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Vector Quantization Technique for 
Nonparametric Classifier Design 

Qiaobing Xie, Charles A. Laszlo, and Rabab K. Ward 

Abstract-An effective data reduction technique based on vector quan- 
tization is introduced for nonparametric classifier design. ” b o  uew 
nonparametric classifiers are developed, and their performance is evalu- 
ated using various examples. The new methods maintain a classification 
accuracy that is competitive with that of classical methods but, at the 
same time, yields very high data reduction rates. 

Index Terms- Condensing algorithms, data reduction, C-nearest- 
neighbor (C“) classifier, nonparametric classification, Panen kernel 
classifier, vector quantization. 

I. INTRODUCTION 
Nonparametric classification has been of great importance in 

statistical pattern recognition [l], [2]. When dealing with problems 
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of nonnormal distributions, nonparametric classifiers frequently show 
much higher classification accuracy than that achieved by the pop- 
ularly used parametric classification approaches, such as the linear 
classifier and the quadratic classifier. In addition, it has been found 
that the nonparametric algorithms sometimes outperform their para- 
metric counterparts even when the data are from normal populations 
[3], [4]. In practice, however, the application of the nonparametric 
classifiers often suffers from various difficulties, especially as the 
size of the problem increases. 

The common disadvantages of classical nonparametric approaches 
(kernel estimator, kNN classifier, etc.) are their computational com- 
plexity and the requirement for a very large amount of computer 
storage to retain the design sets. Unfortunately, large design sets are 
always desirable because nonparametric methods require adequate 
statistical information. Thus, on-line application of nonparametric 
classifiers is rare since these are usually too complex and slow 
in operation. Their uses are often limited to situations where the 
computation time is not a crucial factor, such as in the estimation of 
the Bayes error and data structure analysis [l]. 

A solution to the above problems is to reduce the size of the design 
set while insisting that the classifiers built on the reduced design set 
should perform as well, or nearly as well, as the classifiers built 
on the original design set. This idea has been explored for various 
purposes over a period of time and resulted in the development of 
many algorithms of kNN classifier design using reduced sample sets. 
Particularly noteworthy are the condensed NN (CNN) [5] ,  the reduced 
NN (RNN) [6], and the edited NN (ENN) [7]. In these algorithms, 
iterative processes are used to test the effect on the classification 
performance as each individual point is moved in and out of the 
design set, and only the “good” points are retained. For very large 
design sets, these methods are often tedious and difficult to implement 
since a new classifier is in fact built and evaluated every time a point 
is moved in or out of the design set. The most serious disadvantage is 
that the final reduction rate is usually low and not under the control of 
the algorithms, e.g., it depends entirely on the nature of the sample 
set to be reduced. 

Recently, two nonparametric data reduction algorithms were pro- 
posed by Fukunaga et al. for the Parzen‘s kernel classifier and the 
NN classifier design, respectively [l], [8], [9]. Their algorithms find 
the optimal reduced design set from the original design set in the 
sense that the difference between the probability density function 
estimated from the reduced set and that estimated from the original set 
is minimized. Bearing some similarities to the traditional reduced data 
kNN algorithms, their algorithms iteratively move each individual 
point in and out of a tentatively chosen reduced sample set and test 
the resultant effect on the criterion function. To avoid an exhaustive 
search of all possible subsets, which is impractical, the optimization 
scheme used in Fukunaga’s algorithms can achieve a local optimum. 
The computational complexities of these algorithms are considerable. 
Moreover, the initial guess of the reduced sample set is of crucial 
importance in Fukunaga’s reduced NN algorithm. Thus far, only 
an intuitively developed initial assignment procedure for the 2: 1 
reduction rate case has been published [9]. 

11. Two NEW NONPARAMETRIC CLASSIFIERS 
USING VECTOR QUANTIZATION TECHNIQUE 

In this article, we introduce a new approach for nonparametric 
data reduction using the vector, or block, quantization technique. As 
a mathematical process, optimal vector quantization has already been 
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widely used in various areas of engineering, such as digital signal 
processing, communication, and speech recognition. Our research 
indicates that this technique can also be effectively utilized to 
perform data reduction in the design of nonparametric classifiers. 
Combining vector quantization with the classical Parzen’s Kernel 
and the kNN approaches, we develop two new algorithms of reduced 
nonparametric classifier design, which we shall denote the VQ-kemel 
and the VQ-lcNN methods. 

In these algorithms, we first construct an optimal vector quantizer 
for each class of the training data. For each class, the corresponding 
original design set is used as the training sequence of the quantizer. 
Then, we utilize the resulting reproduction alphabets, or code-books, 
of the quantizers as the reduced design sets to represent the original 
sets. With the reduced sets, a classifier using either the Parzen’s kernel 
or the kNN methods is then built. 

For our purposes, we find that the reproduction alphabet serves 
as a good representative of the original design set. The obtainable 
reduction rate can be significantly high and may be preset freely in the 
algorithms. As illustrated by the examples given later, large original 
design sets containing hundreds of vectors can be well represented 
by a reproduction alphabet with only a few vectors. Despite the high 
reduction rate, our VQ-based classifiers perform as well or better than 
classical reduction methods in terms of the classification error rate. 
The remarkable performance for the high data reduction rate probably 
results from the fact that our method does not restrict the search for 
the members of the representative (reduced) design set to points in the 
original design set. Instead, our method generates the representative 
set using the information from all the points in the original set. 

In our VQ-based methods, we use the algorithm developed by 
Linde et al. [lo] for vector quantizer design. This algorithm has the 
advantage that it is well developed and widely applied in various field, 
and its efficiency in implementation and its convergence properties 
are proven. 

As an altemative, the learning vector quantization (LVQ) algo- 
rithm, which is proposed recently by Kohonen [l l] ,  [12], may be 
used to generate the quantizer. The overall performance of the LVQ 
technique has been shown to be comparative with that of Linde’s VQ 
algorithm for applications such as image compression [13]. 

111. DEVELOPMENT OF THE ALGORITHMS 

Since our two algorithms use vector quantization as the first stage, 
it is helpful to begin our presentation with an introduction to the 
vector quantization theory. Then, in Section 111-B, we will discuss 
a relevant property of vector quantization. Our algorithms are then 
described in Section 111-C. 

A.  Some Definitions of Vector Quantization 

An M-level d-dimension quantizer is a mapping y( 0 )  that assigns 
to each input vector z = (z,,, . . . , x,j-1 ),a reproduction vector, kk = 
yjzz) ,  that is drawn from a finite reproduction alphabet (or codebook) 
A = {yt; i = 1,. . . , M}. The y(o) is usually chosen as a minimum- 
distance mapping. This means that the reproduction vector y, is 
chosen such that 

where d ( 0 , o )  is any nonnegative distance measure defined on the 
d-dimension space, and d ( z , y k )  is called the distortion of the 
quantization. Obviously, a minimum-distance mapping, which is 
completely defined by the reproduction alphabet A along with the 
definition of the distance measure, uniquely describes a Dirichlet 
partition S= { S,; i = 1, . . . , M}, of the sample space. 

An M-level quantizer is said to be optimal if it minimizes the 
expected distortion D(y) = E { d ( z ,  q(z))} ,  that is, y* is optimal if 
for any other quantizer q having M reproduction vectors, D(y*) < 
W Y ) .  

B. Distribution Property of the Reproduction Vectors 
and the VQ Data Reduction Method 

In the following, we argue that the distribution of the reproduction 
vectors in an optimal vector quantizer possesses desirable properties 
that make the VQ technique a promising approach of nonparametric 
data reduction. Before doing so, however, it is important to point out a 
common misunderstanding about the nonparametric classifier design. 

The philosophy guiding the development of most traditional non- 
parametric classification methods is that of using the statistical 
information contained in a set of preclassified samples (or design set) 
for finding a good approximation of the actual underlying probability 
density function p ( z ) ;  then, the classifier is built by applying the 
Bayesian rule. This philosophy is also explicitly employed in the 
development of Fukunaga’s reduced Parzen and NN classifiers, in 
which, as mentioned earlier, the reduced design set is selected in 
such a way that the difference between the density estimate obtained 
from this reduced set and that obtained from the original design set is 
minimized. However, for achieving high classification performance, 
this approximation to p ( z ) ,  although it is obviously sufficient, is not 
necessary. An example is that any good approximation to [p(z)]”, 
where constant cy > 0, will achieve the same Bayesian classifier as 
that achieved by approximating p ( z )  itself. 

In [14], Gersho addresses the properties of the reproduction vec- 
tors of an optimal vector quantizer. The density function of the 
reproduction vector in a d-dimensional quantizer is defined as 

i f z  E S,, forz = 1 , 2 , . . . , M ,  (2) 

where V ( S , )  is the volume of S,. Gersho shows that for an optimal 
quantizer, in the asymptotic situation where M is sufficiently large, 
g M  (2) will closely approximate a continuous density function X(z), 
which is proportional t o [ P ( ~ ) ] ~ ” + ~ ,  where p ( z )  is the actual under- 
lying density function of the input random vector, and ,b’ is a constant 
determined by the dimension d and the distance measure. 

This finding, along with our argument at the beginning of this 
section, strongly indicates that the reproduction alphabet in an optimal 
quantizer could be used as an effective design set for building 
classifiers, provided that the level of the quantizer is sufficiently high. 

With VQ algorithms such as Linde’s and Kohonen’s, we can 
estimate an optimal (either locally or globally) reproduction alphabet 
from a set of training data. This leads us to the following data 
reduction approach for the nonparametric classifier design: Generate 
the reduced set as the optimal reproduction alphabet found by using an 
optimal VQ method using the original design set as the training data. 
In the following section, we describe our data reduction methods in 
full detail. 

The most important difference between our data-reduction method 
and the other traditional methods is that our reduced set is not 
necessarily a subset of the original design set. With our method, 
the vectors in the reduced set are created (not selected) by surveying 
all the information carried by every known vector. These vectors are 
created so that they best represent all the vectors in the original set in 
the sense of minimizing the average distortion rate of quantization. 

1 
g M ( Z )  = ~ 

MV(S , ) ’  

C. Classifier Design Algorithms Using Vector Quantization 

The VQ-kernel Classifier: In this method, we propose that vector 
quantization be first applied to the original design set of each class. 
The reproduction alphabets of the resultant optimal quantizers are 
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traditional reduced data classifiers. 
Fig. 1. Classification error rates of our VQ-based classifiers and other 

then retained as the reduced design sets. Then the kernel method is 
applied as usual except that the reduced design sets are used. 

The following steps explain this method in greater detail. 
Given an N-class problem in d dimension, for each class 

1 wz (i = 1,. . . , N), an original design set 2:); j = 0,.  . . , at - 1 
is assumed given. 

{ 
1) For class wl, as in the algorithm in [lo], we start with an initial 

M,-level reproduction alphabet A o t .  This initial alphabet can 
be generated by using the "splitting" approach proposed in [lo]. 

2) Find the M,-level optimal quantizer for class wz using the 
quantizer design method in [lo]. Suppose the final re roduction 

3) Apply the Parzen's kemel method to the reproduction alphabet 
alphabet for class wE is A I - - {y;t);j = 1 ) . . . )  M J .  

A, to get an estimate of p ( z  I wz), i.e., 

(3) 

where K represents the kernel function. 
4) Repeat steps 1 to 3 for each class and get estimates of $(z I w,) 

f o r i  = l , . . . , N  . 
5) Finally, a Bayes classifier is built on all the estimated class- 

conditional pdfs ($(. I U % ) ) .  The Bayes classifier assigns the 
unknown observation z to class wm if p ( z  I w m ) P ( w m )  2 
p(z I w i ) P ( w ~ )  for all 2 # m, where P(w,) is the known a 
priori probability of class wz. 

For the special case when the levels of quantizers are chosen 
equal to the number of vectors in the original design sets, i.e., 
M, = n, (i = l , . . . , N ) ,  the above VQ-kernel method becomes 
equivalent to the traditional kemel method. 

It should be noted that the selection of the kernel function as 
well as its parameters is important yet difficult. This disadvantage 
is inherent to the classical kernel approach. Theories and conclusions 
developed in the literature on the classical kemel methods can be 
directly used to guide the selection of proper kemels and smoothing 
factors. A thorough discussion on this topic is found in [l] and 
~ 5 1 .  

VQ-kernel - VQ-NN 
.#---U- Fukunaga's reduced Parzen 

2o t 
EC-NN I 

The VQ-kNN Classifier: This algorithm combines the VQ tech- 
nique and the k N N  method. 

For an N-class problem, we assume that for each class 
w, (i = 1,. . . , N ) ,  a design set {ziz);j = O , . . . , n E  - l} and 

an initial M,~level reproduction alphabet A o 2  are given (for the 
setection of A,, see [lo]). 

1) For each class ut (i = 1,. . . , N), find the M,-level opti- 
mal quantizer using the algorithm in 
nal reproduction alphabets are A, = 
(i = 1,. . . , N ) .  

2) Combine all the reproduction alphabets Az'sAOf all classes 
into one single set A of M vectors, that is, A = U A ,  and 

M = E M , .  

observation point to be classified. 

z 

I 

3) The classification rule is as follows: Assume z is the new 

For x, find the first k nearest reproduction vectors in A. 
Suppose that amongst these k reproduction vectors there 
are km vectors from class wm. Then, the classification 
rule is assign z to class wm if 

p ( w m ) -  km 2 P(w1)- ki for all 1 # m. 
Mm Mi (4) 

If the a priori probability P(w;)  is unknown, we can 
approximate it from the design set as 

The classification rule, then, becomes the following: 
Assign z to class wm if 

The classical kNN method becomes a special case of our new 
method when M, is chosen to be equal to n, ( i  = 1, . . . , N). If 
k = 1 is used, we get the VQ-NN classifier, which is very effective 
in computation since when all the a priori probabilities are equal, 
the unknown observation is simply assigned to the class to which its 
nearest reproduction vector belongs. 
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TABLE I 
CPU TIME USED FOR FINDING THE REDUCED SET IN THE SPEECH DATA EXPERIMENT 

VQ- Fukunga’s 
Classifier VQ-NN CNN ENN ECNN RNN kernel* kernel* 

CPU 
Time 3.41 5.31 21.17 22.17 51.34 3.92 3378.45 
(min) 

*including CPU time used for classification. 

IV. EXAMPLES 
We give two examples to demonstrate the use of our VQ-kernel and 

VQ-NN classifiers. The data used in the first example has a known 
probability distribution that is a mixture of Gaussian distributions. In 
the other example, we test our VQ classifiers with real speech data of 
unknown probability distribution. For the reason of comparison, we 
also test the performances of those traditional reduction algorithms 
including the CNN, RNN, and ENN as well as Fukunaga’s reduced 
Parzen. 

Exumplel:  We adopt Fukunaga’s 8-D data model from Ex- 
periment 11-7 on page 555 of [l]. In this model, each of the 
two classes consists of two Gaussian distributions. The a priori 
probabilities are equal for the two classes. The class-conditional 
pdfs are p(z I w1) = 0 . 5 N ( p 1 , I )  + 0 . 5 N ( p ~ , 1 )  and p ( z  I W Z )  = 
0.5N(p3, I) + 0.5N(p4,  I), respectively, where the covariance ma- 
trices are equal to the identity matrix I, and the mean vectors are 
p1 = [OO. . .O]  T ,  p~ = [ 6 . 5 8 0 . . . O l T , p ~  = [ 3 . 2 9 0 . . . 0 ]  T. and 
p4 = [9.87 0 .  . . O I T ,  respectively. The Bayes error of this data model 
is E = 7.5%. The Euclidean metric system was used as the distance 
measure. The original design set contains 150 vectors for each class, 
and similarly, the testing set has 150 vectors from each class. 

Fig. 1 shows the result of our experiment in which we tested our 
VQ-kemel and VQ-NN classifiers as well as other traditional reduced 
data classifiers, including the CNN [5], the RNN [6], and the ENN 
and the edited-condensed nearest neighbor (EC-NN) [7]. Fukunaga 
et al. reported the performance of their reduced Parzen classifier with 
the same data model in [l]. We include their results in the graph as 
well. The same normal kemel function, with a constant covariance 
matrix of 1.5’ x I, which was used in Fukunaga’s reduced Parzen 
classifiers, was also used in our VQ-kemel method. Each point in the 
graph represents the average result after 10 trials. 

In both Fukunaga’s and our methods, all 1-level reduced data 
classifiers failed due to the fact that the underlying probability density 
of each class is composed of two separate Gaussian distributions. 
When two or more representatives are used in the reduced sets, 
both our new VQ-based classifiers showed excellent performance. 
In particular, our VQ-kemel classifier achieved the best performance 
amongst all the classifiers. It gave a classification accuracy extremely 
close to the Bayes error, which is the theoretical lowest bound, at 
almost all the reduction rates, and its performance showed little 
correlation to the reduction rate. 

Our VQ-NN classifier evidently also outperformed all other mod- 
ified NN classifiers in terms of both the reduction rate and the 
classification accuracy. This is with the exception of the ENN, which 
showed a better accuracy but at a low reduction rate of only 1.67:l. 
It is very interesting to notice that at high reduction rates ( M  < 40). 
our VQ-NN classifier showed significantly better performance than 
it did at the lower reduction rates. We believe that this is due to the 
specific structure of the distribution density functions (mixtures of 
two Gaussian distributions) underlying the experimental data. 

Example 2: This example demonstrates the classification perfor- 
mance of our new VQ-based classifiers with real data extracted from 
speech signals. 

The 12-D speech data measured the first 10 cepstrum coefficients, 
the short-time zero-crossing rate, and the short-time energy of the 
voice signals. 

The data for class 1 (2247 vectors in total) came from male speaker 
1 (Chuck), and the data in class 2 (2256 vectors in total) were for 
make speaker 2 (Gray). For each trial in the experiments, we first 
randomly drew a 500-vector design set from each class and used the 
rest to form the testing set. 

For our VQ-kemel classifier and Fukunaga’s reduced Parzen 
classifier, we used the Euclidean metric system and normal kernel 
functions with their convariance matrices estimated from the original 
design sets, i.e., E, = C, for i = 1,2,  where C, is the covariance 
matrix of the original design set of class i .  For our VQ-NN and 
the traditional reduced data NN classifiers, the variance-weighted 
distance measure was used, i.e., 

(7) 

where 21 and y, are the Zth element of the z and y, respectively, 
and g~ is the variance of the lth element of the training vectors. 

Fig 2. shows the result of our experiments. The best performances 
are given by our VQ-kernel classifier at all the reduction rates. 
Again, little dependency between the classification accuracy of our 
VQ-kernel classifier and the reduction rate was shown. Compared 
with Fukunaga’s reduced Parzen classifier, the improvement on 
the classification accuracy of our VQ-kemel classifier is obvious, 
especially at the high reduction rate (> 25 : 1 or M < 20). 

When operating at the same range of reduction rate (for M 2 16), 
our VQ-NN classifier significantly outperformed the other reduced 
data NN classifiers. In addition, for M 2 32, our VQ-NN classi- 
fier gave statistically identical classification accuracy as Fukunaga’s 
reduced Parzen classifier. At much higher reduction rates (62.5: 1 to 
500:1, i.e., 1 < M < 8), the classification accuracy of our VQ-NN 
classifier was still comparable with those of the other reduced data 
NN classifiers at much lower reduction rates, ranging from 1.75:l for 
the ENN to 23:l for the EC-NN. 

In addition to the classification accuracy and the reduction rate, the 
computational intensity of Fukunaga’s algorithms is tremendously 
larger than that of our VQ-kemel algorithm. The computational 
complexity of finding the reduced set in Fukunaga’s reduced Parzen 
algorithm can be shown to be of the order of rN’IC’, whereas that 
of our VQ-kernel algorithm is of the order of r N k ,  where r is the 
size of the reduced set, N is the size of the original set, and IC is 
the dimension of the data. In our above speech data experiment, a 
single trial of our VQ-kernel classifier took only about 3.92 min of 
CPU time, whereas a trial of Fukunaga’s reduced Parzen classifier 
for exactly the same data and on the same SUN Sparc 2 computer 
took over 56 hr of CPU time! Amongst the NN-based algorithms, 
our VQ-NN classifier was also found to be the fastest. Table I shows 
the CPU time used in a single trial by each of the tested algorithms 
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for constructing the reduced design sets in the above speech data 
experiment. The CPU time for our VQ-NN was measured with 
M = 128. 

V. CONCLUSIONS 
We introduce the vector quantization technique into the area of 

nonparametric classifier design and show that vector quantization is 
an extremely effective approach to data reduction. 

Using the vector quantization data reduction technique, two meth- 
ods of nonparametric classifier design, namely, the VQ-kemel and the 
VQ-LNN, are proposed and tested with both synthetic and real data 
with various attributes. Compared with other known nonparametric 
data reduction algorithms, the new methods are found: 

1) to give much better results in terms of both the classification 
accuracy and the data reduction rate; 

2) to have significantly less computational complexity in general; 
3) to have control over the reduction rate; 
4) to achieve a classification accuracy which is only moderately 

Theoretically, for highly nonparametric data the classification 
accuracy of our VQ-based classifiers will increase as M,,  the number 
of representatives in the reduced set, is increased. When the value 
of M, approaches that of the size of the original design set, the 
performance of our VQ-based classifiers will approach that of the 
basic Parzen and NN classifiers. This tendency is shown clearly in 
our experiments above. Therefore, the selection of ME is a tradeoff A 
larger M, generally yields higher accuracy but lower reduction rate, 
and a smaller M, yields lower accuracy but higher reduction rate. 

dependent on the reduction rate. 
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Comments on “Design of Fiducials for Accurate 
Registration Using Machine Vision” 

G. Chiorboli and G.P. Vecchi 

Absfmcf- Subpixel registration accuracy improves by one order of 
magnitude if images are not binarized as indicated in the referenced 
paper, but gray scale information is fully exploited in calculating centroid 
position. 

Index Terms-Machine vision, image processing, positional accuracy, 
subpixel registration, camera calibration. 

Measurement of the position of fiducial landmarks with subpixel 
precision was recently discussed in [l], with reference to binary 
images obtained by straight thresholding of the gray level picture. 
Several shapes were compared in terms of maximum and r.m.s. error, 
and the advantages of the circular shape were pointed out. 

In connection with some activity on camera calibration, we came 
across the same problem of accurately measuring the position of 
circular dots patterned on a reference plate (a chromium-quartz IC 
mask) and found an advantage of one order of magnitude in exploiting 
the gray level information available. 

This may be easily understood with reference to the simple, one- 
dimensional case depicted in Fig. 1. A short bar - 1 pixel long, 100% 
intensity over a null background - is the objected whose position 
has to be determined using the 2-pixel sensor represented at the left 
of Fig. l(a). When the position of the bar is varied, as shown by 
the vertical segments at the right of the sensor, the signal provided 
by the two photosites varies in the range 0-1, in proportion of the 
fraction of the photosite covered by the bar. It can be demonstrated 
that the maximum absolute error in the position of the center of mass, 
expressed in pixel units, i s  smax = 1s - 0.251 + 0.25 in the case of 
straight binarization by thresholding at level s,O 5 s 5 0.5, while 

= s if the center of mass is obtained by weighting the response 
of each photosite above threshold with the difference (y - s) between 
the photosite signal y and the threshold s. These results hold as long 
as s 5 0.5, because the bar length was assumed equal to the one 
pixel, and are represented by the graphs of Fig. l(b), which report 
the value of the error E in the estimated position of the center of mass 
as a function of the position .z: of the lower end of the bar, in the 
two cases of binarization and of gray-scale weighting. For thresholds 
greater than 0.5, the binarized bar would disappear in some positions, 
becauseof the threshold too high. The mean absolute value of error 
I E ~  is I E ~  = 2(s  - 0.25)2 + 0.125 in the case of binarization, and 
I F [  = s2 in the gray scale case, see Fig. l(c). Thus, the mean absolute 
error when gray scale information is used, whichever the threshold’s 
value, is smaller or equal than in the case of straight binarization. 

Looking at a more realistic case, Fig. 2(a) shows the intensity plot 
measured for one of the dots of our reference plate: as may be noticed, 
the black-white transition occurs over a range of several pixels, even 
with a well focused image. 
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