

Learning from Imbalanced Data Sets with Boosting and
Data Generation: The DataBoost-IM Approach

Hongyu Guo
School of Information Technology and Engineering,

University of Ottawa
800 King Edward Road, Ottawa, Ontario, Canada, K1N 6N5

hguo028@site.uottawa.ca

Herna L Viktor
School of Information Technology and Engineering,

University of Ottawa
800 King Edward Road, Ottawa, Ontario, Canada, K1N 6N5

hlviktor@site.uottawa.ca

ABSTRACT

Learning from imbalanced data sets, where the number of
examples of one (majority) class is much higher than the others,
presents an important challenge to the machine learning
community. Traditional machine learning algorithms may be
biased towards the majority class, thus producing poor predictive
accuracy over the minority class. In this paper, we describe a new
approach that combines boosting, an ensemble-based learning
algorithm, with data generation to improve the predictive power
of classifiers against imbalanced data sets consisting of two
classes. In the DataBoost-IM method, hard examples from both
the majority and minority classes are identified during execution
of the boosting algorithm. Subsequently, the hard examples are
used to separately generate synthetic examples for the majority
and minority classes. The synthetic data are then added to the
original training set, and the class distribution and the total
weights of the different classes in the new training set are
rebalanced. The DataBoost-IM method was evaluated, in terms of
the F-measures, G-mean and overall accuracy, against seventeen
highly and moderately imbalanced data sets using decision trees
as base classifiers. Our results are promising and show that the
DataBoost-IM method compares well in comparison with a base
classifier, a standard benchmarking boosting algorithm and three
advanced boosting-based algorithms for imbalanced data set.
Results indicate that our approach does not sacrifice one class in
favor of the other, but produces high predictions against both
minority and majority classes.

Keywords

Data mining, Imbalanced data sets, Ensembles of classifiers,
Boosting

1. INTRODUCTION
The class imbalance problem corresponds to domains for which
one class is represented by a large number of examples while the
other is represented by only a few [1]. Many real world
applications involve learning from imbalanced sets, such as fraud
detection, telecommunications management, oil spill detection
and text classification [2]. When learning from imbalanced data
sets, machine learning algorithms tend to produce high predictive
accuracy over the majority class, but poor predictive accuracy
over the minority class [3].

There have been several proposals for coping with imbalanced
data sets [1]. Kubat et al. under-sampled examples of the majority

class [5]; Ling and Li over-sampled examples of the minority
class [3]; Chawla et al. over-sampled the minority class and
under-sampled the majority class [2]; Cardie et al. weighted
examples in an effort to bias the learning toward the minority
class [3]; Joshi et al. evaluated boosting algorithms to classify rare
classes [6]; and Chawla et al. combined boosting and synthetic
data to improve the prediction of the minority class [7].

Over the past few years, ensembles have emerged as a promising
technique with the ability to improve the performance of weak
classification algorithms [8, 9]. Ensembles of classifiers consist of
a set of individually trained classifiers whose predictions are
combined to classify new instances [8, 9]. In particular, boosting
is an ensemble method where the performance of weak classifiers
is improved by focusing on hard examples which are difficult to
classify. Boosting produces a series of classifiers and the outputs
of these classifiers are combined using weighted voting in the
final prediction of the model [10]. In each step of the series, the
training examples are re-weighted and selected based on the
performance of earlier classifiers in the training series. This
produces a set of “easy” examples with low weights and a set of
hard ones with high weights. During each of the iterations,
boosting attempts to produce new classifiers that are better able to
predict examples for which the previous classifier’s performance
is poor. This is achieved by concentrating on classifying the hard
examples correctly. Recent studies have indicated that boosting
algorithm is applicable to a broad spectrum of problems with great
success [10, 11].

In this paper, we discuss a novel approach for learning from
imbalanced data sets, DataBoost-IM, that combines data
generation and boosting procedures to improve the predictive
accuracies of both the majority and minority classes, without
forgoing one of the two classes. That is, the aim of our approach
is to ensure that the resultant predictive accuracies of both classes
are high. Our approach differs from prior work in the following
ways. Firstly, we separately identify hard examples from, and
generate synthetic examples for, the minority as well as the
majority classes. Secondly, we generate synthetic examples with
bias information toward the hard examples on which the next
component classifier in the boosting procedures needs to focus.
That is, we provide additional knowledge for the majority as well
as the minority classes and thus prevent boosting over-
emphasizing the hard examples. Thirdly, the class frequencies in
the new training set are rebalanced to alleviate the learning
algorithm’s bias toward the majority class. Rebalancing thus
involves the utilization of a reduced number of examples from the
majority and minority classes to ensure that both classes are
represented during training. Fourthly, the total weights of the

Sigkdd Explorations. Volume 6, Issue 1 - Page 30

different classes in the new training set are rebalanced to force the
boosting algorithm to focus on not only the hard examples, but
also the minority class examples. In this way, we focus on
improving the predictions of both the minority and majority
classes.

This paper is organized as follows. Section 2 describes the
DataBoost-IM algorithm. This is followed, in Section 3, with a
comparative evaluation of the DataBoost-IM algorithm against
seventeen data sets. Finally, Section 4 concludes the paper.

ALGORITHM DataBoost-IM

Input: Sequence of m examples)y,x(),...,y,x(mm11 with
labels }k,...,1{Yyi =∈

 Weak learning algorithm WeakLearn
 Integer T specifying number of iterations

Initialize m/1)i(D1 = for all i .

Do for t = 1, 2, …, T

1. Identify hard examples from the original data set for

different classes

2. Generate synthetic data to balance the training

knowledge of different classes

3. Add synthetic data to the original training set to form a

new training data set

4. Update and balance the total weights of the different

classes in the new training data set

5. Call WeakLearn, providing it with the new training set

with synthetic data and rebalanced weights

6. Get back a hypothesis YX:ht → .

7. Calculate the error of ∑
≠

=
iit y)x(h:i
ttt)i(D:h ε If 2/1t >ε ,

then set T = t – 1 and abort loop.

8. Set).1̀/(ttt εεβ −=

9. Update distribution







←

=←
×=+ otherwise1

y)x(ifh

Z
)i(D

)i(D:D
iitt

t

t
1tt

β , where

tZ is a normalization constant (chosen so that 1tD +
will be a distribution).

Output the final hypothesis: ∑
=∈

=
y)x(h:t tYy

fin
t

1
logmaxarg)x(h

β

Figure 1: Pseudo-code of the DataBoost-IM algorithm

2. DATABOOST-IM ALGORITHM
The DataBoost-IM approach extends our earlier DataBoost
algorithm which was successfully used to produce highly accuracy
classifiers in balanced domains containing hard to learn examples

[13]. In this section, we describe a variation, the DataBoost-IM
algorithm, which is applied to imbalanced data sets. This
approach extends the original DataBoost algorithm as follows.
Firstly, we separately identify hard examples from and generate
synthetic examples for different classes. Secondly, the class
distribution and the total weights of different classes are
rebalanced to alleviate the learning algorithms’ bias toward the
majority class, by choosing a reduced number of representative
(seed) examples from both classes.

Recall that boosting involves the creation of a series of classifiers
which aim to correctly classify hard to learn examples, through
focusing on these hard examples during training. Following this
mechanism, the DataBoost-IM algorithm, as shown in Figure 1,
consists of the following three stages. Firstly, each example of the
original training set is assigned an equal weight. The original
training set is used to train the first classifier of the DataBoost-IM
ensembles. Secondly, the hard examples (so-called seed
examples) are identified and for each of these seed examples, a set
of synthetic examples is generated. During the third stage of the
algorithm, the synthetic examples are added to the original
training set and the class distribution and the total weights of
different classes are rebalanced. The second and third stages of
the DataBoost-IM algorithm are re-executed until reaching a user-
specified number of iterations or the current component
classifier’s error rate is worse than a threshold value. Following
the AdaBoostM1 ensemble method, this threshold is set to 0.5
[8,9].

The seed selection, data generation and re-balancing process of
the DataBoost-IM algorithm are described next. Throughout this
discussion, the Hepatitis data set is used as an illustrative example
[12]. The Hepatitis data set contains 155 examples of Hepatitis
patients, described by 19 continuous and discrete attributes. Of
these cases, 123 corresponds to the patients who survived
treatment (class ‘Live’) and 32 examples of mortalities (class
‘Die’).

2.1 Identify Seed Examples
The aim of the seed selection process is to identify hard examples
for both the majority and minority classes. These examples are
used as input for the data generation process as discussed in
Section 2.2.

The seed examples are selected as follows. Firstly, the examples
in the training set (Etrain) are sorted in descending order, based on
their weights. The original training set Etrain contains Nmaj
examples from the majority class and Nmin examples from the
minority class. The number of examples that is considered to be
hard (denoted by Ns) is calculated as (Etrain x Err), where Err is
the error rate of the currently trained classifier. Next, the set Es,
which contains the Ns examples with the highest weights in Etrain,
is created. The set Es consists of two subset of examples Esmin and
Esmaj, i.e. examples from the minority and majority classes,
respectively. Here, Esmin and Esmaj contain Nsmin and Nsmaj
examples, where Nsmin < Nmin and Nsmaj < Nmaj. We select a number
of seed examples of the majority class in Esmaj by calculating ML,
which is equal to min (Nmaj/Nmin, Nsmaj). Correspondingly, a subset
MS of the minority class examples in Esmin, is selected as seeds,
where MS is calculated as min ((Nmaj x ML) / Nmin, Nsmin). These
values of Ml and Ms were found, by inspection, to produce data
generation set sizes which augment the original training set well.

Sigkdd Explorations. Volume 6, Issue 1 - Page 31

The final sets of seed examples are placed in sets Emaj and Emin.
Note that, when considering an imbalanced data set, our
experimental results against seventeen data sets indicate that a
very high percentage of minority class examples are hard
examples with high weights. Due to this fact, experimental results
show that for the seed examples, the number of higher weighted
examples from the minority class is more.

For example, for the illustrative Hepatitis data set, assume that, in
the fifth iteration of the boosting, the current trained classifier’s
error rate is 18%. The set Es will consist of the 27 examples with
the highest weights as selected from the sorted Etrain. Of these 27
hard examples, 2 correspond to the majority class ‘Live’, and 25
examples are of the class ‘Die’. That is, the high occurrence of
examples from the minority class is due to the fact that, for
imbalanced data sets, the minority class is harder to learn. ML is
equal to 2, calculated as ML = min (2, 3) and Emai will thus contain
both hard examples of the majority class ‘Live’. Ms is equal to 8
and the set Emin will consist of the 8 highest weighted examples of
class ‘Die’. The output of this step is shown in the Table 1.

Table 1: Seed examples and their weights of the Hepatitis Data
set

2.2 Data Generation and Class Frequency
Balancing
The aim of the data generation process is to generate additional
synthesis instances to add to the original training set Etrain. The
data generation process extends our earlier work, as presented in
[13, 17, 18], by generating data for the majority and minority
classes separately. That is, the data generation process generates
two sets of data. Firstly a total of ML sets of new majority class
examples, based on each seed instance in Emaj, are generated. For
each attribute included in the synthetic example, a new value is
generated based on the following constraints [13, 17, 18].

§ For Nominal attribute, the data generation produces a total of
Nmaj attribute values for each seed in Emaj. The values are
chosen to reflect the distribution of values contained in the
original training attribute with respect to the particular class.
This is achieved by considering, for each class, the number of
occurrences of different attribute values in the original data set.
For example, the attribute ‘GENDER’ in the Hepatitis data set
has a value of either ‘MALE’ or ‘FEMALE’. Assume that for
the class ‘Live’, the number of occurrences of ‘MALE’ is 16
and ‘FEMALE’ is 107. The data generation creates 16

occurrences of ‘MALE’ and 107 occurrences of ‘FEMALE’.
These 123 values are randomly assigned to the 123 examples
created during data generation.

§ For Continuous attribute, the data generation produces a total
of Nmaj attribute values. The values are chosen by considering
the range [min, max] of the original attribute values with
respect to the seed class. Also, the distribution of original
attribute values, in terms of the deviation and the mean, is used
during data generation. For example, assume that, for the
‘ALBUMIN’ attribute in the Hepatitis data set, the 123 values
for class ‘Live’ lies between 2.1 and 6.4, and the mean and
deviation values are 3.817 and 0.652. The data generation
randomly generates a total of 123 values between 2.1 and 6.4,
following a mean value of 3.817 and a deviation value of 0.652.
Again, the 123 values are randomly assigned to the 123
examples generated.

Similarly, Ms different sets of new minority class examples,
each based on a seed instance in Emin, are constructed. These
sets of instances are added to the original training set.

Table 2: The number of synthetic examples generated and the
number of their seeds

 Total
cases

Synthetic cases
generated

Original
cases

Seeds

Majority Class 369 246 123 2
Minority Class 288 256 32 8

For the Hepatitis example, recall from Table 1 that Emaj contains 2
examples for the class ‘Live’ and Emin contains 8 instances for the
class ‘Die’. Followed the above-mentioned approach, the data
generation process generates two sets of examples for the class
‘Live’, each set contains 123 synthetic examples for each one of
the seeds in Emaj,. Eight sets of examples containing a total of 32
synthetic examples of the class ‘Die’, based on the 8 seed
examples in Emin, will also be created. A total set consisting of 246
synthetic examples of ‘Live’ and 256 instances of ‘Die’ is thus
newly generated, as shown in Table 2. These instances are added
to the original training set, leading to a final training set
containing 369 instances of the class ‘Live’ and 288 instances of
the class ‘Die’.

Note that a detailed description of the data generation process
falls beyond the scope of this paper. Interested readers are referred
to [13, 17, 18] for a description of this process and its evolution.

2.3 Balancing the Training Weights
In the final step prior to re-training, the total weights of the
examples in the different classes are rebalanced. Recall that
boosting aims to, during each of the iterations, produce new
classifiers that are better able to predict examples for which the
precious classifier’s performance is poor. This is achieved by
concentrating on classifying the examples with high weights
correctly. In an imbalanced data set, the difference of the total
weights between the different classes is large. By rebalancing the
total weights of the different classes, boosting is forced to focus
on hard as well as rare examples.

Recall that the data generation process generates sets of synthetic
examples based on seed examples Emaj and Emin corresponding to

SEED examples and their weights for the majority class (stored in Emaj):
 2,female,y,y,y,n,n,y,y,n,y,n,n,1,59,249,3.7,54,n,LIVE {.98}
 41,female,y,y,y,n,n,y,y,n,n,n,n,0.9,8,60,3.9,52,n,LIVE {.96}

SEED examples and their weights for the minority class (stored in Eminj):
 44,female,n,n,y,y,n,y,n,y,n,n,y,0.9,135,55,?,41,y,DIE {.43}
 43,female,y,n,y,n,n,y,n,y,y,y,n,1,100,19,3.1,42,y,DIE {.43}
 31,female,n,n,y,y,y,y,n,y,n,n,n,8,?,101,2.2,?,y,DIE {.34}
 38,female,n,n,n,n,n,y,y,n,n,n,n,0.4,243,49,3.8,90,y,DIE {.32}
 46,female,y,n,y,y,y,y,n,n,n,n,y,7.6,?,42,3.3,50,y,DIE {.32}
 33,female,n,n,y,y,n,y,n,n,n,y,n,0.7,63,80,3,31,y,DIE {.23}
 37,female,y,n,y,n,n,y,n,n,y,n,n,0.6,67,28,4.2,?,n,DIE {.23}
 34,female,n,n,y,y,n,n,y,n,y,n,n,2.8,127,182,?,?,n,DIE {.20}

Sigkdd Explorations. Volume 6, Issue 1 - Page 32

the majority and minority classes. Before the generated data are
added to the original data set, each of the synthetic examples is
assigned an initial weight. The initial weight of each example is
calculated by dividing the weight of the seed example by the
number of instances generated from it. In this way, the very high
weights associated with the hard examples are balanced out.
Rebalancing ensures that the boosting algorithm focuses on hard
as well as minority class examples.

When the new training set is formed, the total weights of the
majority class examples (denoted by Wmaj) and the minority class
examples (denote by Wmin) in the new training data are rebalanced
as follows. If Wmaj > Wmin, the weight of each instance in the
minority class is multiplied by Wmaj / Wmin, Otherwise, the weight
of each instance in the majority class is multiplied by Wmin / Wmaj.
In this way, the total weight of the majority and minority classes
will be balanced. Note that, prior to training, the weights of the
new training set will be renormalized, following the AdaBoostM1
method, so that their sum equals one [8, 9, 10].

For the Hepatitis example, assume that seed example x in Emaj has
a weight of 9.86 and seed example y has a weight of 9.62. This
implies that each of the 123 synthetic examples generated based x
is assigned a weight of 9.86/123 and those based on y are
assigned weights of 9.62/123. Similarly, an initial weight are
assigned to each of the synthetic examples generated based on the
seed examples from Emin. After adding the synthetic data to the
original data set, the new training data set contains 369 examples
of class ‘Live’ and 288 cases of the class ‘Live’. Assume that Wmaj
is equal to 122.51 and Wmin equals 69.83. Since Wmaj > Wmin, each
of the 288 examples describing the minority class is multiplied by
a constant equal to 122.51/69.83. As a result, the total weights of
the majority and minority classes in the new training set are equal
to 122.51, thus equally distributing the balance of the two classes.

3. EXPERIMENTAL RESULTS
This section describes the results of evaluating the performance of
the DataBoost-IM algorithm, in comparison with the C4.5
decision tree [20], AdaBoostM1[8, 9], DataBoost [13], AdaCost
[21], CSB2 [22] and SMOTEBoost [7] boosting algorithms. The
C4.5 algorithm, which has become a de facto standard against
which new algorithms are being judged, is used as base classifier
[23].

Table 3: Confusion Matrix

Traditionally, the performance of a classifier is evaluated by
considering the overall accuracy against test cases [16]. However,
when learning from imbalanced data sets, this measure is often not
sufficient [16]. Following [3, 4, 5, 7], we employ the overall
accuracy, G-Mean [5] and F-Measures [14] metrics to evaluate
our DataBoost-IM method. The confusion matrix, as shown in
Table 3, represents the typical metrics for evaluating the

performance of machine learning algorithms on skew class
problems. In Table 3, the TP Rate and FP Rate are calculated as
TP/(FN+TP) and FP/(FP+TN). The Precision and Recall are
calculated as TP / (TP + FP) and TP / (TP + FN). The F-measure
is defined as

)ecisionPrcallRe()ecisionPrcallRe)1((22 +×××+ ββ (1)

where ß corresponds to the relative importance of precision versus
the recall and it is usually set to 1. The F-measure incorporates
the recall and precision into a single number. It follows that the
F-measure is high when both the recall and precision are high
[6]. This implies that the F-measure is able to measure the
“goodness” of a learning algorithm on the current class of interest.
Note that we also use this measure for the majority class, since we
are interested in measuring the performance of both classes. The
ROC curve is a technique for summarizing a classifier’s
performance over a range, by considering the tradeoffs between
TP Rate and FP Rate [15]. Another criteria used to evaluate a
classifier’s performance on skew data is the G-mean [4, 5, 7]. The
G-mean is defined as

curacyNegativeAccuracyPositiveAc × (2)

where Positive Accuracy and Negative Accuracy are calculated as
TP/(FN+TP) and TN/(TN+FP). This measure relates to a point on
the ROC curve and the idea is to maximize the accuracy on each
of the two classes while keeping these accuracies balanced [5].
For instance, a high Positive accuracy by a low Negative
accuracy will result in poor G-Mean [5].

Table 4: Summary of the data sets used in this paper. Shown are
the number of examples in the data set; the number of minority
class; the number of majority class; the class distribution; the
number of continous, and the number of discrete input features.

Data set Case Min.
Class

Maj.
Class

Class
Dist.

Feature
Cont. Disc.

SONAR 208 97 111 0.47:0.53 60 0
MONK2 169 64 105 0.37:0.63 0 6
IONOSPHERE 351 126 225 0.35:0.65 34 0
BREAST-W 699 241 458 0.34:0.66 9 0
BREAST-CANCER 286 85 201 0.30:0.70 0 9
PHONEME 5484 1586 3818 0.29:0.71 5 0
VEHICLE 846 199 647 0.23:0.77 18 0
HEPATITIS 155 32 123 0.20:0.80 6 13
SEGMENT 2310 330 1980 0.14:0.86 19 0
GLASS 214 29 185 0.13:0.87 9 0
SATIMAGE 6435 626 5809 0.09:0.91 33 0
VOWEL 990 90 900 0.09:0.91 10 3
SICK 3772 231 3541 0.06:0.94 6 23
ABALONE 731 42 689 0.06:0.94 7 1
YEAST 483 20 463 0.04:0.96 8 0
PRIMARY-TUMOR 339 14 325 0.04:0.96 0 17
OIL 937 41 896 0.04:0.96 49 0

3.1 Data Sets
To evaluate the performance of the DataBoost-IM, we obtained
sixteen data sets from the UCI data repository [12] as well as the
Oil Spill data set [4, 5]. These data sets were carefully selected to
ensure that they (a) are based on real-world problems, (b) varied
in feature characteristics, and (c) vary extensively in size and class
distribution. Table 4 presents the characteristics of the data sets

 Predicted
Negative

Predicted Positive

Actual Negative TN (the number of
True Negatives)

FP(the number of
False Positives)

Actual Positive FN (the number of
False Negatives)

 TP(the number of
True Positives)

Sigkdd Explorations. Volume 6, Issue 1 - Page 33

used for the experiments. Shown are the number of cases, the
number of the majority and minority classes, the class
distribution, and the type of the features. For the Glass, Vowel,
Vehicle, Satimage, and Primary-tumor data sets, we increased the
degree of skew by converting all but the smallest class into a
single class. For the Sick data sets, we deleted the 'TBG' attribute
due to the high number of missing values. For the Abalone and
Yeast data sets, we respectively learned the classes ‘9’ versus ‘18’
in the Abalone, and the classes ‘CYT’ versus ‘POX’ in the Yeast
in order to present the DataBoost-IM algorithm highly imbalanced
problems.

3.2 Methodology and Experimental Results
We implemented the experiments using Weka [19], a Java-based
knowledge learning and analysis environment developed at the
University of Waikato in New Zealand.

Results for the above data sets, as shown in Table 5 and appendix
A, were averaged over five standard 10-fold cross validation
experiments. For each 10-fold cross validation the data set was
first partitioned into 10 equal sized sets and each set was then in
turn used as the test set while the classifier trains on the other nine
sets. A stratified sampling technique was applied here to ensure
that each of the sets had the same proportion of different classes.

For each fold an ensemble of ten component classifiers was
created. In the experiments, the C4.5 decision trees were pruned
[20].

The experimental results for the eigth most highly imbalanced
data sets, as described in Table 4, are presented in Table 5 . We
also include the results for the nine moderately imbalanced data
sets in Appendix A. For each data set, we present the results
achieved when using the C4.5, AdaBoostM1, DataBoost,
AdaCost [21], CSB2 [22], SMOTEBoost [7] and DataBoost-IM
methods. Also, for each algorithm, the table presents the results in
terms of the G-mean, overall accuracy rates, TP rates and F-
measures against the majority and minority classes respectively.
Following the work of Fan et al. [21], Ting [22], and Chawla et
al. [7], the cost-adjustment functions from the AdaCost and CSB2
algorithms were chosen as follows: 5.0*5.0 +=− cβ and

5.0c*5.0 +=+β , where +β and −β are the functions for correctly
and mislabeled labeled examples, respectively. Also, the three
cost factors used in these two algorithms are 2, 5, and 9. The
parameter N, which specifies the amount of synthetically
generated examples in the SMOTEBoost was set to 100, 300 and
500, respectively.

Table 5: Results against eigth highly imbalanced data sets: F-measure of minority class, F-measure of majority class, overall accuracy , G-
mean, true positive rate of minority class, and true positive rate of majority class for the data sets using (1) the C4.5 classifier (2)
AdaBoostM1, (3) DataBoost, (4) AdaCost, (5) CSB2, (6) SMOTEBoost, and (7) DataBoost-IM ensembles.

Data Set
Name

Methods F-measure of
min. class

F-measure of
maj. class

Overall
Accuracy

G-Mean TP rate of
min. class

TP rate of
Maj. Class

 C4.5 78.5 96.7 94.3 85.9 75.8 97.2
 AdaBoostM1 81.3 97.0 94.8 89.4 82.7 96.7
 DataBoost 86.2 97.8 96.3 84.3 86.2 97.8
 AdaCost (Cost Factor: 2) 84.4 97.3 95.3 94.3 93.1 95.7
GLASS (Cost Factor: 5) 77.6 95.8 92.9 91.5 89.7 93.5
 (Cost Factor: 9) 73.5 95.0 91.5 89.2 86.2 92.4
 CSB2 (Cost Factor: 2) 76.9 95.9 55.6 90.9 88.2 93.7
 (Cost Factor: 5) 59.3 89.2 50.0 87.4 94.1 81.3
 (Cost Factor: 9) 36.5 65.6 38.3 68.3 95.0 49.2
 SMOTEBoost (N=100) 84.0 97.4 95.6 91.1 85.5 97.1
 (N=300) 82.5 97.1 95.0 91.1 86.2 96.4
 (N=500) 81.4 96.8 94.5 91.5 87.5 95.6
 DataBoost-IM 89.2 98.3 97.1 92.3 86.2 98.9
 C4.5 56.4 95.4 91.7 72.7 55.2 95.6
 AdaBoostM1 66.7 96.7 94.1 77.0 60.7 97.7
 DataBoost 66.3 96.7 93.9 77.3 61.3 97.5
 AdaCost (Cost Factor: 2) 64.9 95.8 92.4 82.3 71.6 94.7
SATIMAGE (Cost Factor: 5) 58.6 92.9 87.8 88.1 88.5 87.8
 (Cost Factor: 9) 51.4 89.6 82.9 87.2 93.0 81.8
 CSB2 (Cost Factor: 2) 64.7 95.4 91.8 84.5 76.4 93.6
 (Cost Factor: 5) 47.7 87.5 79.7 86.0 94.7 78.2
 (Cost Factor: 9) 30.5 68.2 56.3 71.4 98.6 51.8
 SMOTEBoost (N=100) 64.5 96.5 93.7 75.6 58.6 97.5
 (N=300) 65.3 96.6 93.8 76.0 59.3 97.6
 (N=500) 65.2 96.6 93.8 76.1 59.4 97.5
 DataBoost-IM 68.8 96.7 94.1 80.4 66.6 97.1
 C4.5 93.7 99.3 98.8 95.8 92.2 99.5
 AdaBoostM1 97.1 99.7 99.4 97.6 95.5 99.8
 DataBoost 95.5 99.6 99.2 94.1 94.4 99.7
 AdaCost (Cost Factor: 2) 96.1 99.6 99.2 98.1 96.7 99.6
VOWEL (Cost Factor: 5) 96.7 99.7 99.3 98.7 97.8 99.6
 (Cost Factor: 9) 88.8 98.8 97.7 97.3 96.7 97.9
 CSB2 (Cost Factor: 2) 96.6 99.7 79.4 99.6 100 99.3
 (Cost Factor: 5) 78.8 97.3 95.1 96.8 98.9 94.8
 (Cost Factor: 9) 41.3 83.5 66.7 84.6 100 71.6
 SMOTEBoost (N=100) 97.3 99.7 99.5 98.7 97.7 99.6
 (N=300) 96.1 99.6 99.2 97.8 96.2 99.5
 (N=500) 96.3 99.6 99.3 97.9 96.2 99.6
 DataBoost-IM 98.8 99.8 99.7 99.3 98.8 99.8

Sigkdd Explorations. Volume 6, Issue 1 - Page 34

Data Set
Name

Methods F-measure of
min. class

F-measure of
maj. class

Overall
Accuracy

G-Mean TP rate of
min. class

TP rate of
Maj. Class

 C4.5 89.1 99.3 98.7 93.0 87.0 99.4
 AdaBoostM1 91.1 99.4 98.9 94.2 89.1 99.5
 DataBoost 90.3 99.3 98.8 96.1 93.1 99.2
 AdaCost (Cost Factor: 2) 91.8 99.5 98.9 95.9 92.6 99.4
SICK (Cost Factor: 5) 90.8 99.4 98.8 97.3 95.7 99.0
 (Cost Factor: 9) 86.7 99.0 98.1 97.6 97.0 98.2
 CSB2 (Cost Factor: 2) 91.1 99.4 98.8 97.3 95.7 99.1
 (Cost Factor: 5) 73.3 97.6 95.5 97.1 99.1 95.3
 (Cost Factor: 9) 27.1 79.0 67.4 80.4 99.1 65.3
 SMOTEBoost (N=100) 89.6 99.3 98.6 95.5 92.1 99.1
 (N=300) 88.5 99.2 98.5 95.0 91.2 99.0
 (N=500) 87.9 99.1 98.4 94.9 91.0 98.9
 DataBoost-IM 91.8 99.4 98.9 95.9 92.6 99.4
 C4.5 36.0 97.2 94.6 50.8 26.1 98.8
 AdaBoostM1 41.0 96.9 94.1 59.0 35.7 97.6
 DataBoost 39.7 96.9 94.2 32.6 33.3 97.9
 AdaCost (Cost Factor: 2) 29.8 95.2 90.9 56.1 33.3 94.5
ABALONE (Cost Factor: 5) 28.8 93.3 87.8 62.3 42.9 90.6
 (Cost Factor: 9) 26.3 90.9 83.8 65.5 50.0 85.9
 CSB2 (Cost Factor: 2) 39.6 95.8 92.0 65.4 45.2 94.9
 (Cost Factor: 5) 23.4 81.7 70.4 74.1 78.6 70.0
 (Cost Factor: 9) 15.7 60.1 45.8 61.7 88.1 43.3
 SMOTEBoost (N=100) 37.6 96.6 93.6 56.9 33.3 97.3
 (N=300) 39.0 96.7 93.7 58.1 34.7 97.3
 (N=500) 37.4 96.6 93.5 56.9 33.3 97.2
 DataBoost-IM 45.0 97.1 94.6 61.1 38.0 98.1
 C4.5 9.5 97.9 96.0 22.3 5.0 100
 AdaBoostM1 51.4 98.1 96.4 66.6 45.0 98.7
 DataBoost 54.1 98.2 96.5 70.2 50.0 98.5
 AdaCost (Cost Factor: 2) 40.9 97.2 94.6 66.0 45.0 96.8
YEAST (Cost Factor: 5) 47.1 97.0 94.4 75.8 60.0 95.9
 (Cost Factor: 9) 43.8 96.0 92.5 80.9 70.0 93.5
 CSB2 (Cost Factor: 2) 55.6 98.3 96.6 70.2 50.0 98.7
 (Cost Factor: 5) 25.5 90.4 83.0 76.5 70.0 83.6
 (Cost Factor: 9) 14.5 74.6 60.8 69.2 80.0 60.0
 SMOTEBoost (N=100) 57.6 98.5 97.1 67.5 46.0 99.3
 (N=300) 53.0 98.2 96.5 68.0 47.0 98.7
 (N=500) 46.7 97.6 95.5 67.7 47.0 97.6
 DataBoost-IM 58.0 98.6 97.3 66.9 45.0 99.5
 C4.5 0.00 97.8 95.8 0.00 0.00 100
 AdaBoostM1 19.0 97.4 94.9 37.5 14.2 98.4
 DataBoost 17.3 97.1 94.4 14.0 14.3 97.8
 AdaCost (Cost Factor: 2) 12.0 93.0 87.0 43.8 21.4 89.8
PRIMARY- (Cost Factor: 5) 11.0 89.3 80.8 48.7 28.6 83.1
TUMOR (Cost Factor: 9) 14.6 88.3 79.3 58.9 42.9 80.9
 CSB2 (Cost Factor: 2) 16.3 93.5 87.9 50.8 28.6 90.5
 (Cost Factor: 5) 13.8 66.9 52.2 68.4 92.9 50.5
 (Cost Factor: 9) 8.1 3.6 5.8 13.4 100 1.8
 SMOTEBoost (N=100) 16.4 96.8 93.9 37.3 14.2 97.4
 (N=300) 21.4 97.0 94.3 42.3 18.5 97.6
 (N=500) 24.3 97.1 94.5 45.7 21.4 97.6
 DataBoost-IM 28.5 96.9 94.1 52.6 28.5 96.9
 C4.5 37.6 97.6 95.4 55.8 31.7 98.3
 AdaBoostM1 38.8 97.7 95.6 55.8 31.7 98.5
 DataBoost 45.5 98.0 96.2 36.2 36.6 98.9
 AdaCost (Cost Factor: 2) 42.2 97.1 94.4 66.9 46.3 96.7
OIL (Cost Factor: 5) 35.8 95.5 91.5 70.7 53.7 93.3
 (Cost Factor: 9) 32.1 93.8 88.6 74.0 61.0 90.0
 CSB2 (Cost Factor: 2) 50.6 97.6 95.4 72.2 53.7 97.3
 (Cost Factor: 5) 33.3 91.9 85.4 84.2 82.9 85.6
 (Cost Factor: 9) 20.1 81.1 69.3 77.5 87.8 68.5
 SMOTEBoost (N=100) 53.7 98.1 96.5 67.5 46.3 98.8
 (N=300) 49.4 98.0 96.2 63.9 41.4 98.7
 (N=500) 52.7 98.1 96.4 66.8 45.3 98.7
 DataBoost-IM 55.0 98.2 96.6 67.7 46.3 98.9

The results, as shown in Table 5 indicate that the DataBoost-IM
algorithm performs well against highly imbalanced data sets, in
terms of the F-measures of both the minority and majority classes.
In many cases, our results are comparable or slightly higher than
that produced by the other algorithms. Our approach also yields
good results in terms of the G-mean and overall accuracy, when
compared to the other approaches.

The DataBoost-IM approach achieved promising results when
considering the minority class F-measures. In some cases, such as
the Yeast and Sick data sets, the value obtained is the same as, or
slightly higher than, the best value produced by the other
algorithms. However, for data sets such as the Abalone, Primary-
Tumor, Glass, and Satimage the minority class F-measure
surpasses that of all the other techniques. Also, the majority class

Sigkdd Explorations. Volume 6, Issue 1 - Page 35

F-measure against five of the eight data sets as produced by the
DataBoost-IM algorithm is the highest, or the same as, that
obtained by the other algorithms. For the other three data sets,
namely the Sick, Abalone and Primary-Tumor data sets, the
values obtained are lower by only 0.1, 0.1 and 0.9, when
compared to the best performing algorithm.

Our results when comparing the DataBoost-IM method to the
base-line C4.5 and AdaBoostM1 methods, shows that DataBoost-
IM performs well in terms of both F-Measures. In some cases
such as the Glass, Abalone, Yeast, Primary-Tumor, and Oil spill
data sets, there are large improvements. For example, in the Oil
spill data set, the C4.5 and AdaBoostM1 algorithms produced
minority class F-measures of 37.6 and 38.8, respectively. The
DataBoost-IM approach achieved a minority class F-measure of
55.0. In the Primary data set, the C4.5 and AdaBoostM1
algorithms produced minority class F-measures of 0 and 19.0
respectively, whereas the DataBoost-IM approach achieved a
minority class F-measure of 28.5. Also, the G-mean of the
DataBoost-IM method are, for all eight data sets, the same of
slightly higher than that of the other two approach. Similar results
holds for the overall accuracy, where DataBoost-IM performs
slightly lower in only one case.

When considering the DataBoost-IM and the original DataBoost
approaches, the values shown in Table 5 confirm that the
DataBoost-IM approach benefits from generating synthetic
examples for different classes separately and rebalancing the class
frequencies and the total weights from the different classes. The
DataBoost-IM approach achieved higher F-measures against both
classes, except for the Primary-Tumor data set, in which the value
against the majority class is lower by only 0.2, and the Satimage
data set, in which the values against the majority class were the
same. In many cases the improvement for the minority class was
quite significant. For example, in the Primary-Tumor data set, the
DataBoost method produced a minority class F-measure of 17.3,
while The DataBoost-IM approach achieved a value of 28.5. Also,
for the highly imbalanced Oil spill and Abalone data sets, the
improvements achieved by the DataBoost-IM method over
DataBoost algorithm were promising, i.e. 9.5 and 5.3 respectively.
For the G-mean and overall accuracy, the DataBoost-IM method
consistently produced similar or higher results than that of the
DataBoost algorithm.

When comparing the DataBoost-IM method with the AdaCost,
CSB2, and SMOTEBoost algorithms, the results shows that the
DataBoost-IM method produced results which compare well, in
terms of the G-mean, overall accuracy and F-measures. The
DataBoost-IM method achieved similar or slightly better minority
and majority class F-measures against the eight data sets.
Importantly, our results indicate that our approach does not
sacrifice one class, but produces high predictions against both.
For example, for the Primary-Tumor data set, where the majority
class F-measure values were lower by 0.2, when compared to the
best values obtained by the other algorithms, the improvement of
minority class F-measure were 4.2. Similarly, for the Abalone and
Glass data sets, the improvements in minority class F-measures
were 5.3 and 4.8, respectively.

Further analysis of the moderately imbalanced data sets, as shown
in Appendix A, shows that the DataBoost-IM approach obtained
the highest values against six of the nine data sets in terms of the
minority class F-measures. Also, against seven of the nine data

sets the majority class F-measure results are slightly higher.
However, the improvements in term of F-measures are less
significant than those against the highly imbalanced data sets. For
the Monk2 and Breast-Cancer data sets, the majority class F-
measures decreased by more than 40.0, when compared to the
values obtained by the DataBoost-IM algorithm. The same results
hold for the overall accuracy and G-mean, where DataBoost-IM
produces comparable and slightly higher results in six of the nine
data sets.

In conclusion, the results, as shown in Table 5 and Appendix A,
indicate that the results obtained by the DataBoost-IM approach
are comparable to that of the other techniques, when evaluated in
terms of overall accuracy, G-mean and F-measures. In particular,
the results against highly imbalanced data sets are promising.
Importantly, for some highly imbalanced data sets, the DataBoost-
IM approach produces the highest results in terms of both
minority and majority class F-measures. Results indicate that the
DataBoost-IM technique does not sacrifice the one class to favor
the other. Rather, it aims at producing an ensemble which
produces high values against both.

ROC Curves of Hepatitis Data Set

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
DataBoost-IM

SMOTEBoost-300

DataBoost

AdaBoostM1

C4.5

Figure 3: ROC Curve of the Hepatitis Data Set

ROC of Data Boost (Hepatitis)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

T
ru

e
 P

o
si

tiv
e
 R

a
te

DataBoost of Ten
Iterations

Figure 4: ROC Curve of ten iteration of the DataBoost-IM
algorithm

To better understand the achievements of the DataBoost-IM
method, we also present the ROC analysis results of the Hepatitis
data set. This data set was chosen since it contains both
continuous and discrete features, and has a moderately imbalance
degree and instance size. We repeated the previous experiment
against the Hepatitis data set, using the optimal parameter values
for all algorithms as shown in Table 5. We varied the decision
thresholds of the C4.5 algorithm, by varying the proportion of
instances at the leaf node of the decision tree for labeling a class,
to obtain the ROC curve. We produced an average ROC curve, as
shown in Figure 3, by averaging the TP and FP rates over ten runs
[15]. Also, we drew the ROC curves of the ten iterations of the

Sigkdd Explorations. Volume 6, Issue 1 - Page 36

DataBoost-IM algorithm as shown in Figure 4. From the analysis
of the ROC curves as shown in Figure 3, we conclude that the
DataBoost-IM ensemble’s ROC curve is of a high quality. This
result indicates that the DataBoost-IM method achieved a high
outcome, which compares well to that of the C4.5, AdaBoostM1,
DataBoost and SMOTEBoost algorithms over most of the
threshold values of the ROC space. Further analysis of Figure 4
shows us an essential fact of the DataBoost-IM approach, namely
that each component classifier in the DataBoost-IM ensembles
was pursuing a point with both a high TP rate and a low FP rate
in the ROC space. This implies that the DataBoost-IM was able
to produce a series of high quality classifiers, and each of them
will be better able to predict examples for which the previous
classifier’s performance is poor.

4. CONCLUSIONS
This paper introduced a novel approach for learning from
imbalanced data sets through combining boosting and data
generation. In this approach, the class frequencies and the total
weights against different the classes within the ensemble’s
training set, which consist of both the synthesis and the original
training data, are rebalanced during all iterations of the boosting
algorithm. The DataBoost-IM algorithm was illustrated by means
of seventeen data sets with various features, degrees of imbalance
and sizes. The results obtained indicate that the DataBoost-IM
approach performs well against imbalanced data sets. In
particular, the DataBoost-IM algorithm achieved comparable and
slightly better predictions, in terms of the G-mean and F-
measures metrics, against both the minority and majority classes,
when compared with a component classifier as well as four other
boosting algorithms. Importantly, our method does not sacrifice
one class for the other, but produce high predictive accuracy
against both the majority and the minority class.

In conclusion, these results indicate four reasons for the
performance improvements achieved by the DataBoost-IM
algorithm. The first is that the additional synthetic data provide
complementary knowledge for the learning process. The second is
that rebalancing the class frequencies alleviates the classifiers’
learning bias toward the majority class. The third one is that
rebalancing the total weight distribution of different classes forces
the boosting algorithm to focus on the hard examples as well as
rare examples. The last one is that the synthetic data prevent
boosting from over-emphasize the hard examples. This property is
especially important when considering the minority class which
contains few examples.

Our future research will address some issues to extend the
DataBoost-IM approach, including further investigating the
optimal number of new seed examples to generate, experimenting
with other component classifiers and considering the performance
against noisy data. Also, other weight-assignment methods will be
further investigated. Future work will also include studying the
voting mechanism of the boosting algorithm using different
metrics such as the ROC curve. Although the DataBoost-IM and
the experiments addressed only two-class problems, we believe
that a similar approach can be used in the frame of multi-class
learning problems. This will be further investigated.

5. ACKNOWLEDGMENTS
Thanks are due to R.Holte for allowing us to use the Oil Spill data
set and to N. Chawla for supplying the SMOTE script. We also

wish to thank the anonymous reviewers for their comments. This
paper extends our earlier work as reported in [24].

6. REFERENCES
[1] N. Japkowicz. Learning from imbalanced data sets: A

comparison of various strategies, Learning from imbalanced
data sets: The AAAI Workshop 10-15. Menlo Park, CA:
AAAI Press. Technical Report WS-00-05, 2000.

[2] N. Chawla, K. Bowyer, L. Hall and W. Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique.
Journal of Artificial Intelligence Research, 16, 321-357,
2002.

[3] M.A. Maloof . Learning when data sets are Imbalanced and
when costs are unequal and unknown, ICML-2003
Workshop on Learning from Imbalanced Data Sets II, 2003.

[4] M. Kubat, R. Holte and S. Matwin. Machine Learning for the
Detection of Oil Spills in Satellite Radar Images. Machine
Learning, 30, 195–215, 1998.

[5] M. Kubat and S. Matwin. Addressing the curse of
imbalanced training sets: One-sided selection. Proceedings of
the Fourteenth International Conference on Machine
Learning San Francisco, CA, Morgan Kaufmann, 179-
186,1997

[6] M. Joshi, V. Kumar and R. Agarwal. Evaluating boosting
algorithms to classify rare classes: comparison and
improvements. Technical Report RC-22147, IBM Research
Division, 2001.

[7] N. Chawla, A. Lazarevic, L. Hall and K. Bowyer.
SMOTEBoost: improving prediction of the minority class
in boosting. 7th European Conference on Principles and
Practice of Knowledge Discovery in Databases, Cavtat-
Dubrovnik, Croatia , 107-119, 2003.

[8] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. the Proceedings of the Thirteenth
International Conference on Machine Learning, Bari, Italy,
148-156, 1996

[9] Y. Freund and R.E.Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55(1),
119-139, 1997.

[10] H.Schwenk and Y. Bengio. AdaBoosting Neural Networks:
Application to On-line Character Recognition, International
Conference on Artificial Neural Networks (ICANN’97),
Springer-Verlag, 969-972, 1997.

[11] T.G. Dietterich. An experimental comparison of three
methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Machine Learning
40, 139-157, 2000.

[12] C.L. Blake and C. J. Merz. UCI Repository of Machine
Learning Databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html],
Department of Information and Computer Science,
University of California, Irvine, CA, 1998.

[13] H Guo and HL Viktor. Boosting with data generation:
Improving the Classification of Hard to Learn Examples, to
be presented at the 17th International Conference on
Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (IEA/AIE), Ottawa,
Canada, May 17-20, 2004.

[14] C. J. van Rijsbergen. Information Retrieval. Butterworths,
London, 1979.

Sigkdd Explorations. Volume 6, Issue 1 - Page 37

[15] F. Provost, T. Fawcett, and R. Kohavi. The case against
accuracy estimation for comparing induction algorithms,
Proceedings of the Fifteenth International Conference on
Machine Learning, San Francisco, CA: Morgan Kaufmann,
445-453, 1998.

[16] F. Provost and T. Fawcett. Analysis and visualization of
classifier performance: Comparison under imprecise class
and cost distributions. In proceedings of the Third
international conference on Knowledge discovery and data
mining, Menlo park, CS. AAAI Press, 43-48, 1997.

[17] HL Viktor. The CILT multi-agent learning system, South
African Computer Journal (SACJ), 24, 171-181, 1999.

[18] HL Viktor and I Skrypnik. Improving the Competency of
Ensembles of Classifiers through Data Generation,
ICANNGA'2001, Prague: Czech Republic, April 21-25, 59-
62, 2001.

[19] I. Witten, E.Frank. Data Mining: Practical Machine
Learning tools and Techniques with Java Implementations,
Chapter 8, Morgan Kaufmann Publishers, 2000.

[20] JR Quinlan, C4.5. Programs for Machine Learning, Morgan
Kaufmann, California: USA, 1994.

[21] W. Fan, S. Stolfo, J. Zhang, P. Chan, AdaCost:
Misclassification Cost-Sensitive Boosting, Proceedings of
16th International Conference on Machine Learning,
Slovenia, 1999.

[22] K. Ting, A Comparative Study of Cost-Sensitive Boosting
Algorithms, Proceedings of 17th International Conference
on Machine Learning, 983-990, Stanford, CA, 2000.

[23] C. Drummond and R. Holte. C4.5, class imbalance, and
cost sensitivity: why under-sampling beats over-sampling,
Workshop on Learning from Imbalanced Data sets II held
in conjunction with ICML'2003, 2003.

[24] H.L. Viktor and H. Guo, Multiple Classifier Prediction
Improvements against Imbalanced Datasets through Added
Synthetic Examples, to be presented at the 10th
International Workshop on Statistical Pattern Recognition,
Lisbon, Portugal, August 18-20, 2004.

APPENDIX A

Experimental results against nine moderately imbalanced data sets: F-measure of minority class, F-measure of majority class,
overall accuracy , G-mean, true positive rate of minority class, and true positive rate of majority class for the data sets using (1)
C4.5, (2) AdaBoostM1 ensembles, (3) DataBoost, (4) AdaCost, (5) CSB2, (6) SMOTEBoost, and (7) DataBoost-IM ensembles.

Data Set
Name

Methods F-measure of
min. class

F-measure of
maj. class

Overall
Accuracy

G-Mean TP rate of
min. class

TP rate of
Maj. Class

 C4.5 71.6 73.4 72.5 72.6 74.2 71.1
 AdaBoostM1 81.2 83.9 82.6 82.5 80.4 84.6
 DataBoost 81.4 83.8 82.7 68.2 81.4 83.8
 AdaCost (Cost Factor: 2) 73.7 71.4 72.5 72.6 82.5 64.0
SONAR (Cost Factor: 5) 76.5 67.1 72.5 70.8 95.9 52.3
 (Cost Factor: 9) 72.7 52.6 65.3 59.7 99.0 36.0
 CSB2 (Cost Factor: 2) 79.7 73.3 76.9 75.9 96.9 59.5
 (Cost Factor: 5) 67.1 25.2 54.3 37.9 100 14.4
 (Cost Factor: 9) 64.2 5.3 48.0 16.4 100 2.7
 SMOTEBoost (N=100) 78.6 79.9 79.3 79.3 81.6 77.2
 (N=300) 76.9 80.4 78.8 78.5 75.6 81.6
 (N=500) 75.8 79.2 77.6 77.4 75.2 79.8
 DataBoost-IM 82.1 84..9 83.6 83.3 80.4 86.4
 C4.5 29.2 74.6 62.7 42.4 20.3 88.5
 AdaBoostM1 45.9 69.4 60.9 55.9 43.7 71.4
 DataBoost 41.0 68.8 59.2 27.1 37.5 72.4
 AdaCost (Cost Factor: 2) 53.8 35.5 46.1 44.3 82.8 23.8
MONK2 (Cost Factor: 5) 54.7 12.7 40.3 25.8 95.1 7.0
 (Cost Factor: 9) 54.9 0 37.8 0.0 100 0
 CSB2 (Cost Factor: 2) 56.2 28.1 45.5 39.7 92.2 17.1
 (Cost Factor: 5) 54.9 0 37.8 0.0 100 0
 (Cost Factor: 9) 54.9 0 37.8 0.0 100 0
 SMOTEBoost (N=100) 46.8 62.4 55.9 54.9 51.2 58.8
 (N=300) 54.3 60.2 57.5 58.8 66.8 51.8
 (N=500) 53.8 57.6 55.8 57.3 68.1 48.3
 DataBoost-IM 52.7 70.8 63.9 61.1 53.1 70.4
 C4.5 83.3 91.3 88.6 86.2 79.3 93.7
 AdaBoostM1 87.2 93.5 91.4 88.9 81.7 96.8
 DataBoost 89.3 94.3 92.6 82.8 86.0 96.3
 AdaCost (Cost Factor: 2) 88.4 93.6 91.7 90.6 87.3 94.2
Ionosphere (Cost Factor: 5) 84.7 90.2 88.0 88.8 92.1 85.8
 (Cost Factor: 9) 79.6 84.9 82.6 84.7 94.4 76.0
 CSB2 (Cost Factor: 2) 89.7 93.6 82.9 93.0 96.5 89.7
 (Cost Factor: 5) 68.9 67.1 61.2 70.8 99.1 50.7
 (Cost Factor: 9) 54.3 12.0 35.8 25.3 100 6.4
 SMOTEBoost (N=100) 90.2 94.7 93.1 92.0 88.4 95.8
 (N=300) 89.4 94.4 92.7 91.2 86.5 96.1
 (N=500) 88.6 94.0 92.1 90.5 85.3 96.0
 DataBoost-IM 91.2 95.4 94.0 92.3 87.3 97.7

Sigkdd Explorations. Volume 6, Issue 1 - Page 38

Data Set
Name

Methods F-measure of
min. class

F-measure of
maj. class

Overall
Accuracy

G-Mean TP rate of
min. class

TP rate of
Maj. Class

 C4.5 92.4 95.9 94.7 94.3 93.3 95.4
 AdaBoostM1 93.9 96.8 95.8 95.4 94.1 96.7
 DataBoost 93.7 96.7 95.6 90.8 94.2 96.4
 AdaCost (Cost Factor: 2) 93.2 96.2 95.1 95.4 96.7 94.3
BREAST-W (Cost Factor: 5) 93.5 96.3 95.2 96.0 98.8 93.4
 (Cost Factor: 9) 92.2 95.5 94.2 95.2 98.8 91.9
 CSB2 (Cost Factor: 2) 93.6 96.4 95.4 95.7 96.7 94.8
 (Cost Factor: 5) 87.9 92.3 90.5 92.4 99.6 85.8
 (Cost Factor: 9) 68.3 67.6 67.9 71.4 100 51.1
 SMOTEBoost (N=100) 94.1 96.8 95.9 95.8 95.6 96.1
 (N=300) 94.3 96.9 96.0 95.9 95.6 96.1
 (N=500) 94.5 97.0 96.1 96.2 96.3 96.0
 DataBoost-IM 95.2 97.4 96.7 96.4 95.4 97.3
 C4.5 39.3 84.3 75.1 50.8 27.0 95.5
 AdaBoostM1 44.0 74.9 65.3 58.1 45.8 73.6
 DataBoost 40.2 75.9 65.7 29.9 38.8 77.1
 AdaCost (Cost Factor: 2) 46.5 56.1 51.7 55.6 70.6 43.8
BREAST- (Cost Factor: 5) 47.3 12.0 34.0 24.7 93.0 6.6
CANCER (Cost Factor: 9) 46.1 0 29.9 0.00 100 0
 CSB2 (Cost Factor: 2) 42.4 41.5 41.9 45.9 71.8 29.4
 (Cost Factor: 5) 45.8 0 29.7 0.00 100 0
 (Cost Factor: 9) 45.8 0 29.7 0.00 100 0
 SMOTEBoost (N=100) 44.9 75.6 66.2 58.8 46.3 74.6
 (N=300) 45.9 73.9 64.8 59.7 50.3 70.9
 (N=500) 46.1 72.8 63.9 59.8 52.0 68.9
 DataBoost-IM 46.5 77.0 67.8 60.0 47.0 76.6
 C4.5 77.2 90.0 86.1 84.2 79.8 88.7
 AdaBoostM1 81.8 92.6 89.4 86.7 80.8 93.0
 DataBoost 81.8 92.7 89.6 74.9 80.1 93.5
 AdaCost (Cost Factor: 2) 78.8 88.9 85.4 87.3 92.3 82.6
PHONEME (Cost Factor: 5) 71.9 81.5 77.7 82.2 97.3 69.6
 (Cost Factor: 9) 67.2 75.3 71.7 77.3 98.4 60.8
 CSB2 (Cost Factor: 2) 80.4 89.8 86.6 88.4 93.4 83.8
 (Cost Factor: 5) 58.0 57.4 57.7 63.4 99.5 40.4
 (Cost Factor: 9) 46.2 6.0 31.5 17.6 100 3.1
 SMOTEBoost (N=100) 82.4 92.4 89.4 87.8 84.3 91.5
 (N=300) 80.5 91.3 88.0 86.9 84.4 89.4
 (N=500) 79.8 90.9 87.5 86.4 84.0 89.0
 DataBoost-IM 83.8 93.2 90.5 88.4 83.7 93.3
 C4.5 87.9 96.1 94.2 92.5 89.4 95.6
 AdaBoostM1 92.5 97.6 96.4 95.5 93.9 97.2
 DataBoost 91.6 97.5 96.1 88.8 91.0 97.7
 AdaCost (Cost Factor: 2) 88.3 96.2 94.2 93.8 93.0 94.6
VEHICLE (Cost Factor: 5) 86.2 95.0 92.6 94.3 97.5 91.2
 (Cost Factor: 9) 85.1 94.4 91.8 94.1 99.0 89.6
 CSB2 (Cost Factor: 2) 90.5 96.7 95.1 96.1 98.0 94.3
 (Cost Factor: 5) 73.1 87.3 82.7 87.8 99.5 77.6
 (Cost Factor: 9) 45.0 39.7 42.4 49.7 100 24.7
 SMOTEBoost (N=100) 92.4 97.6 96.4 95.3 93.4 97.3
 (N=300) 92.1 97.5 96.2 95.5 94.3 96.8
 (N=500) 91.0 97.1 95.6 95.1 94.1 96.1
 DataBoost-IM 93.7 98.0 97.0 95.7 93.4 98.1
 C4.5 42.1 86.9 78.7 57.9 37.5 89.4
 AdaBoostM1 52.4 88.3 81.2 66.8 50.0 89.4
 DataBoost 58.3 89.2 83.9 50.0 54.7 91.5
 AdaCost (Cost Factor: 2) 59.5 87.3 80.6 75.8 68.8 83.7
HEPATITIS (Cost Factor: 5) 50.9 73.0 65.1 72.0 87.5 59.3
 (Cost Factor: 9) 48.8 66.3 59.3 68.7 93.8 50.4
 CSB2 (Cost Factor: 2) 63.4 86.8 80.6 80.9 81.3 80.5
 (Cost Factor: 5) 42.3 51.2 47.0 57.3 93.8 35.0
 (Cost Factor: 9) 36.0 13.6 26.4 27.0 100 7.3
 SMOTEBoost (N=100) 58.9 89.3 83.0 72.6 59.3 89.2
 (N=300) 59.2 88.4 82.0 74.0 63.1 86.9
 (N=500) 58.4 87.8 81.1 74.1 64.3 85.5
 DataBoost-IM 62.6 89.7 83.8 76.2 65.6 88.6
 C4.5 87.2 97.8 96.3 92.2 86.9 97.9
 AdaBoostM1 93.5 98.9 98.1 95.9 93.0 99.0
 DataBoost 93.9 99.0 98.3 92.5 93.3 99.1
 AdaCost (Cost Factor: 2) 90.7 98.4 97.2 96.0 94.5 97.7
SEGMENT (Cost Factor: 5) 86.4 97.4 95.6 96.1 96.7 95.5
 (Cost Factor: 9) 84.3 96.9 94.7 96.2 98.5 94.1
 CSB2 (Cost Factor: 2) 91.7 98.5 97.4 97.4 97.3 97.5
 (Cost Factor: 5) 75.2 94.2 90.6 94.0 99.1 89.2
 (Cost Factor: 9) 44.7 74.1 64.7 76.6 100 58.8
 SMOTEBoost (N=100) 94.2 99.0 98.3 96.2 93.4 99.1
 (N=300) 95.4 99.2 98.6 97.2 95.2 99.2
 (N=500) 94.1 99.0 98.3 96.4 94.0 99.0
 DataBoost-IM 95.5 99.2 98.7 97.3 95.4 99.2

Sigkdd Explorations. Volume 6, Issue 1 - Page 39

