Analysis and improvements of the Adaptive
Discretization Intervals knowledge
representation

Jaume Bacardit and Josep Maria Garrell

Intelligent Systems Research Group, Universitat Ramon Llull,
Psg. Bonanova 8, 08022-Barcelona, Catalonia, Spain, Europe.
{jbacardit, josepmg}@salleURL.edu

Abstract. In order to handle classification problems with real-valued
attributes using discretization algorithms it is necessary to obtain a good
and reduced set of cut points in order to learn successfully. In recent
years a discretization-based knowledge representation called Adaptive
Discretization Intervals has been developed that can use several dis-
cretizers at the same time and also combines adjacent cut points. In
this paper we analyze its behavior in several aspects. From this analysis
we propose some fixes and new operators that manage to improve the
performance of the representation across a large set of domains.

1 Introduction

Genetic Algorithms (GA) [1] have been applied extensively in recent years to
Classification and Machine Learning tasks [2-5]. The most popular family of
systems performing these tasks is known as Learning Classifier Systems (LCS),
having two main approaches: the Pittsburgh LCS [6] and the Michigan LCS [2].

The classical knowledge representations [6, 2] used in these systems are nom-
inal. Therefore, a discretization algorithm is needed in order to handle problems
with real-valued attributes with these representations, treating the resulting in-
tervals as nominal values. The performance of these systems is tied to the right
election of these intervals. A good discretization algorithm has to balance the
loss of information intrinsic to this kind of process and generating a reasonable
number of cut points, that is, a reasonable search space.

In recent years a discretization-based knowledge representation has been de-
veloped which can handle these issues, called Adaptive Discretization Intervals
(ADI) rule representation [7]. This representation is used inside a Pittsburgh
LCS and uses rules that contain intervals built joining together the low level in-
tervals provided by the discretization algorithm, thus collapsing the search space
when it is possible. Also, this representation can use several discretization algo-
rithms at the same time allowing the system to choose the correct discretization
for each problem and attribute.

In this paper we analyze the behavior of this representation from various
points of view. This analysis identifies some problems that lead us to propose a

new recombination operator and also a fix to another one. These improvements
increase the ADI representation performance in most domains (even significantly
sometimes based on statistical tests). Several combinations of the improvements
proposed in this paper are tested, comparing them to the original configuration
and also to two Machine Learning systems across several domains.

The paper is structured as follows. Section 2 describes the framework of
the classifier system used for this paper and the ADI knowledge representation.
Then, the ADI representation analysis and proposal of new operators is explained
in section 3. Next, section 4 describes the test suite used in the comparison. The
results obtained are summarized in section 5, section 6 discusses the conclusions
and some further work and, finally, section 7 presents some related work.

2 Framework and ADI knowledge representation

The LCS used for this paper is called GAssist (Genetic Algorithms based claS-
Slfier sySTem) [7], and is a Pittsburgh style classifier system descendant on
GABIL. A detailed description of the system is found in a previous paper [8].

2.1 Adaptive Discretization Intervals (ADI) knowledge
representation

This subsection describes the main characteristics of the ADI knowledge repre-
sentation. For this paper we have used the second revision of the representation
(named ADI2 in previous work [7]).

The semantical structure of each rule in ADI is taken from GABIL [6]: Each
rule consists of a condition part and a classification part: condition — decision.
Each condition is a Conjunctive Normal Form (CNF) predicate defined as:

(A =V8V .. VA =VIOA. . ANA=VI V.. A, = VD))

Where A; is the ith attribute of the problem and Vij is the jth value that can
take the ith attribute. This kind of predicate can be encoded into a binary string
in the following way: if we have a problem with two attributes whose values can
be {1,2,3}, a rule of the form “If the first attribute has value 1 or 2 and the
second one has value 3 then we assign class 1” will be represented by the string
110/001/1.

In GABIL for each attribute we would use a set of static discretization inter-
vals instead of nominal values. The intervals of the ADI representation are not
static, but they evolve through the iterations splitting and merging among them
(having a minimum size called micro-interval). Thus, the binary coding of the
GABIL representation is extended as represented in figure 1, also showing the
split and merge operations.

The inner workings of the representation and the exact definition of the
operators can be read in [7].

Fig. 1. Adaptive intervals representation and the split and merge operators.

Rule set Interval tp mutate
LTl e L[[] A}tfibyte_f_
Rule R | s

) \ Split Merge

! \

Microinterva 5 Interval
—’\l/ /FT 1/ 10 01 111 0

Interval state —|{ 1] 1 | 0 Attribute

T
1 Cut point Neighbour selected to merge

3 Analysis and improvements of the ADI knowledge
representation

In this section we analyze the behavior of the ADI representation presented in
previous papers and, after, we propose some fixes and a new operator in order
to fix some identified flaws.

3.1 Discretizers in the population. Finding the ideal discretizer

The first issue we want to examine is the distribution of discretizers in the pop-
ulation. In the ADI representation, the initialization stage assigns a random
discretizer from our predefined pool to each attribute term of each rule of each
individual. Through the iterations, the discretizers of the best individuals sur-
vive, but no new discretizers are inserted into the population. This arises the
question of how does the number of attributes in the population assigned to each
discretizer evolve through the iterations. We extracted this information from the
population and it is represented in figure 2. This figure show the evolution of the
discretizer proportions for 4 problems (bre,iris,mmg,pim, detailed in section 4).
The discretizers chosen for these tests are the most frequently used previously
in the ADI research: uniform-width discretizer of 4,5,6,7,8,10,15,20,25 intervals.
We show this figure to compare the behavior among the datasets. Therefore, the
same Y scale is used in all plots.

Figure 2 shows that all discretizers start the evolutionary process with a
proportion approximately of 1/number of discretizers. Later on, the propor-
tions change through the iterations. We can see that the proportions for all the
datasets do not diverge too much from their initial value, with the exception of
the iris dataset. This behavior makes us wonder if the system has managed to
identify the ideal discretizer for this dataset. Thus we repeated the tests for these
four datasets but using only the discretizer most frequent for each problem. The
results are detailed in table 1.

Fig.2. Evolution of the discretizer

bre,iris,mmg,pim datasets

bre dataset

014 |

Proportion of each discrefizer

0.08 L L

L L
0 50 100 150 200
Iterations

mmg dataset
016 T T T T

013 |

Proportion of each discrefizer

L L
0 50 100 150 200
Iterations

Table 1. Results of the experiment
in the population

250

of using only the discretizer with more proportion

proportions

25 bins -

25 bins -

in the population for the

irs dataset

Proportion of each discretizer

L L L
100 150 200 250
Iterations

pim dataset

Proportion of each discretizer

L L
100 150 200 250
Iterations

Dataset Original accuracy Accuracy with one discretizer Discretizer

bre 95.6+£2.2
irs 95.94+3.9
mmg 65.0+9.0
pim 74.4+4.7

95.5+1.8
97.8+3.1
63.1+8.8
74.243.7

4 intervals
6 intervals
25 intervals
4 intervals

We can see that the only dataset where there is accuracy increase when we
are using only one discretizer is iris. It would be interesting to determine if there
are other datasets where the evolution of the discretizer proportions presents the
same behavior, and check if they manage also to identify the ideal discretizer.

Unfortunately, we could not find any more dataset presenting this behavior.

3.2 Discretizers in the population. Survival of the discretizers

The next issue to analyze of the ADI representation is also related to the dis-
cretizer proportions in the population. In figure 3 we show the evolution of the
average proportion of the 15 intervals discretizer for the bre dataset, but this
time using error bars. We can extract an important observation: In some runs

25 bins -

25 bins -

this discretizer disappeared from the population in less than 30 iterations. Other

discretizers and datasets show the same behavior. Is this effect good or bad? Ide-
ally the GA should choose the ideal discretizer for each domain and attribute.
However, in most situations the system is not prepared to choose correctly in
few iterations because it has not learned enough. It is clear that, in order to
avoid this situation, we have to create some kind of mechanism that is able to
introduce new discretizers into the population through the evolutionary process.

Fig. 3. Evolution of the proportions of the uniform-width discretizer with 15 intervals
in the population for the bre dataset

bre dataset
04 T T T T

0.35

T o i
03 i
i w
025 | _
02
0.15 »
I I\!
0.1

0 50 100 150 200 250
Iterations

Proportion of the 15 bins discretizer

0.05

What form does it take such survival mechanism? Probably the most suitable
form would be an operator that changes the discretizer used by an attribute but
maintaining, as much as possible, the semantical structure of the attribute. That
is, finding a set of intervals build over the new discretizer as close as possible
to the old ones. Unfortunately, an operator like this can present a huge com-
putational cost considering that it is frequent to deal with datasets that have
hundreds of cut points. Therefore, for this paper we have designed a simpler
operator, called reinitialize. This operator repeats the process done in the ini-
tialization stage of the GA, but only for the selected individual and attribute
term, as represented in figure 4.

Fig. 4. Steps of the reinitialize operator

We have an attribute term of a rule in the population selected for reinitialize

We select randomly a discretizer from our predefined pool

We assign a number of intervals to the attribute. This number is randomly chosen between 2
and min(number of micro-intervals, maximum allowed intervals per attribute)

4. We assign randomly a number of consecutive micro-intervals to each interval of the attribute.
Every interval must have at least one micro-interval

We assign a random truth value (0 or 1) to each interval

Lol adta

ot

This operator is applied after the merge and split stages, and the probabil-
ity controlling it is also defined for each attribute-term. In order to assign a
good value to this probability we did some tests with some probability values

(0.0025,0.005,0.01,0.015). We reproduce only the results for the mmg and pim
datasets because they illustrate two different kinds of behavior. The results are in
table 2, where we can see a correlation between the probability increase and the
a decrease of obtained train accuracy and more rules and intervals per attribute.
However, test accuracy does not show these trends. While the pim dataset does
not benefit from this operator, the mmg dataset has a notable accuracy increase,
considering that we are comparing two versions of the same system.

Table 2. Short tests of the reinitialize operator

Dataset Reinit. prob. Train acc. Test acc. # of rules Interv. per attr

0.0000 78.4L18 65.0£0.0 6.6L1.0 2.450.1
mmg 0.0025 78.4+1.8 65.748.8 6.5£1.0 2.540.1
0.0050 78.2+1.7 66.848.8 6.5+0.8 2.540.1
0.0100 77.5+1.7 67.3:9.5 6.5+0.9 2.60.1
0.0150 76.4+1.8 67.549.1 6.6£1.0 2.740.1
0.0000 78.6E£1.0 74.4X4.7 54L0.90 22401
) 0.0025 78.1+0.9 74.44+4.5 5.1+0.6 2.240.1
prm 0.0050 78.1%1.0 74.4+4.7 5.3+0.7 2.340.1
0.0100 77.9+1.0 74.3%4.3 5.2+0.8 2.340.1
0.0150 77.7+£1.0 74.1+5.1 5.1+0.6 2.440.1

Therefore, we can see that the operator is beneficial in some domains but
its effects are too much aggressive (creating poor solutions) when applied to
other datasets. Reinitialize needs to be redefined to have a softer behavior. The
simplest way to achieve this goal is to redefine the probability controlling the
operator. The new probability decreases linearly through the iterations until it
achieves value 0 at last iteration. This fix allows the system to explore more
aggressively in the early iterations and later on, in the final iterations, refine
the good solutions. We repeated the short test with the same datasets, using as
initial probabilities the values 0.01,0.02,0.03,0.04. Results are in table 3.

Table 3. Short tests of the improved reinitialize operator

Dataset Initial reinit. prob. Train acc. Test acc. # of rules Interv. per attr

0.00 78.4£1.8 65.0+£9.0 6.6+1.0 2.4+0.1
mmg 0.01 78.84+1.6 65.7+£9.4 6.5+0.8 2.4+0.1
0.02 78.4+1.7 66.249.4 6.5£1.0 2.5+0.1
0.03 78.4+£1.5 67.1+£8.1 6.4+0.7 2.5+0.1
0.04 78.0£1.8 67.24+8.0 6.6+1.0 2.5+0.1
0.00 78.6+£1.0 74.4+4.7 5.4£0.9 2.240.1
pim 0.01 78.7£1.0 74.6+4.5 5.3£0.9 2.3+0.1
0.02 78.7+1.0 74.6+4.4 5.4£1.0 2.3+0.1
0.03 78.6+1.0 75.1+£4.5 5.3+0.7 2.3+0.1
0.04 78.5+1.1 74.3+4.7 5.24+0.7 2.3+0.1

There are some interesting differences from the previous results. The train
accuracy of tests with reinitialize operator is slightly higher that the original
configuration. This shows that we have achieved the objective of creating an
operator that helps exploring the search space for better solutions while being
soft enough that it does not destroy these solutions in the final iterations. Even
more interesting is the test accuracy, because now we obtain an accuracy increase
over the original ADI configuration in both domains.

3.3 Evolution of the intervals per attribute ratio

Another important issue we want to analyze is how does it evolve the semantical
structure of the rules through the iterations. That is, how many intervals per
attribute do we have, and how are they distributed. We can see the evolution of
the average number of intervals per attribute for the mmg problem in figure 5. All
datasets present very similar behavior. The reason is the hierarchical selection
operator [8] used to control the bloat effect. This operator promotes individuals
that minimize the total sum of intervals of their rules, thus promoting individuals
that have less rules and also less intervals per rule.

Fig. 5. Evolution of the average number of intervals per attribute

mmg dataset

Intervals per attribute

0 50 100 150 200 250
lterations

This behavior of the hierarchical selection is good for the system because
it collapses the search space where it is possible and it helps creating gener-
alized solutions that present low internal fragmentation of intervals. However,
the difference between a well generalized attribute containing two intervals and
an attribute too simple containing one (irrelevant) interval is only of one merge
operation applied to the wrong attribute. In order to avoid part of this problem
we introduce a merge restriction which cancels some merge operations if the
attribute has only two intervals. The merge restriction process is represented in
figure 6. The reader can see that now we have another probability to tune. For
the sake of simplicity, in this paper we only test one value of this probability
(0.5). The rationale of setting this value is to maintain an equilibrium between
avoiding over-merging and creating too much specialized solutions.

Fig. 6. Merge operator with the new restriction included

—

An attribute has been selected for merge, according to the code in figure ?77.

If the attribute has only one interval — we cancel the operation

3. If the attribute has two intervals then
(a) If random[0, 1] < probability of merge restriction — we cancel the operation
(b) Else — we apply the merge operation

4. If the attribute has more than two intervals — we apply the merge operation

N

4 Experimentation design

4.1 Test problems

For this paper we have selected 12 problems from the popular UCT repository [9]
and also 3 real problems from private repositories (Biopsies [10], Mammograms
[11] and Learning [7]). The characteristics of the problems are listed in table
4. The partition of the examples into the train and test sets was done using
stratified ten-fold cross-validation [12].

Table 4. Characteristics of the test problems.

Name ID. Instances Attributes Classes
Bupa bpa 345 6 2
Biopsies bps 1027 24 2
Wisconsin Breast Cancer bre 699 9 2
Glass gls 214 9 6
Heart-Statlog h-s 270 13 2
Ionosphere ion 351 34 2
Learning Irn 648 4 5
Mammograms mmg 216 21 2
Pima-Indians-Diabetes pim 768 8 2
Sonar son 208 60 2
New-Thyroid thy 215 5 3
Vehicle veh 846 18 4
Wdbc wdbc 569 30 2
Wine wne 179 13 3
Wpbc wpbc 198 33 2

4.2 Configurations of the GA to test

We tested 6 configurations of the ADI representation: the original version of
the representation and 5 combination of the two improvements presented in this
paper. The configurations are detailed in table 5. We have chosen to test the
reinitialize operator always combined with the merge restriction because
we think that the benefits of reinitialize diminish if we have too much general-
ization pressure. The GA parameters are shown in table 6. In order to have an
external reference of the system performance, we have also included results for
the C4.5 [13] and IB1 [14] systems (using the WEKA [12] implementation and
default parameters).

Table 5. Configurations of the ADI representation to test

Name Merge restriction prob. Reinitialize prob. Reinitialize prob. at end
Original ADI 0 0 0

New ADI1 0.5 0 0

New ADI2 0.5 0.005 0.005

New ADI3 0.5 0.010 0.010

New ADI4 0.5 0.02 0

New ADI5 0.5 0.03 0

5 Results

In this section we present the results of the test described in the previous sec-
tion. For each of the 6 ADI configuration and the 2 external systems we show
the average and standard deviation of the cross-validation accuracy. The ADI
results are the average of repeating the tests with 15 different random seeds.

Table 6. Common parameters of the GA.

Parameter Value
General parameters
Crossover probability 0.6
Selection algorithm Tournament
Tournament size 3
Population size 300
Probability of mutating an individual 0.6
Iterations A maximum of 1500. Depends on learning

rate on each dataset
Rule Deletion operator

Iteration of activation 5

Minimum number of rules number of classes of domain + 3
Hierarchical Selection

Iteration of activation 25

Threshold 0.01

ADI rule representation
Number of intervals of the uniform discretizations 4,5,6,7,8,10,15,20,25
Split probability 0.05
Merge probability 0.05

The results are presented in table 7. We applied two-sided Student t-tests to
the results [12] with a significance level of 1%, in order to determine if there
were significant outperformances between the methods tested. The results of the
t-tests are shown in table 8.

Table 7. Mean and deviation of the accuracy for each method tested. Bold entries
show the best method for each test problem

Prob. Original ADI New ADI1 New ADI2 New ADI3 New ADI4 New ADI5 C4.5 IB1

bpa 63.7+7.4 63.7+7.9 63.9+£7.3 62.6+8.1 63.3+7.3 63.247.4 68.4+3.9 64.5+8.5
bps 80.6+4.3 80.7+4.0 80.7£3.8 79.6+4.1 80.6+4.3 80.0+4.0 80.1+4.5 83.24+3.0
bre 95.61+2.2 95.842.2 96.0+2.1 95.7+2.2 95.842.2 95.9+2.1 95.4+1.5 96.0+1.4
gls 66.4+7.7 66.5+7.8 67.9+7.0 67.9+7.2 67.8+8.1 66.5+7.8 65.849.9 66.3+10.4
h-s 80.44+6.9 80.2+6.7 80.7+6.6 79.84+7.2 80.5+£6.7 80.6+7.1 76.3+5.5 74.1+6.4
ion 91.6+4.4 90.9+4.5 92.2+3.8 91.7£3.7 92.7+3.6 92.0+3.9 89.8+4.8 86.914.6
Irn 68.1+4.8 68.0+5.5 68.6+£5.5 67.844.8 68.9+5.4 69.0+4.7 68.6+4.4 61.4%5.8
mmg 65.04+9.0 66.1+8.9 66.0+7.5 67.8+9.4 67.0+8.1 67.8+8.6 64.846.0 63.5+11.5
pim 74.4+4.7 75.1+4.3 74.7+4.0 74.3+4.8 75.83+4.4 74.4+4.5 73.1£5.0 70.3+3.3
son 74.6+9.7 73.2+£10.1 73.1£9.6 72.3+10.6 74.3+£9.2 73.5+9.5 71.5+8.0 87.3+9.2
thy 91.94+5.6 92.0+£5.7 91.4+6.4 91.6+5.8 92.0+£5.2 91.5+5.9 92.6+3.7 96.8+4.7
veh 66.0+4.9 66.4+4.9 66.1+4.7 65.6+4.0 66.7+4.4 66.5+4.7 73.6+5.0 69.4+5.0
wdbc 93.84+3.2 93.7+£3.0 93.8+3.1 93.943.1 94.0£3.1 93.7+3.1 93.7+2.1 95.6+2.1
wine 92.74+6.9 92.5+6.9 92.2+6.9 92.6+6.7 93.0£6.8 92.246.9 94.1+6.8 95.6+4.8

wpbc 75.7£7.4 75.5£6.4 76.1+£7.7 75.94+6.5 7T7.1+£6.4 76.8+£7.2 73.7£7.4 68.8410.1

average 78.7%11.4 78.7£11.2 78.9+11.2 78.6+11.3 79.3+11.2 78.9+11.1 78.84+10.9 78.6£13.0

5.1 Analyzing only the performance of the ADI configurations

If we look only at the ADI configurations we can see that the original ADI con-
figuration was only the best method in 1 of the 15 tested domains, showing that
the improvements introduced to the representation perform well. Furthermore,
in the domain (son) where the new operators performed worse, the difference
was not significant (according to the t-tests). Looking at the accuracy averages
and also to the t-tests, we can see that there is a clear winner: the New ADI4
configuration. This method has the top accuracy average, it is the method that

Table 8. Summary of the statistical two-sided t-test performed at the 1% significance
level. Each cell indicates how many times the method in the row outperforms the
method in the column

Method ||Orig. ADI|New ADI1 |New AD12|New AD13|New ADILj |New AD15|C4.5|IBI || Total

Orig. ADI - 0 0 0 0 0 I [3] 4
New ADI1 0 - 0 0 0 0 0 |4 4
New ADIZ 0 1 - 1 0 0 T 4] 7
New ADI3 1 0 1 - 0 0 1 [3] 6
New ADIJ 2 2 0 3 - 1 T [4] 11
New ADI5 i 0 0 2 0 - T [4| 8
5 2 i i 2 2 2 - [0 | 10
1B1 3 1 1 3 3 3 2 |- [22
Total m™ 9 1 8 | 6 1 9 | 5 1 6 717 22]

outperforms significantly most often the other methods and, even more interest-
ing, it has never been significantly outperformed.

Comparing Original ADI to New ADII (where only the merge restriction
improvement was used) we can see that they perform similarly in average, but
New ADI1 performs equal or better in the majority of domains. Thus, showing
that it is a harmless fix that can be combined with the reinitialize operator
without creating a bad interaction. The results of New ADI3 show the dangers of
the reinitialize operator where it is incorrectly tuned. It has the lowest accuracy
average and it is the method most often significantly outperformed.

5.2 Comparing ADI to C/.5 and IB1

If we now look at the results from a global point of view, we can see some
big accuracy differences between the methods compared, specially between IB1
and the other methods. These differences are quite logical, because they are a
consequence of the Selective Superiority Problem [15]. Being IBI the only non
axis-parallel classifier it was expected a change in the range of domains where
this systems performs well.

Comparing the systems tested we can say that New ADIj is better (in aver-
age) than C4.5 and IBI1. Also, it is the system less times outperformed signifi-
cantly, according to the T-Tests. This shows that this ADI configuration has a
robust and reliable behavior.

6 Conclusions and further work

This paper was focused on an existing representation for real-valued attributes:
the Adaptive Discretization Intervals (ADI) rule representation. This represen-
tation evolves rules that can use multiple discretizations, letting the evolution
choose the correct discretization for each rule and attribute. Also, the inter-
vals defined in each discretization can split or merge among them through the
evolution process, reducing the search space where it is possible.

We have analyzed the behavior of the representation, studying its evolution
through the iterations in two aspects: the proportions of each discretizer in

the population and the number of intervals per attribute. From studying the
proportions we have discovered that all discretizers can disappear sometimes
from the population. Studying the evolution of the intervals per attribute ratio
we have seen that the pressure applied to reduce this ratio can easily transform
well generalized solutions into too much simple ones.

This analysis has led us to do two proposals: The first one is an operator
that can reintroduce fresh discretizers and sets of intervals into the population.
This operator, if badly tuned, can be very destructive. Thus, we have tested
a dynamic probability decreasing its value through the iterations. The second
one is a restriction introduced into the merge operator, in order to avoid the
over-reduction of the number of intervals in the population.

We have tested 5 combinations of these two improvements with various pa-
rameterizations across 15 datasets and two alternative Machine Learning sys-
tems. The comparison of these configurations to the original ADI version shows
that the improvements done have better performance. It is interesting to remark
that the configuration performing better in average (New ADI/) has been out-
performed significantly very few times, showing that the improvements presented
here are good and robust.

As further work it would be interesting to combine these improvements with
alternative sets of discretizers, containing both uniform and non-uniform dis-
cretization algorithms, as an alternative to the pool of uniform-width discretizers
used for this paper. Also, we should analyze in depth the interactions between
the two kind of improvements studied.

7 Related work

Discretization is not the only way to handle real-valued attributes in Evolution-
ary Computation based Machine Learning systems. Some examples are induction
of decision trees (either axis-parallel or oblique), by either generating a full tree
by means of genetic programming operators [3] or using an heuristic method to
generate the tree and using a Genetic Algorithm and an Evolution Strategy to
optimize the test performed at each node [16]. Other examples are inducing rules
with real-valued intervals [17,18] or generating an instance set used as the core
of a k-NN classifier [3]. If our ADI method is able to find the correct cut points,
the performance of the system should be quite competitive if compared to all
the axis-parallel methods described above (all but the last one). Also, there are
other systems that, like ADI, perform evolutionary induction of rules based on
discretization [4,5]. A comparison of ADI with these two methods is found in
[19].

Acknowledgments

The authors acknowledge the support provided under grant numbers 2001FT
00514, TTIC2002-04160-C02-02, TIC 2002-04036-C05-03 and 2002SGR 00155.
Also, we would like to thank Enginyeria i Arquitectura La Salle for their support
to our research group.

References

1.

2.

10.

11.

12.

13.
. Aha, D.W., Kibler, D.F.; Albert, M.K.: Instance-based learning algorithms. Ma-

15.
16.

17.

18.

19.

Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3
(1995) 149-175

Llora, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained
parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann (2001) 461-468

Girdldex, R., Aguilar-Ruiz, J., Riquelme, J.: Natural coding: A more efficient
representation for evolutionary learning. In: GECCO 2003: Proceedings of the
Genetic and Evolutionary Computation Conference, Springer (2003) 979-990
Divina, F., Keijzer, M., Marchiori, E.: A method for handling numerical attributes
in GA-based inductive concept learners. In: GECCO 2003: Proceedings of the
Genetic and Evolutionary Computation Conference, Springer (2003) 898-908

. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic

algorithms. Proceedings of the International Joint Conference on Artificial Intelli-
gence (1991) 651-656

Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive inter-

vals for a pittsburgh rule-based learning classifier system. In: Proceedings of the
Genetic and Evolutionary Computation Conference - GECCO2003, LNCS 2724,
Springer (2003) 1818-1831

Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the
minimum description length principle for a pittsburgh approach learning classifier
system. In: Proceedings of the 6th International Workshop on Learning Classifier
Systems, (in press), LNAI, Springer (2003)

Blake, C., Keogh, E.; Merz, C.: UCI repository of machine learning databases
(1998) (www.ics.uci.edu/mlearn/MLRepository.html).

Martinez Marroquin, E.; Vos, C., et al.: Morphological analysis of mammary biopsy
images. In: Proceedings of the IEEE International Conference on Image Processing.
(1996) 943-947

Marti, J., Cufi, X., Regincds, J., et al.: Shape-based feature selection for microcal-
cification evaluation. In: Imaging Conference on Image Processing, 3338:1215-1224.
1998

g?Vitte)m7 L.H., Frank, E.: Data Mining: practical machine learning tools and tech-
niques with java implementations. Morgan Kaufmann (2000)

Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

chine Learning 6 (1991) 37-66

Brodley, C.: Addressing the selective superiority problem: Automatic algorithm
/model class selection (1993)

Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 7 (2003) 5468
Wilson, S.W.: Get real! XCS with continuous-valued inputs. In Booker, L., Forrest,
S., Mitchell, M., Riolo, R.L., eds.: Festschrift in Honor of John H. Holland, Center
for the Study of Complex Systems (1999) 111-121

Stone, C., Bull, L.: For real! xcs with continuous-valued inputs. Evolutionary
Computation Journal 11 (2003) 298-336

Aguilar, J., Bacardit, J., Divina, F.: Experimental evaluation of discretization
schemes for rule induction. In: GECCO 2004: Proceedings of the Genetic and
Evolutionary Computation Conference, Springer (to appear) (2004)

