION

In this paper, evolutionary fuzzy expert systems have been
discussed in which the membership function shapes and types
and the fuzzy rule set, including the number of rules inside
the rule set, are evolved using a GA. (Other evolutionary
algorithms such as particle swarm optimizers or evolutionary
programming can also be used instead of a GA.) In addi-
tion, the genetic parameters of the evolutionary algorithm are
adapted via a fuzzy expert system. Benefits of the methodology
have been illustrated by a classifier for the iris data set. It
appears that the method described could be useful for a wide
range of classification and diagnostic problems.

In this paper, evolutionary fuzzy expert systems have been
discussed in which the membership function shapes and types
and the fuzzy rule set, including the number of rules inside
the rule set, are evolved using a GA. (Other evolutionary
algorithms such as particle swarm optimizers or evolutionary
programming can also be used instead of a GA.) In addi-
tion, the genetic parameters of the evolutionary algorithm are
adapted via a fuzzy expert system. Benefits of the methodology
have been illustrated by a classifier for the iris data set. It

appears that the method described could be useful for a wide
range of classification and diagnostic problems.
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