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Abstract

The Rprop algorithm proposed by Riedmiller and Braun is one of the best performing -rst-order
learning methods for neural networks. We discuss modi-cations of this algorithm that improve
its learning speed. The new optimization methods are empirically compared to the existing Rprop
variants, the conjugate gradient method, Quickprop, and the BFGS algorithm on a set of neural
network benchmark problems. The improved Rprop outperforms the other methods; only the
BFGS performs better in the later stages of learning on some of the test problems. For the anal-
ysis of the local search behavior, we compare the Rprop algorithms on general hyperparabolic
error landscapes, where the new variants con-rm their improvement.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Yet another learning algorithm?

Much research in the -eld of neural networks is concerned with developing new
learning algorithms, where learning is used as a synonym for data-driven optimiza-
tion of network parameters. Each year many new learning methods are presented, so
why should one care for yet another one? The learning algorithms proposed in this
article are not totally new approaches, but modi-cations of the two established Rprop
(resilient backpropagation) algorithms [17,18,6]. The improved versions maintain the
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advantageous properties of the originals:

1. Rprop as proposed by Riedmiller and Braun is (already) very fast and accurate.
The reader is referred to [8,17–19] for comparisons of Rprop with other supervised
learning techniques and to the review of learning methods in [15].

2. The Rprop algorithms are known to be very robust with respect to their internal
parameters [16–18]. In addition, these parameters are comparatively intuitive and
therefore easy to adjust.

3. Rprop is a -rst-order method. The time and space complexity scales only linearly
with the number of parameters to be optimized.

4. The algorithms are general methods for gradient-based optimization. In particular,
they do not rely on special properties of a certain class of network topologies.

5. The update rule depends only on the sign of the derivative and not on its amount. So
Rprop is very suitable for applications where the gradient is numerically estimated
or the error is noisy.

6. Rprop is easy to implement and not susceptible to numerical problems. A hardware
implementation is described in [11].

In this study, strong empirical evidence is given that the new methods outperform the
original ones in terms of speed. The empirical evaluation makes use of four neural
network benchmark problems (two classi-cation and two regression tasks) and ar-
ti-cial error landscapes. The proposed new algorithms are compared to widely used
general gradient-based optimization techniques, namely the two original Rprop variants,
Fahlman’s Quickprop, the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) algorithm,
and the conjugate gradient method.
In the next section, we describe the Rprop algorithm as proposed by Riedmiller and

Braun [17,18] and our modi-cations -rstly suggested in [6]. In Section 3 we evaluate
the learning schemes on neural network benchmark problems and in the succeeding
section we analyze the behavior of the Rprop algorithms on arti-cial error surfaces.

2. The Rprop algorithms

Gradient-based optimization techniques are the most widely used class of algorithms
for supervised learning in neural systems. Adaptive gradient based algorithms with
individual step-sizes try to overcome the inherent diHculty of the choice of the right
learning rates. This is done by controlling the weight update for every single connection
during the learning process in order to minimize oscillations and to maximize the update
step-size. Let wij denote the weight in a neural network from neuron j to neuron i and
E be an arbitrary error measure that is diJerentiable with respect to the weights. Bias
parameters are regarded as being weights from an extra constant input. Superscripts
indicate the learning iteration. In each iteration the new weights are given by

w(t+1)ij :=w(t)ij +Lw
(t)
ij : (1)

The learning algorithm stops when a certain termination criterion is met (e.g., t exceeds
a prede-ned value). In the Rprop learning algorithm the direction of each weight update
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is based on the sign of the partial derivative @E=@wij. A step-size Lij, i.e., the update
amount of a weight wij, is adapted for each weight individually. The main diJerence
to other techniques is that the step-sizes are independent of the absolute value of the
partial derivatives: If no weight-backtracking (see Section 2.1) is used the step-sizes
are computed as

Lw(t)ij :=− sign

(
@E
@wij

(t)
)
L(t)
ij ; (2)

where the sign(:) operator returns +1 if its argument is positive, −1 if the argument
is negative, and 0 otherwise. The Lij are initialized to a constant L0. The bene-ts
of this update scheme are described in [17,18]. One iteration of the original Rprop
algorithm can be divided into two parts. The -rst part, the adjustment of the step-sizes,
is basically the same for all Rprop algorithms employed in this study. For each weight
wij an individual step-size Lij is adjusted using the following rule:

L(t)
ij :=



min(
+L(t−1)
ij ;Lmax) if

@E
@wij

(t−1) @E
@wij

(t)

¿ 0

max(
−L(t−1)
ij ;Lmin) if

@E
@wij

(t−1) @E
@wij

(t)

¡ 0

L(t−1)
ij otherwise;

(3)

where 0¡
−¡ 1¡
+. If the partial derivative @E=@wij possesses the same sign for
consecutive steps, the step-size is increased, whereas if it changes sign, the step-size
is decreased (the same principle is also used in other learning methods, e.g., [7,24]).
The step-sizes are bounded by the parameters Lmin and Lmax. Note that by (1) and
(2) the following holds:

@E(t)

@L(t−1)
ij

=
@E(t)

@w(t)ij

@w(t)ij
@L(t−1)

ij

=− @E
@wij

(t)

sign

(
@E
@wij

(t−1))
: (4)

Hence, the direction of the change of Lij following (3) is in accordance with a
gradient-based optimization of the network error with respect to Lij.
In the following, we describe the second part of the algorithm, the update of the

weights, for the diJerent Rprop versions. For convenience, we use the same notation for
the partial derivatives and the variables holding the values of the partial derivatives in
the implementation of the algorithms. Two of the algorithms described later reset these
variables to zero indicated by @E(t)=@w(t)ij :=0 in order to aJect the scheme described
by (3).

2.1. Rprop with weight-backtracking

The -rst version of the Rprop algorithm as proposed in [18] implements a general
concept for improving network training termed weight-backtracking, which means re-
tracting a previous update for some or all weights, cf. [22,24,25]. Whether to take back
a step or not is decided by means of a heuristic.
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After adjusting the step-sizes according to (3), the weight updates Lwij are de-
termined. Two cases are distinguished. If the sign of the partial derivative has not
changed, a regular weight update is executed:

if
@E
@wij

(t−1) @E
@wij

(t)

¿ 0 then Lw(t)ij :=− sign

(
@E
@wij

(t)
)
L(t)
ij : (5)

In case of a change of sign of the partial derivative, the previous weight update is
reverted:

if
@E
@wij

(t−1) @E
@wij

(t)

¡ 0 then

{
Lw(t)ij :=−Lw(t−1)ij ;

@E
@wij

(t)

:=0

}
: (6)

Setting the stored derivative to zero avoids an update of the learning rate in the next
iteration, because the otherwise branch in (3) becomes active. This can be regarded
as an implementation trick; the same eJect could be achieved by adding a Nag to the
algorithm. A similar rule for partial weight-backtracking can be found in [24].
We refer to this original algorithm as Rprop+ throughout this article, where the

superscript indicates the use of weight-backtracking. The left column of Fig. 1 describes
Rprop+ in pseudo-code.

2.2. Rprop without weight-backtracking

In [1,17] a diJerent version of the Rprop algorithm is described. The weight-
backtracking is omitted and the right-hand side of (5) is used in all cases. Hence, there
is no need to store the previous weight updates. We denote this version as Rprop−.
The right column of Fig. 1 shows the corresponding pseudo-code.

2.3. Improved Rprop with weight-backtracking

Our -rst modi-cation of Rprop is based on the consideration that a change of sign
of the partial derivative implies that the algorithm has jumped over a local minimum,
but does not indicate whether the weight update has caused an increase or a decrease
of the error. Thus, the decision made in (6) to undo such a step is somewhat arbitrary.
Even worse, it appears to be counterproductive to take back a step though the overall
error has decreased. The idea of the modi-cation of Rprop+ is to make the step reversal
dependent on the evolution of the error.
There is a reason not to revert a step that has not caused a change to the sign of the

corresponding partial derivative: Suppose that the weights inNuence the network error
independently of each other and that the error function has only one local optimum
within a hypercube U ⊆ Rn, where n is the number of weights, and w(t) ∈U . Then
every change of w(t)i in the direction of −@E(t)=@w(t)i takes the weight vector closer to
the local optimum in U if w(t+1) ∈U and sign(@E(t)=@w(t)i ) = sign(@E

(t+1)=@w(t+1)i ).
These considerations lead to the rule, that those weight updates that have caused

changes to the signs of the corresponding partial derivatives are reverted, but only in
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Fig. 1. Pseudo-code of one iteration of the Rprop+ algorithm with weight-backtracking [18] (left column)
and of the Rprop− algorithm without weight-backtracking scheme [17] (right column).

case of an error increase: We replace (6) by

if
@E
@wij

(t−1) @E
@wij

(t)

¡ 0 then {

Lw(t)ij =
{−Lw(t−1)ij if E(t)¿E(t−1)

0 otherwise

@E
@wij

(t)

:=0

} (7)

In (7) we combine “individual” information about the error surface (sign of the partial
derivative of the error function with respect to a weight) with more “global” information
(network error) in order to decide for each weight individually whether or not to revert
a step. This combines the strictly “global” approach, where the complete previous
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Fig. 2. The iRprop+ algorithm with improved weight-backtracking scheme. The proposed algorithm diJers
only in the highlighted line from the original Rpropp+.

update for all weights is reversed if E(t)¿�E(t−1) (�= 1:0 in [22]; 1:0¡�6 1:05 in
[25]), with the ideas in [18,24].
Compared to Rprop+ only one additional variable, the previous error E(t−1), has to

be stored. We refer to this modi-ed algorithm as iRprop+ throughout the remainder of
this paper. Fig. 2 summarizes iRprop+ in pseudo-code.

2.4. Improved Rprop without weight-backtracking

In case of a change of sign of the derivative, the iRprop+ algorithm described in
the previous section does two things in addition to the reduction of the step-size: First,
it performs weight-backtracking in the (few) cases where the overall error increases.
Second, it always sets the derivative @E(t)=@w(t)ij to zero. In order to analyze the eJects
of these two diJerent actions, we came up with the algorithm described in Fig. 3, which
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Fig. 3. The iRprop− algorithm without weight-backtracking. The proposed algorithm diJers only in one line
from Rprop−.

is the same as iRprop+, but without weight-backtracking. We denote this algorithm as
iRprop−. If the sign of a partial derivative changes, iRprop− reduces the corresponding
step-size but does not modify the corresponding weight. Additionally, it is ensured
that in the next step the weight is modi-ed using the reduced step-size. Furthermore,
a step-size cannot be altered if it has been reduced in the previous step. The only
diJerence compared to Rprop− is that the derivative is set to zero.

3. Experimental evaluation

In this section, we compare the new algorithms with the original Rprop versions, the
BFGS algorithm, Quickprop, and the conjugate gradient method (CG) on four neural
network benchmark problems. Two classi-cation tasks (the cancer1 and diabetes1 data
sets, both from the UCI repository of machine learning database, as given in the
PROBEN1 benchmark collection [12]) and two regression problems (predicting the
sunspots and Lorenz time series) are considered. As models, we employ feed-forward
neural networks for classi-cation and the modeling of the sunspots time series, whereas
we apply a recurrent neural network for the Lorenz time series prediction.
In all experiments, we use the same parameters for the four Rprop algorithms. These

parameters are set to 
+=1:2, 
−=0:5, L0=0:5 (the initial value of the Lij), Lmin=0
and Lmax=50 (cf. [18,12,17]). The only exception is the training of the recurrent neural
network, where we set L0 = 0:0125, see Section 3.4.
All feed-forward network architectures used have sigmoidal hidden and linear output

units, whereas in the recurrent network all activation functions are sigmoidal. In the
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following descriptions, the notation 8–2–2–2 stands for a network architecture with 8
inputs, 2 hidden layers with 2 units each and 2 output neurons.
The mean squared error

EMSE(w) =
1
dN

N∑
n=1

‖y(xn;w)− tn‖2 (8)

is employed for network training. Here tn denotes the desired output for a particular
input xn and y(xn;w) the output of the neural network given xn and the weight vector
w; ‖:‖ is the Euclidean norm. The dimension of the output is denoted by d, the number
of training patterns (or the length of time series in the case of the recurrent network)
by N . The error percentage [12] de-ned as 100 ·EMSE(w)=(tmax− tmin)2, where tmax and
tmin denote the maximum and minimum target value, respectively, is used to display
the results in this section. However, cross-entropy based error functions may be more
suitable for classi-cation tasks and work also well in combination with Rprop [8].
We compare the Rprop algorithms with three common optimization techniques,

Fahlman’s Quickprop (cf. [2,15]), the BFGS (cf. [14]) algorithm, a quasi-Newton
method, which iteratively estimates the inverse of the Hessian, and the conjugate gra-
dient method (cf. [14,20]).
We employ the nonlinear CG algorithm using the Polak–RibiRere method. The search

direction is reset to the negative gradient direction whenever a search direction is com-
puted that is not a descent direction, i.e., the scalar product of the actual gradient and
the computed search direction is not positive. DiJerent line search methods (zeroth- and
-rst-order) have been tested. An elaborated direct (zeroth-order) line search performed
best and is therefore applied throughout this investigation for both CG and BFGS.
The performance of Quickprop strongly depends on the -xed learning rate parameter

� (denoted 
 in [15]). Hence, for every test problem, we -rst performed 10 trials for
each �∈{0:00001; 0:0001; 0:001; 0:1; 0:5; 1; 2; 3; 4; 5}. The � value that gave the
best results is used in the comparison of the learning algorithms: �=1 for the cancer1
task, � = 2 for the diabetes1 task, � = 1 for the sunspots problem, and � = 0:01 for
the Lorenz time series prediction. The maximum growth factor � is set to 1.75 as
recommended in [15].
For a fair comparison, the computational costs for optimization are measured in prop-

agations (the computational complexity of the optimization algorithms is neglected):
evaluating the error function (e.g., during line search) of a neural network corresponds
to one (“forward”) propagation, calculating the error and the gradient corresponds to
two propagations (“forward” and “backward”). Hence, one iteration of a Rprop algo-
rithm needs two propagations.
All results presented are based on 100 independent trials for each problem. To

display the results, the median is preferred to the less robust average. To achieve a fair
comparison, the 100 random weight initializations were the same for all the learning
algorithms. In order to analyze whether the diJerences between the error trajectories are
signi-cant, every 10 propagations a Wilcoxon rank sum test [26] has been performed
(all statements refer to a signi-cance level of 5%; however, most diJerences are highly
signi-cant). In the following, only the most important results are reported.
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Fig. 4. Medians of the training errors for the diabetes task.

3.1. Diabetes classi4cation

3.1.1. Problem and model description
The goal of this real-world classi-cation task is to decide whether a Pima Indian

individual is diabetes positive or not. There are 8 inputs representing personal data and
results from a medical examination. A 1-of-2 encoding is used for the output, which is
a binary attribute that is correlated with the question whether the person suJers from
diabetes or not. The training set consists of 384 patterns. Some of the patterns are dis-
turbed by noise: they contain nonsensical zero entries. An 8–2–2–2 feed-forward neural
network with all shortcut connections (i.e., all feed-forward connections including those
that skip intermediate layers) is used, which gave good results in [12].

3.1.2. Results
The trajectories of the error percentage are shown in Fig. 4. In the diabetes task,

iRprop+ performs signi-cantly better than all the other Rprop variants, CG, and—
as in all other tasks—Quickprop. It also signi-cantly outperforms the BFGS in the
-rst approx. 600 propagations. After more than 1200 propagations the BFGS shows
signi-cantly better results than iRprop+. Behind approx. 100 propagations, Rprop+,
Rprop−, and iRprop− do not diJer signi-cantly from each other.
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Fig. 5. Medians of the training errors for the cancer problem.

After the (predominantly stochastic) initial phase the BFGS reaches signi-cantly
lower training errors than the CG method and Quickprop. This holds for all test prob-
lems in this study.

3.2. Cancer classi4cation

3.2.1. Problem and model description
The cancer1 problem [27] is also a real-world classi-cation task: Based on 9 inputs

describing a tumor, the task is to classify it as either benign or malignant. The data
set consists of 350 patterns. Again a 1-of-2 encoding is used for the output. The
architecture is a 9–4–2–2 feed-forward neural network with all shortcut connections,
which performed well in [12].

3.2.2. Results
The results are summarized in Fig. 5. The diJerences between iRprop+ and Rprop+

are not signi-cant. Both algorithms perform signi-cantly better than CG, Quickprop,
and the Rprop variants without weight-backtracking. 1 For more than 400 propagations,

1 The better performance compared to iRprop− is in contrast to the -ndings in [6], where a diJerent
initial step size L0 was used.
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Fig. 6. Medians of the training errors for the sunspot problem.

iRprop+ signi-cantly outperforms BFGS, then the BFGS algorithm gets better. The
Rprop variants without weight-backtracking do not diJer signi-cantly from each other.
In all the four tasks, iRprop+ performs signi-cantly better than CG with the only

exception of the -nal iterations in this problem, where the diJerences do not become
signi-cant.

3.3. Sunspots

3.3.1. Problem and model description
The goal of this regression task is to reproduce the time series of the average number

of sunspots observed per year. The data from the time steps t − 1, t − 2, t − 4, and
t − 8 are used to predict the average number of spots at time t. The input data are
normalized between 0.2 and 0.8. 289 patterns are used, the -rst pattern to predict is
from year 1708. A 4–5–1 feed-forward neural network without shortcut connections
is used.

3.3.2. Results
iRprop+ and iRprop− perform better than the other learning schemes, see Fig. 6 for

the trajectories of the error percentage. The better performance of iRprop+ compared
to iRprop− is not signi-cant most of the time.
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3.4. Lorenz time series

3.4.1. Problem and model description
The task is the modeling of the Lorenz attractor [10], which is de-ned by the three

coupled diJerential equations

ẋ(t) = �(y(t)− x(t));
ẏ(t) =−x(t)z(t) + rx(t)− y(t);
ż(t) = x(t)y(t)− bz(t):

(9)

For the chosen parameter values � = 16, r = 45:92 and b = 4 the time series shows
chaotic behavior. We solved these equations by means of a fourth-order Runge–Kutta
method with time step 0:01 = Lt=2. The task during the presentation of the training
sequence was to predict one time step ahead, only using the x coordinate of the data:
x(t)→ x(t +Lt). We generated a training sequence of 2020 data points, including 20
data points for the warm up of the internal states; these 20 points were not used for
the calculation of the training error.
For this task, a recurrent neural network is chosen. More precisely, we use an ex-

tended Elman network [23] with a single memory layer. For all activation functions
the hyperbolic tangent is employed. Hence, input and output data are normalized to
lie between −0:7 and 0.7. Because the weights in recurrent neural networks are more
sensitive than in feed-forward structures, a smaller initial L0 (0:0125) is chosen.

3.4.2. Results
The statistics of the error percentage for 100 trials are shown in Fig. 7. iRprop+ and

iRprop− show better performance than Rprop+, Rprop−, and CG. Before the approx.
200th propagation, iRprop+ and iRprop− perform signi-cantly better, after approx. 400
propagations signi-cantly worse than the BFGS. As the trajectories of the averaged
error percentage—see inset plot in Fig. 7—behave diJerently, we can conclude that
there are some outliers, e.g., trials where algorithms get stuck in bad local optima, that
dominate the average errors. This lack of robustness can be interpreted as a drawback of
the BFGS algorithm. The discrepancy between median and average does not occur that
clearly in the three feed-forward neural network learning tasks reNecting that learning
is more robust in the feed-forward than in the recurrent networks.

3.5. Note on generalization

A common issue addressed when discussing neural network learning algorithms is
generalization, i.e., the ability of the trained network to process previously unseen
data in a desired way. In this study, we restrict our analysis of the algorithms to
their performance on the presented training set, because to our minds generalization
is mainly a problem of an adequate formulation of the learning task, whereas the
learning algorithm’s concern is the eHcient optimization on the presented error surface.
Nevertheless, there may be a tradeoJ between learning speed and generalization if
generalization is judged by means of an extra validation data set (cf. [15, p. 153]). To
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Fig. 7. Training errors for the Lorenz time series modeling task on logarithmic scale. The outer plot shows
the medians of the error percentages, whereas the inset plot shows the average for iRprop+ and the BFGS
algorithm.

see this, let us assume an optimal learning algorithm in terms of learning speed and an
error function that considers solely the performance on a training data set. The algorithm
would -nd a weight con-guration that results in the minimal training error in a single
step. Obviously, this solution is not likely to generalize well. The weight con-gurations
that correspond to networks that produce a low error on a validation set are usually
found by evaluating the solutions along the trajectory in the weight space the learning
algorithm generates. With increasing speed of the algorithm, the number of intermediate
steps decreases, and therefore so does the chance of evaluating a weight con-guration
that shows good results on the validation data set. This problem does not occur if
generalization is achieved by incorporating a regularization term into the error function.
With regard to the new algorithms, it has been shown in [6] that the improved Rprop

algorithms do not seem to converge to diJerent minima than the original ones—they
only converge faster.

3.6. Discussion

In the previous paragraphs, we have compared the new variants of Rprop with the
two original ones and three widely spread optimization techniques, on three real world
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neural network learning problems, plus one realistic one [13]. Basically, the outcomes
of all of our experiments are comparable: iRprop+ has turned out to be superior in
the initial phase of learning, whereas in some experiments BFGS performs better in a
later phase. In all test problems Quickprop and the CG method perform rather badly.
The iRprop− algorithm appears to be worse than iRprop+, but it is very compact and
needs less memory; it performs better than the comparable Rprop−.
In the later phase of learning, the BFGS might bene-t from two facts: the estimation

of the Hessian and the implicit assumption of a quadratic error surface become more
accurate after a while. However, one has to keep two important things in mind: First,
BFGS has quadratic time and space complexity, which adversely aJects the application
to large neural networks. Second, if generalization is judged by means of extra data
sets, the later phase of learning is likely to correspond to already over4tted models,
because networks that generalize well are usually found much earlier in the learning
process [6,12]. Therefore, the powerful behavior of BFGS may not be relevant in
certain scenarios.

4. Rprop on arti�cial test functions

In order to get more general results and ideas as to why our modi-cations increase
the learning speed, we analyze the behavior of the Rprop algorithms on arti-cial error
surfaces.

4.1. Method

In the vicinity of an optimum the error surface can be approximated by a hy-
perparaboloid, i.e., the contours of constant error are elliptical. Let w denote the
n-dimensional vector of parameters to be optimized, e.g., n weights of a neural network.
Then the general hyperparabolic error surface is given by

Ea(w) =
n∑
i=1

(
a(i−1)=(n−1) 〈w; oi〉

)2
; (10)

where 〈:; :〉 denotes the scalar (dot) product. The vectors o1; : : : ; on ∈Rn form a normal-
ized orthogonal basis with random orientation, i.e., for each 16 i; j6 n they satisfy
〈oi ; oj〉=0 if i �= j and ‖oi‖=1. The parameter a controls the condition of the problem.
This test function is a generalization of the arti-cial error surface proposed in [21]. It
is used in [3,4] for analyzing the local search properties of evolutionary algorithms.
Rprop is not invariant under rotation of the coordinate system; its performance

strongly depends on the choice of o1; : : : ; on (not rotating the coordinate system re-
sults in an unrealistic special case, where the weights in the neural network inNuence
the error independently of each other). In our experiments, we use a diJerent ba-
sis in each trial. The Gram-Schmidt orthogonalization procedure is used to construct
o1; : : : ; on from randomly drawn basis vectors.
The parameter a in Eq. (10) corresponds to the relation between the longest and the

shortest axis of the elliptical contours; it is equal to the square root of the condition of
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the problem de-ned as the ratio between the largest and the smallest eigenvalue of the
Hessian of Ea(w). According to [3], a choice of a = 103 is reasonable for real world
optimization problems. An idea about the magnitude of a for neural networks comes
from the analysis of the Hessian matrix. It is argued that a typical Hessian has few
small, many medium, and few very large eigenvalues [9]. This leads to a ratio between
the longest and the shortest axis that is much larger than 103. As the Rprop algorithms
depend only on the sign of the derivative and the ranking of the error values, the
results obtained with test functions generated by Eq. (10) do not only hold for the
parabolic error surface, but also for any monotone increasing transformation.
In the following, we compare the four Rprop algorithms on the hyperparabolic error

surfaces with diJerent values for a. We perform 100 trials per setting and Rprop variant.
The randomly chosen initial values of w and the basis vectors are the same for each
Rprop, but diJerent for each trial. During optimization, we computed characteristic
features of the steps on the error surface for subsequent analysis [5].

4.2. Results

The performance of the four Rprop algorithms depends on the condition of the
test function, but only for very small and unrealistic values of a (a . 3) the origi-
nal methods converge faster than the modi-ed algorithms. The larger a is the more
iRprop− and iRprop+ outperform the original algorithms as shown in [6] for dimension
n=100. However, the qualitative behavior appears to be independent of the problem’s
dimension. See Table 1 for the results for n = 2, where for diJerent values of a the
number of steps required for the error to fall below 10−6 are given. We can conclude
that the proposed modi-cations improve the local optimization properties of Rprop for
all relevant scenarios.
Table 1 shows interesting properties of the (improved) Rprop algorithms. We mea-

sured the probability of improvement (PI, the percentage of steps that lead to an
error decrease) the probability of worsening (PW), the average improvement (AI,
the average amount of an error decrease), the average worsening (AW, the aver-
age amount of an error increase), and the amount of the average change of the
error LE. Furthermore, we calculated the average step-size ‖̂ ‖, where we de-ne
‖ ‖:=

√∑
ij L

2
ij. For the considered parameterization of the error function and the

algorithms, we have:

1. For large values of a, the new algorithms are about 2.5 times faster than the original
ones.

2. The new Rprop versions do not necessarily have a higher fraction of bene-cial
iterations, but take larger steps. As indicated by the average improvement (AI), this
leads to larger steps towards the optimum (the also larger deteriorations can be
neglected).

3. For large values of a, AI, AW, PI, PW, and therefore LE appear to be independent
of a. It is striking that the number of steps are approximately proportional to a2,
i.e., the condition of the problem: The dominating term in the error function E2(w)
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Table 1
Results for two-dimensional arti-cial error surfaces, averaged over 100 trials per setupa

a steps PI PW AI AW LE ‖̂ ‖
Rprop+ 3 46.7 0.809 0.191 0.109 0.00966 0.0863 0.0338
Rprop− 3 36.5 0.897 0.103 0.124 0:0114 0.11 0.0376
iRprop− 3 42.7 0.768 0.137 0.124 0:00742 0.0943 0.0361
iRprop+ 3 38.3 0.82 0.148 0.13 0.00758 0.105 0.0373

Rprop+ 4 64 0.835 0.165 0.131 0.0143 0.107 0.0254
Rprop− 4 52.9 0.931 0.0686 0.141 0:0218 0.13 0.0267
iRprop− 4 48.5 0.791 0.122 0.181 0:0143 0.142 0.0323
iRprop+ 4 42.3 0.838 0.134 0.196 0:0134 0.162 0.0343

Rprop+ 5 84.7 0.855 0.145 0.149 0.0184 0.124 0.0198
Rprop− 5 74.8 0.942 0.0578 0.151 0:0287 0.141 0.0196
iRprop− 5 55.1 0.809 0.107 0.239 0:0236 0.191 0.0293
iRprop+ 5 50.4 0.849 0.126 0.249 0.0209 0.209 0.0295

Rprop+ 10 272 0.9 0.0999 0.171 0.0393 0.15 0.0066
Rprop− 10 264 0.977 0.023 0.161 0:0983 0.155 0.00583
iRprop− 10 123 0.886 0.0599 0.381 0:0839 0.333 0.0136
iRprop+ 10 125 0.918 0.0693 0.363 0.0858 0.327 0.0126

Rprop+ 50 6:24× 103 0.933 0.0665 0.179 0.0674 0.163 0.000307
Rprop− 50 6:61× 103 0.99 0.0105 0.158 0.231 0.154 0.000246
iRprop− 50 2:73× 103 0.953 0.0263 0.396 0.224 0.372 0.000636
iRprop+ 50 2:68× 103 0.971 0.0263 0.398 0.327 0.378 0.000625

Rprop+ 100 2:48× 104 0.935 0.0649 0.18 0.0699 0.164 7:8× 10−5

Rprop− 100 2:63× 104 0.99 0.0104 0.158 0.237 0.154 6:23× 10−5

iRprop− 100 1:07× 104 0.957 0.0249 0.403 0.243 0.379 0.000162
iRprop+ 100 1:06× 104 0.973 0.0241 0.401 0.366 0.382 0.000159

Rprop+ 500 6:19× 105 0.935 0.065 0.18 0.07 0.164 3:14× 10−6

Rprop− 500 6:58× 105 0.99 0.00988 0.158 0.249 0.154 2:5× 10−6

iRprop− 500 2:65× 105 0.959 0.0238 0.406 0.257 0.383 6:59× 10−6

iRprop+ 500 2:65× 105 0.975 0.0229 0.402 0.387 0.383 6:39× 10−6

Rprop+ 1000 2:48× 106 0.935 0.0648 0.18 0.0701 0.164 7:86× 10−7

Rprop− 1000 2:63× 106 0.99 0.00988 0.158 0.249 0.154 6:25× 10−7

iRprop− 1000 1:06× 106 0.959 0.0237 0.406 0.258 0.384 1:64× 10−6

iRprop+ 1000 1:06× 106 0.975 0.0229 0.401 0.384 0.382 1:59× 10−6

aThe parameter a controls the condition of the problem. The number of steps refers to the iterations
required for the error to fall below 10−6. In addition, the probability of improvement (PI), the prob-
ability of worsening (PW), average improvement (AI, i.e., the average amount of an error decrease),
the average worsening (AW, i.e., the average amount of an error increase), the amount of the average
change of the error LE, and the average step-size ‖̂ ‖ are given.

is (a〈w; o2〉)2. Thus the error function scales with a2. As the initial w(0) have been
chosen independently of a and the error threshold to be reached is kept constant,
this scaling of the error function determines the number of steps needed.

As the step-sizes are an important factor, the question arises how the choice of 
+

and 
− inNuences the results. Is the improved learning speed a mere consequence of the
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parameterization, i.e., do the original versions perform as well as the improved Rprops
when choosing diJerent values for 
+ and 
−? To answer these questions, we per-
formed 100 trials for each of the following settings with condition a=10 and dimension
n=2. We -xed 
− to the standard value of 0.5, and varied 
+ ∈{1:05; 1:1; 1:15; : : : ; 1:6},
i.e., even beyond the sensible choices [16]. In a second set of experiments, we -xed

+ to the standard value of 1.2 and varied 
− ∈{0:4; 0:45; 0:5; : : : ; 0:8}.
In all experiments, the new algorithms clearly outperformed the original ones. To

our knowledge, there has been no investigation of the Rprop performance for 
− �=0:5.
However, the best results were achieved using the parameters 
− = 0:7 and the com-
monly used 
+ = 1:2.

5. Conclusions

The Rprop algorithm is one of the best performing -rst-order learning algorithms for
neural networks with arbitrary topology. As experimentally shown, its learning speed
can be signi-cantly improved by small modi-cations without increasing the complexity
of the algorithm. The new methods, in particular iRprop+, perform better than the orig-
inal algorithms on all of the neural network test problems, including feed-forward and
recurrent models and real world and realistic data sets. Moreover, iRprop+ outperforms
the eHcient and widely spread BFGS, Quickprop, and CG algorithms in the relevant
domain. The experiments con-rm the robustness of the Rprop learning methods with
respect to their internal parameters.
Our analysis of the local search ability of the diJerent versions of Rprop on a hyper-

parabolic error surface, i.e., a surface comparable to the vicinity of a minimum, gives
a deeper insight into the diJerences and common features between the diJerent algo-
rithms. These investigations show that the behavior of Rprop depends on the condition
of the surface; for realistic settings, the improved algorithms outperform the original
ones. Moreover, one can see that the modi-cations enable Rprop not to make more
successful steps, i.e., steps decreasing the error, but longer ones, i.e., steps with larger
step-sizes.
Based on these results, we conclude that the improved Rprop with weight-

backtracking iRprop+ should be considered as the -rst choice for -rst-order batch learn-
ing of (large) neural networks.
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