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ABSTRACT 

Learning from imbalanced data sets, where the number of 
examples of one (majority) class is much higher than the others, 
presents an important challenge to the machine learning 
community. Traditional machine learning algorithms may be 
biased towards the majority class, thus producing poor predictive 
accuracy over the minority class. In this paper, we describe a new 
approach that combines boosting, an ensemble-based learning 
algorithm, with data generation to improve the predictive power 
of classifiers against imbalanced data sets consisting of two 
classes. In the DataBoost-IM method, hard examples from both 
the majority and minority classes are identified during execution 
of the boosting algorithm. Subsequently, the hard examples are 
used to separately generate synthetic examples for the majority 
and minority classes. The synthetic data are then added to the 
original training set, and the class distribution and the total 
weights of the different classes in the new training set are 
rebalanced. The DataBoost-IM method was evaluated, in terms of 
the F-measures, G-mean and overall accuracy, against seventeen 
highly and moderately imbalanced data sets using decision trees 
as base classifiers. Our results are promising and show that the 
DataBoost-IM method compares well in comparison with a base 
classifier, a standard benchmarking boosting algorithm and three 
advanced boosting-based algorithms for imbalanced data set. 
Results indicate that our approach does not sacrifice one class in 
favor of the other, but produces high predictions against both 
minority and majority classes.  
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1. INTRODUCTION 
The class imbalance problem corresponds to domains for which 
one class is represented by a large number of examples while the 
other is represented by only a few [1]. Many real world 
applications involve learning from imbalanced sets, such as fraud 
detection, telecommunications management, oil spill detection 
and text classification [2]. When learning from imbalanced data 
sets, machine learning algorithms tend to produce high predictive 
accuracy over the majority class, but poor predictive accuracy 
over the minority class [3].  

There have been several proposals for coping with imbalanced 
data sets [1]. Kubat et al. under-sampled examples of the majority 

class [5]; Ling and Li over-sampled examples of the minority 
class [3]; Chawla et al. over-sampled the minority class and 
under-sampled the majority class [2]; Cardie et al. weighted 
examples in an effort to bias the learning toward the minority 
class [3]; Joshi et al. evaluated boosting algorithms to classify rare 
classes [6]; and Chawla et al. combined boosting and synthetic 
data to improve the prediction of the minority class [7].  

Over the past few years, ensembles have emerged as a promising 
technique with the ability to improve the performance of weak 
classification algorithms [8, 9]. Ensembles of classifiers consist of 
a set of individually trained classifiers whose predictions are 
combined to classify new instances [8, 9]. In particular, boosting 
is an ensemble method where the performance of weak classifiers 
is improved by focusing on hard examples which are difficult to 
classify. Boosting produces a series of classifiers and the outputs 
of these classifiers are combined using weighted voting in the 
final prediction of the model [10]. In each step of the series, the 
training examples are re-weighted and selected based on the 
performance of earlier classifiers in the training series. This 
produces a set of “easy” examples with low weights and a set of 
hard ones with high weights. During each of the iterations, 
boosting attempts to produce new classifiers that are better able to 
predict examples for which the previous classifier’s performance 
is poor. This is achieved by concentrating on classifying the hard 
examples correctly. Recent studies have indicated that boosting 
algorithm is applicable to a broad spectrum of problems with great 
success [10, 11]. 

In this paper, we discuss a novel approach for learning from 
imbalanced data sets, DataBoost-IM, that combines data 
generation and boosting procedures to improve the predictive 
accuracies of both the majority and minority classes, without 
forgoing one of the two classes. That is, the aim of our approach 
is to ensure that the resultant predictive accuracies of both classes 
are high. Our approach differs from prior work in the following 
ways. Firstly, we separately identify hard examples from, and 
generate synthetic examples for, the minority as well as the 
majority classes. Secondly, we generate synthetic examples with 
bias information toward the hard examples on which the next 
component classifier in the boosting procedures needs to focus. 
That is, we provide additional knowledge for the majority as well 
as the minority classes and thus prevent boosting over-
emphasizing the hard examples. Thirdly, the class frequencies in 
the new training set are rebalanced to alleviate the learning 
algorithm’s bias toward the majority class. Rebalancing thus 
involves the utilization of a reduced number of examples from the 
majority and minority classes to ensure that both classes are 
represented during training. Fourthly, the total weights of the 
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different classes in the new training set are rebalanced to force the 
boosting algorithm to focus on not only the hard examples, but 
also the minority class examples. In this way, we focus on 
improving the predictions of both the minority and majority 
classes. 

This paper is organized as follows. Section 2 describes the 
DataBoost-IM algorithm. This is followed, in Section 3, with a 
comparative evaluation of the DataBoost-IM algorithm against 
seventeen data sets. Finally, Section 4 concludes the paper. 

 

ALGORITHM DataBoost-IM 

Input:  Sequence of m examples )y,x(),...,y,x( mm11  with 
labels }k,...,1{Yyi =∈  

  Weak learning algorithm WeakLearn 
  Integer T specifying number of iterations 

Initialize m/1)i(D1 = for all i . 

Do for  t  = 1, 2, …,  T 

1. Identify hard examples from the original data set for 

different classes 

2. Generate synthetic data to balance the training 

knowledge of different classes 

3. Add synthetic data to the original training set to form a 

new training data set 

4. Update and balance the total weights of the different 

classes in the new training data set 

5. Call WeakLearn, providing it with the new training set 

with synthetic data and rebalanced weights 

6. Get back a hypothesis YX:ht → . 

7. Calculate the error of ∑
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Figure 1: Pseudo-code of the DataBoost-IM algorithm 
    

2. DATABOOST-IM ALGORITHM 
The DataBoost-IM approach extends our earlier DataBoost 
algorithm which was successfully used to produce highly accuracy 
classifiers in balanced domains containing hard to learn examples 

[13]. In this section, we describe a variation, the DataBoost-IM 
algorithm, which is applied to imbalanced data sets. This 
approach extends the original DataBoost algorithm as follows. 
Firstly, we separately identify hard examples from and generate 
synthetic examples for different classes. Secondly, the class 
distribution and the total weights of different classes are 
rebalanced to alleviate the learning algorithms’ bias toward the 
majority class, by choosing a reduced number of representative 
(seed) examples from both classes. 

Recall that boosting involves the creation of a series of classifiers 
which aim to correctly classify hard to learn examples, through 
focusing on these hard examples during training.  Following this 
mechanism, the DataBoost-IM algorithm, as shown in Figure 1, 
consists of the following three stages. Firstly, each example of the 
original training set is assigned an equal weight. The original 
training set is used to train the first classifier of the DataBoost-IM 
ensembles. Secondly, the hard examples (so-called seed 
examples) are identified and for each of these seed examples, a set 
of synthetic examples is generated. During the third stage of the 
algorithm, the synthetic examples are added to the original 
training set and the class distribution and the total weights of 
different classes are rebalanced. The second and third stages of 
the DataBoost-IM algorithm are re-executed until reaching a user-
specified number of iterations or the current component 
classifier’s error rate is worse than a threshold value. Following 
the AdaBoostM1 ensemble method, this threshold is set to 0.5 
[8,9].  

The seed selection, data generation and re-balancing process of 
the DataBoost-IM algorithm are described next. Throughout this 
discussion, the Hepatitis data set is used as an illustrative example 
[12]. The Hepatitis data set contains 155 examples of Hepatitis 
patients, described by 19 continuous and discrete attributes. Of 
these cases, 123 corresponds to the patients who survived 
treatment (class ‘Live’) and 32 examples of mortalities (class 
‘Die’). 
 

2.1 Identify Seed Examples 
The aim of the seed selection process is to identify hard examples 
for both the majority and minority classes. These examples are 
used as input for the data generation process as discussed in 
Section 2.2.  

The seed examples are selected as follows. Firstly, the examples 
in the training set (Etrain) are sorted in descending order, based on 
their weights. The original training set Etrain contains Nmaj 
examples from the majority class and Nmin examples from the 
minority class. The number of examples that is considered to be 
hard (denoted by Ns) is calculated as (Etrain x Err), where Err is 
the error rate of the currently trained classifier. Next, the set Es, 
which contains the Ns examples with the highest weights in Etrain, 
is created. The set Es consists of two subset of examples Esmin and 
Esmaj, i.e. examples from the minority and majority classes, 
respectively. Here, Esmin and Esmaj contain Nsmin and Nsmaj 
examples, where Nsmin < Nmin and Nsmaj < Nmaj. We select a number 
of seed examples of the majority class in Esmaj by calculating ML, 
which is equal to min (Nmaj/Nmin, Nsmaj). Correspondingly, a subset 
MS of the minority class examples in Esmin, is selected as seeds, 
where MS is calculated as min ( (Nmaj x ML) / Nmin, Nsmin). These 
values of Ml and Ms were found, by inspection, to produce data 
generation set sizes which augment the original training set well. 
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The final sets of seed examples are placed in sets Emaj and Emin. 
Note that, when considering an imbalanced data set, our 
experimental results against seventeen data sets indicate that a 
very high percentage of minority class examples are hard 
examples with high weights. Due to this fact, experimental results 
show that for the seed examples, the number of higher weighted 
examples from the minority class is more. 

For example, for the illustrative Hepatitis data set, assume that, in 
the fifth iteration of the boosting, the current trained classifier’s 
error rate is 18%. The set Es will consist of the 27 examples with 
the highest weights as selected from the sorted Etrain. Of these 27 
hard examples, 2 correspond to the majority class ‘Live’, and 25 
examples are of the class ‘Die’. That is, the high occurrence of 
examples from the minority class is due to the fact that, for 
imbalanced data sets, the minority class is harder to learn.  ML is 
equal to 2, calculated as ML = min (2, 3) and Emai will thus contain 
both hard examples of the majority class ‘Live’. Ms is equal to 8 
and the set Emin will consist of the 8 highest weighted examples of 
class ‘Die’. The output of this step is shown in the Table 1. 
 

Table 1: Seed examples and their weights of the Hepatitis Data 
set 

 

2.2 Data Generation and Class Frequency 
Balancing  
The aim of the data generation process is to generate additional 
synthesis instances to add to the original training set Etrain. The 
data generation process extends our earlier work, as presented in 
[13, 17, 18], by generating data for the majority and minority 
classes separately. That is, the data generation process generates 
two sets of data. Firstly a total of ML sets of new majority class 
examples, based on each seed instance in Emaj, are generated.  For 
each attribute included in the synthetic example, a new value is 
generated based on the following constraints [13, 17, 18].  

§ For Nominal attribute, the data generation produces a total of 
Nmaj attribute values for each seed in Emaj. The values are 
chosen to reflect the distribution of values contained in the 
original training attribute with respect to the particular class. 
This is achieved by considering, for each class, the number of 
occurrences of different attribute values in the original data set. 
For example, the attribute ‘GENDER’ in the Hepatitis data set 
has a value of either ‘MALE’ or ‘FEMALE’. Assume that for 
the class ‘Live’, the number of occurrences of ‘MALE’ is 16 
and ‘FEMALE’ is 107. The data generation creates 16 

occurrences of ‘MALE’ and 107 occurrences of ‘FEMALE’. 
These 123 values are randomly assigned to the 123 examples 
created during data generation.  

§ For Continuous attribute, the data generation produces a total 
of Nmaj attribute values. The values are chosen by considering 
the range [min, max] of the original attribute values with 
respect to the seed class. Also, the distribution of original 
attribute values, in terms of the deviation and the mean, is used 
during data generation. For example, assume that, for the 
‘ALBUMIN’ attribute in the Hepatitis data set, the 123 values 
for class ‘Live’ lies between 2.1 and 6.4, and the mean and 
deviation values are 3.817 and 0.652. The data generation 
randomly generates a total of 123 values between 2.1 and 6.4, 
following a mean value of 3.817 and a deviation value of 0.652. 
Again, the 123 values are randomly assigned to the 123 
examples generated.  

Similarly, Ms different sets of new minority class examples, 
each based on a seed instance in Emin, are constructed.  These 
sets of instances are added to the original training set. 

 

Table 2: The number of synthetic examples generated and the 
number of their seeds 

 Total 
cases  

Synthetic cases 
generated 

Original 
cases 

Seeds 

Majority Class 369 246 123 2 
Minority Class 288 256 32 8 

 

For the Hepatitis example, recall from Table 1 that Emaj contains 2 
examples for the class ‘Live’ and Emin contains 8 instances for the 
class ‘Die’. Followed the above-mentioned approach, the data 
generation process generates two sets of examples for the class 
‘Live’, each set contains 123 synthetic examples for each one of 
the seeds in Emaj,. Eight sets of examples containing a total of 32 
synthetic examples of the class ‘Die’, based on the 8 seed 
examples in Emin, will also be created. A total set consisting of 246 
synthetic examples of ‘Live’ and 256 instances of ‘Die’ is thus 
newly generated, as shown in Table 2. These instances are added 
to the original training set, leading to a final training set 
containing 369 instances of the class ‘Live’ and  288 instances of 
the class ‘Die’.  

Note that a detailed description of the data generation process 
falls beyond the scope of this paper. Interested readers are referred 
to [13, 17, 18] for a description of this process and its evolution. 
 

2.3 Balancing the Training Weights 
In the final step prior to re-training, the total weights of the 
examples in the different classes are rebalanced. Recall that 
boosting aims to, during each of the iterations, produce new 
classifiers that are better able to predict examples for which the 
precious classifier’s performance is poor. This is achieved by 
concentrating on classifying the examples with high weights 
correctly. In an imbalanced data set, the difference of the total 
weights between the different classes is large. By rebalancing the 
total weights of the different classes, boosting is forced to focus 
on hard as well as rare examples. 

Recall that the data generation process generates sets of synthetic 
examples based on seed examples Emaj and Emin corresponding to 

SEED examples and their weights for the majority class (stored in Emaj ): 
          2,female,y,y,y,n,n,y,y,n,y,n,n,1,59,249,3.7,54,n,LIVE           {.98} 
          41,female,y,y,y,n,n,y,y,n,n,n,n,0.9,8,60,3.9,52,n,LIVE          {.96} 

SEED examples and their weights for the minority class (stored in Eminj ): 
         44,female,n,n,y,y,n,y,n,y,n,n,y,0.9,135,55,?,41,y,DIE             {.43} 
        43,female,y,n,y,n,n,y,n,y,y,y,n,1,100,19,3.1,42,y,DIE              {.43} 
        31,female,n,n,y,y,y,y,n,y,n,n,n,8,?,101,2.2,?,y,DIE                  {.34} 
        38,female,n,n,n,n,n,y,y,n,n,n,n,0.4,243,49,3.8,90,y,DIE           {.32} 
        46,female,y,n,y,y,y,y,n,n,n,n,y,7.6,?,42,3.3,50,y,DIE               {.32} 
        33,female,n,n,y,y,n,y,n,n,n,y,n,0.7,63,80,3,31,y,DIE                {.23} 
        37,female,y,n,y,n,n,y,n,n,y,n,n,0.6,67,28,4.2,?,n,DIE               {.23} 
       34,female,n,n,y,y,n,n,y,n,y,n,n,2.8,127,182,?,?,n,DIE               {.20} 
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the majority and minority classes. Before the generated data are 
added to the original data set, each of the synthetic examples is 
assigned an initial weight. The initial weight of each example is 
calculated by dividing the weight of the seed example by the 
number of instances generated from it. In this way, the very high 
weights associated with the hard examples are balanced out. 
Rebalancing ensures that the boosting algorithm focuses on hard 
as well as minority class examples. 

When the new training set is formed, the total weights of the 
majority class examples (denoted by Wmaj) and the minority class 
examples (denote by Wmin) in the new training data are rebalanced 
as follows. If Wmaj > Wmin, the weight of each instance in the 
minority class is multiplied by Wmaj / Wmin, Otherwise, the weight 
of each instance in the majority class is multiplied by Wmin / Wmaj. 
In this way, the total weight of the majority and minority classes 
will be balanced. Note that, prior to training, the weights of the 
new training set will be renormalized, following the AdaBoostM1 
method, so that their sum equals one [8, 9, 10].  

For the Hepatitis example, assume that seed example x in Emaj has 
a weight of 9.86 and seed example y has a weight of 9.62. This 
implies that each of the 123 synthetic examples generated based x 
is assigned a weight of 9.86/123 and those based on y are 
assigned weights of 9.62/123. Similarly, an initial weight are 
assigned to each of the synthetic examples generated based on the 
seed examples from Emin. After adding the synthetic data to the 
original data set, the new training data set contains 369 examples 
of class ‘Live’ and 288 cases of the class ‘Live’. Assume that Wmaj 
is equal to 122.51 and Wmin equals 69.83. Since Wmaj > Wmin, each 
of the 288 examples describing the minority class is multiplied by 
a constant equal to 122.51/69.83. As a result, the total weights of 
the majority and minority classes in the new training set are equal 
to 122.51, thus equally distributing the balance of the two classes. 

 

3. EXPERIMENTAL RESULTS 
This section describes the results of evaluating the performance of 
the DataBoost-IM algorithm, in comparison with the C4.5 
decision tree [20], AdaBoostM1[8, 9], DataBoost [13], AdaCost 
[21], CSB2 [22] and SMOTEBoost [7] boosting algorithms. The 
C4.5 algorithm, which has become a de facto standard against 
which new algorithms are being judged, is used as base classifier 
[23].  
 

Table 3: Confusion Matrix 

 

Traditionally, the performance of a classifier is evaluated by 
considering the overall accuracy against test cases [16]. However, 
when learning from imbalanced data sets, this measure is often not 
sufficient [16]. Following [3, 4, 5, 7], we employ the overall 
accuracy, G-Mean [5] and F-Measures [14] metrics to evaluate 
our DataBoost-IM method. The confusion matrix, as shown in 
Table 3, represents the typical metrics for evaluating the 

performance of machine learning algorithms on skew class 
problems. In Table 3, the TP Rate and FP Rate are calculated as 
TP/(FN+TP) and  FP/(FP+TN). The Precision and Recall are 
calculated as TP / (TP + FP) and TP / (TP + FN). The F-measure 
is defined as                  

)ecisionPrcallRe()ecisionPrcallRe)1(( 22 +×××+ ββ       (1)  

where ß corresponds to the relative importance of precision versus 
the recall and it is usually set to 1. The F-measure incorporates 
the recall and precision into a single number. It follows that the 
F-measure is high when both the recall and precision are high 
[6]. This implies that the F-measure is able to measure the 
“goodness” of a learning algorithm on the current class of interest. 
Note that we also use this measure for the majority class, since we 
are interested in measuring the performance of both classes. The 
ROC curve is a technique for summarizing a classifier’s 
performance over a range, by considering the tradeoffs between 
TP Rate and FP Rate [15]. Another criteria used to evaluate a 
classifier’s performance on skew data is the G-mean [4, 5, 7]. The 
G-mean is defined as 

curacyNegativeAccuracyPositiveAc ×                  (2) 

where Positive Accuracy and Negative Accuracy are calculated as 
TP/(FN+TP) and TN/(TN+FP). This measure relates to a point on 
the ROC curve and the idea is to maximize the accuracy on each 
of the two classes while keeping these accuracies balanced [5]. 
For instance, a high Positive accuracy by a low Negative 
accuracy will result in poor G-Mean [5]. 

Table 4: Summary of the data sets used in this paper. Shown are 
the number of examples in the data set; the number of minority 
class; the number of majority class; the class distribution; the 
number of continous, and the number of discrete input features.  

Data set Case Min. 
Class 

Maj. 
Class 

Class 
Dist. 

Feature 
Cont.  Disc. 

SONAR 208 97 111 0.47:0.53 60 0 
MONK2 169 64 105 0.37:0.63 0 6 
IONOSPHERE 351 126 225 0.35:0.65 34 0 
BREAST-W 699 241 458 0.34:0.66 9 0 
BREAST-CANCER 286 85 201 0.30:0.70 0 9 
PHONEME 5484 1586 3818 0.29:0.71 5 0 
VEHICLE 846 199 647 0.23:0.77 18 0 
HEPATITIS 155 32 123 0.20:0.80 6 13 
SEGMENT 2310 330 1980 0.14:0.86 19 0 
GLASS 214 29 185 0.13:0.87 9 0 
SATIMAGE 6435 626 5809 0.09:0.91 33 0 
VOWEL 990 90 900 0.09:0.91 10 3 
SICK 3772 231 3541 0.06:0.94 6 23 
ABALONE 731 42 689 0.06:0.94 7 1 
YEAST 483 20 463 0.04:0.96 8 0 
PRIMARY-TUMOR 339 14 325 0.04:0.96 0 17 
OIL 937 41 896 0.04:0.96 49 0 
 

3.1 Data Sets 
To evaluate the performance of the DataBoost-IM, we obtained 
sixteen data sets from the UCI data repository [12] as well as the 
Oil Spill data set [4, 5]. These data sets were carefully selected to 
ensure that they (a) are based on real-world problems, (b) varied 
in feature characteristics, and (c) vary extensively in size and class 
distribution. Table 4 presents the characteristics of the data sets 

 Predicted  
Negative 

Predicted Positive 

Actual Negative TN ( the number of 
True Negatives) 

FP( the number of 
False Positives) 

Actual Positive FN (the number of 
False Negatives) 

 TP( the number of 
True Positives) 

Sigkdd Explorations. Volume 6, Issue 1 - Page 33 



 

used for the experiments. Shown are the number of cases, the 
number of the majority and minority classes, the class 
distribution, and the type of the features. For the Glass, Vowel, 
Vehicle, Satimage, and Primary-tumor data sets, we increased the 
degree of skew by converting all but the smallest class into a 
single class. For the Sick data sets, we deleted the 'TBG' attribute 
due to the high number of missing values. For the Abalone and 
Yeast data sets, we respectively learned the classes ‘9’ versus ‘18’ 
in the Abalone, and  the classes ‘CYT’ versus ‘POX’ in the Yeast 
in order to present the DataBoost-IM algorithm highly imbalanced 
problems. 

3.2 Methodology and Experimental Results 
We implemented the experiments using Weka [19], a Java-based 
knowledge learning and analysis environment developed at the 
University of Waikato in New Zealand.        

Results for the above data sets, as shown in Table 5 and appendix 
A, were averaged over five standard 10-fold cross validation 
experiments. For each 10-fold cross validation the data set was 
first partitioned into 10 equal sized sets and each set was then in 
turn used as the test set while the classifier trains on the other nine 
sets. A stratified sampling technique was applied here to ensure 
that each of the sets had the same proportion of different classes. 

For each fold an ensemble of ten component classifiers was 
created. In the experiments, the C4.5 decision trees were pruned 
[20]. 

The experimental results for the eigth most highly imbalanced 
data sets, as described in Table 4, are presented in Table 5 . We 
also include the results for the nine moderately imbalanced data 
sets in Appendix A. For each data set, we present the results 
achieved when using the C4.5, AdaBoostM1, DataBoost, 
AdaCost [21], CSB2 [22], SMOTEBoost [7] and DataBoost-IM 
methods. Also, for each algorithm, the table presents the results in 
terms of the G-mean, overall accuracy rates, TP rates and F-
measures against the majority and minority classes respectively. 
Following the work of Fan et al. [21], Ting [22], and Chawla et 
al. [7], the cost-adjustment functions from the AdaCost and CSB2 
algorithms were chosen as follows: 5.0*5.0 +=− cβ  and 

5.0c*5.0 +=+β , where +β and −β are the functions for correctly 
and mislabeled labeled examples, respectively. Also, the three 
cost factors used in these two algorithms are 2, 5, and 9. The 
parameter N, which specifies the amount of synthetically 
generated examples in the SMOTEBoost was set to 100, 300 and 
500, respectively. 

Table 5: Results against eigth highly imbalanced data sets: F-measure of minority class, F-measure of majority class, overall accuracy , G-
mean, true positive rate of minority class, and true positive rate of majority class for the  data sets using (1) the C4.5 classifier (2) 
AdaBoostM1, (3) DataBoost, (4) AdaCost, (5) CSB2, (6) SMOTEBoost, and (7) DataBoost-IM ensembles. 

Data Set 
Name 

Methods F-measure of 
min. class 

F-measure of 
maj. class 

Overall 
Accuracy 

G-Mean TP rate of 
min. class 

TP rate of 
Maj. Class 

  C4.5 78.5 96.7 94.3 85.9 75.8 97.2 
  AdaBoostM1 81.3 97.0 94.8 89.4 82.7 96.7 
  DataBoost 86.2 97.8 96.3 84.3 86.2 97.8 
 AdaCost   (Cost Factor: 2) 84.4 97.3 95.3 94.3 93.1 95.7 
GLASS (Cost Factor: 5) 77.6 95.8 92.9 91.5 89.7 93.5 
  (Cost Factor: 9) 73.5 95.0 91.5 89.2 86.2 92.4 
 CSB2        (Cost Factor: 2) 76.9 95.9 55.6 90.9 88.2 93.7 
  (Cost Factor: 5) 59.3 89.2 50.0 87.4 94.1 81.3 
  (Cost Factor: 9) 36.5 65.6 38.3 68.3 95.0 49.2 
 SMOTEBoost      (N=100) 84.0 97.4 95.6 91.1 85.5 97.1 
    (N=300) 82.5 97.1 95.0 91.1 86.2 96.4 
      (N=500) 81.4 96.8 94.5 91.5 87.5 95.6 
 DataBoost-IM 89.2 98.3 97.1 92.3 86.2 98.9 
  C4.5 56.4 95.4 91.7 72.7 55.2 95.6 
  AdaBoostM1 66.7 96.7 94.1 77.0 60.7 97.7 
  DataBoost 66.3 96.7 93.9 77.3 61.3 97.5 
 AdaCost   (Cost Factor: 2) 64.9 95.8 92.4 82.3 71.6 94.7 
SATIMAGE (Cost Factor: 5) 58.6 92.9 87.8 88.1 88.5 87.8 
  (Cost Factor: 9) 51.4 89.6 82.9 87.2 93.0 81.8 
 CSB2        (Cost Factor: 2) 64.7 95.4 91.8 84.5 76.4 93.6 
  (Cost Factor: 5) 47.7 87.5 79.7 86.0 94.7 78.2 
  (Cost Factor: 9) 30.5 68.2 56.3 71.4 98.6 51.8 
 SMOTEBoost      (N=100) 64.5 96.5 93.7 75.6 58.6 97.5 
    (N=300) 65.3 96.6 93.8 76.0 59.3 97.6 
      (N=500) 65.2 96.6 93.8 76.1 59.4 97.5 
 DataBoost-IM 68.8 96.7 94.1 80.4 66.6 97.1 
 C4.5 93.7 99.3 98.8 95.8 92.2 99.5 
  AdaBoostM1 97.1 99.7 99.4 97.6 95.5 99.8 
  DataBoost 95.5 99.6 99.2 94.1 94.4 99.7 
 AdaCost   (Cost Factor: 2) 96.1 99.6 99.2 98.1 96.7 99.6 
VOWEL (Cost Factor: 5) 96.7 99.7 99.3 98.7 97.8 99.6 
  (Cost Factor: 9) 88.8 98.8 97.7 97.3 96.7 97.9 
 CSB2        (Cost Factor: 2) 96.6 99.7 79.4 99.6 100 99.3 
  (Cost Factor: 5) 78.8 97.3 95.1 96.8 98.9 94.8 
  (Cost Factor: 9) 41.3 83.5 66.7 84.6 100 71.6 
 SMOTEBoost      (N=100) 97.3 99.7 99.5 98.7 97.7 99.6 
    (N=300) 96.1 99.6 99.2 97.8 96.2 99.5 
      (N=500) 96.3 99.6 99.3 97.9 96.2 99.6 
 DataBoost-IM 98.8 99.8 99.7 99.3 98.8 99.8 
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Data Set 
Name 

Methods F-measure of 
min. class 

F-measure of 
maj. class 

Overall 
Accuracy 

G-Mean TP rate of 
min. class 

TP rate of 
Maj. Class 

  C4.5 89.1 99.3 98.7 93.0 87.0 99.4 
  AdaBoostM1 91.1 99.4 98.9 94.2 89.1 99.5 
  DataBoost 90.3 99.3 98.8 96.1 93.1 99.2 
 AdaCost   (Cost Factor: 2) 91.8 99.5 98.9 95.9 92.6 99.4 
SICK (Cost Factor: 5) 90.8 99.4 98.8 97.3 95.7 99.0 
  (Cost Factor: 9) 86.7 99.0 98.1 97.6 97.0 98.2 
 CSB2        (Cost Factor: 2) 91.1 99.4 98.8 97.3 95.7 99.1 
  (Cost Factor: 5) 73.3 97.6 95.5 97.1 99.1 95.3 
  (Cost Factor: 9) 27.1 79.0 67.4 80.4 99.1 65.3 
 SMOTEBoost      (N=100) 89.6 99.3 98.6 95.5 92.1 99.1 
    (N=300) 88.5 99.2 98.5 95.0 91.2 99.0 
      (N=500) 87.9 99.1 98.4 94.9 91.0 98.9 
 DataBoost-IM 91.8 99.4 98.9 95.9 92.6 99.4 
  C4.5 36.0 97.2 94.6 50.8 26.1 98.8 
  AdaBoostM1 41.0 96.9 94.1 59.0 35.7 97.6 
  DataBoost 39.7 96.9 94.2 32.6 33.3 97.9 
 AdaCost   (Cost Factor: 2) 29.8 95.2 90.9 56.1 33.3 94.5 
ABALONE (Cost Factor: 5) 28.8 93.3 87.8 62.3 42.9 90.6 
  (Cost Factor: 9) 26.3 90.9 83.8 65.5 50.0 85.9 
 CSB2        (Cost Factor: 2) 39.6 95.8 92.0 65.4 45.2 94.9 
  (Cost Factor: 5) 23.4 81.7 70.4 74.1 78.6 70.0 
  (Cost Factor: 9) 15.7 60.1 45.8 61.7 88.1 43.3 
 SMOTEBoost      (N=100) 37.6 96.6 93.6 56.9 33.3 97.3 
    (N=300) 39.0 96.7 93.7 58.1 34.7 97.3 
      (N=500) 37.4 96.6 93.5 56.9 33.3 97.2 
 DataBoost-IM 45.0 97.1 94.6 61.1 38.0 98.1 
  C4.5 9.5 97.9 96.0 22.3 5.0 100 
  AdaBoostM1 51.4 98.1 96.4 66.6 45.0 98.7 
  DataBoost 54.1 98.2 96.5 70.2 50.0 98.5 
 AdaCost   (Cost Factor: 2) 40.9 97.2 94.6 66.0 45.0 96.8 
YEAST (Cost Factor: 5) 47.1 97.0 94.4 75.8 60.0 95.9 
  (Cost Factor: 9) 43.8 96.0 92.5 80.9 70.0 93.5 
 CSB2        (Cost Factor: 2) 55.6 98.3 96.6 70.2 50.0 98.7 
  (Cost Factor: 5) 25.5 90.4 83.0 76.5 70.0 83.6 
  (Cost Factor: 9) 14.5 74.6 60.8 69.2 80.0 60.0 
 SMOTEBoost      (N=100) 57.6 98.5 97.1 67.5 46.0 99.3 
    (N=300) 53.0 98.2 96.5 68.0 47.0 98.7 
      (N=500) 46.7 97.6 95.5 67.7 47.0 97.6 
 DataBoost-IM 58.0 98.6 97.3 66.9 45.0 99.5 
  C4.5 0.00 97.8 95.8 0.00 0.00 100 
  AdaBoostM1 19.0 97.4 94.9 37.5 14.2 98.4 
  DataBoost 17.3 97.1 94.4 14.0 14.3 97.8 
 AdaCost   (Cost Factor: 2) 12.0 93.0 87.0 43.8 21.4 89.8 
PRIMARY- (Cost Factor: 5) 11.0 89.3 80.8 48.7 28.6 83.1 
TUMOR  (Cost Factor: 9) 14.6 88.3 79.3 58.9 42.9 80.9 
 CSB2        (Cost Factor: 2) 16.3 93.5 87.9 50.8 28.6 90.5 
  (Cost Factor: 5) 13.8 66.9 52.2 68.4 92.9 50.5 
  (Cost Factor: 9) 8.1 3.6 5.8 13.4 100 1.8 
 SMOTEBoost      (N=100) 16.4 96.8 93.9 37.3 14.2 97.4 
    (N=300) 21.4 97.0 94.3 42.3 18.5 97.6 
      (N=500) 24.3 97.1 94.5 45.7 21.4 97.6 
 DataBoost-IM 28.5 96.9 94.1 52.6 28.5 96.9 
  C4.5 37.6 97.6 95.4 55.8 31.7 98.3 
  AdaBoostM1 38.8 97.7 95.6 55.8 31.7 98.5 
  DataBoost 45.5 98.0 96.2 36.2 36.6 98.9 
 AdaCost   (Cost Factor: 2) 42.2 97.1 94.4 66.9 46.3 96.7 
OIL (Cost Factor: 5) 35.8 95.5 91.5 70.7 53.7 93.3 
  (Cost Factor: 9) 32.1 93.8 88.6 74.0 61.0 90.0 
 CSB2        (Cost Factor: 2) 50.6 97.6 95.4 72.2 53.7 97.3 
  (Cost Factor: 5) 33.3 91.9 85.4 84.2 82.9 85.6 
  (Cost Factor: 9) 20.1 81.1 69.3 77.5 87.8 68.5 
 SMOTEBoost      (N=100) 53.7 98.1 96.5 67.5 46.3 98.8 
    (N=300) 49.4 98.0 96.2 63.9 41.4 98.7 
      (N=500) 52.7 98.1 96.4 66.8 45.3 98.7 
 DataBoost-IM 55.0 98.2 96.6 67.7 46.3 98.9 

 

 

The results, as shown in Table 5 indicate that the DataBoost-IM 
algorithm performs well against highly imbalanced data sets, in 
terms of the F-measures of both the minority and majority classes. 
In many cases, our results are comparable or slightly higher than 
that produced by the other algorithms. Our approach also yields 
good results in terms of the G-mean and overall accuracy, when 
compared to the other approaches.  

 

The DataBoost-IM approach achieved promising results when 
considering the minority class F-measures. In some cases, such as 
the Yeast and Sick data sets, the value obtained is the same as, or 
slightly higher than, the best value produced by the other 
algorithms. However, for data sets such as the Abalone, Primary-
Tumor, Glass, and Satimage the minority class F-measure 
surpasses that of all the other techniques.  Also, the majority class 
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F-measure against five of the eight data sets as produced by the 
DataBoost-IM algorithm is the highest, or the same as, that 
obtained by the other algorithms. For the other three data sets, 
namely the Sick, Abalone and Primary-Tumor data sets, the 
values obtained are lower by only 0.1, 0.1 and 0.9, when 
compared to the best performing algorithm.  

Our results when comparing the DataBoost-IM method to the 
base-line C4.5 and AdaBoostM1 methods, shows that DataBoost-
IM performs well in terms of both F-Measures. In some cases 
such as the Glass, Abalone, Yeast, Primary-Tumor, and Oil spill 
data sets, there are large improvements. For example, in the Oil 
spill data set, the C4.5 and AdaBoostM1 algorithms produced 
minority class F-measures of 37.6 and 38.8, respectively. The 
DataBoost-IM approach achieved a minority class F-measure of 
55.0. In the Primary data set, the C4.5 and AdaBoostM1 
algorithms produced minority class F-measures of 0 and 19.0 
respectively, whereas the DataBoost-IM approach achieved a 
minority class F-measure of 28.5. Also, the G-mean of the 
DataBoost-IM method are, for all eight data sets, the same of 
slightly higher than that of the other two approach. Similar results 
holds for the overall accuracy, where DataBoost-IM performs 
slightly lower in only one case. 

When considering the DataBoost-IM and the original DataBoost 
approaches, the values shown in Table 5 confirm that the 
DataBoost-IM approach benefits from generating synthetic 
examples for different classes separately and rebalancing the class 
frequencies and the total weights from the different classes. The 
DataBoost-IM approach achieved higher F-measures against both 
classes, except for the Primary-Tumor data set, in which the value 
against the majority class is lower by only 0.2, and the Satimage 
data set, in which the values against the majority class were the 
same. In many cases the improvement for the minority class was 
quite significant. For example, in the Primary-Tumor data set, the 
DataBoost method produced a minority class F-measure of 17.3, 
while The DataBoost-IM approach achieved a value of 28.5. Also, 
for the highly imbalanced Oil spill and Abalone data sets, the 
improvements achieved by the DataBoost-IM method over 
DataBoost algorithm were promising, i.e. 9.5 and 5.3 respectively. 
For the G-mean and overall accuracy, the DataBoost-IM method 
consistently produced similar or higher results than that of the 
DataBoost algorithm. 

When comparing the DataBoost-IM method with the AdaCost, 
CSB2, and SMOTEBoost algorithms, the results shows that the 
DataBoost-IM method produced results which compare well, in 
terms of the G-mean, overall accuracy and F-measures. The 
DataBoost-IM method achieved similar or slightly better minority 
and majority class F-measures against the eight data sets. 
Importantly, our results indicate that our approach does not 
sacrifice one class, but produces high predictions against both. 
For example, for the Primary-Tumor data set, where the majority 
class F-measure values were lower by 0.2, when compared to the 
best values obtained by the other algorithms, the improvement of 
minority class F-measure were 4.2. Similarly, for the Abalone and 
Glass data sets, the improvements in minority class F-measures 
were 5.3 and 4.8, respectively.   

Further analysis of the moderately imbalanced data sets, as shown 
in Appendix A, shows that the DataBoost-IM approach obtained 
the highest values against six of the nine data sets in terms of the 
minority class F-measures. Also, against seven of the nine data 

sets the majority class F-measure results are slightly higher. 
However, the improvements in term of F-measures are less 
significant than those against the highly imbalanced data sets. For 
the Monk2 and Breast-Cancer data sets, the majority class F-
measures decreased by more than 40.0, when compared to the 
values obtained by the DataBoost-IM algorithm. The same results 
hold for the overall accuracy and G-mean, where DataBoost-IM 
produces comparable and slightly higher results in six of the nine 
data sets. 

In conclusion, the results, as shown in Table 5 and Appendix A, 
indicate that the results obtained by the DataBoost-IM approach 
are comparable to that of the other techniques, when evaluated in 
terms of overall accuracy, G-mean and F-measures.  In particular, 
the results against highly imbalanced data sets are promising. 
Importantly, for some highly imbalanced data sets, the DataBoost-
IM approach produces the highest results in terms of both 
minority and majority class F-measures.  Results indicate that the 
DataBoost-IM technique does not sacrifice the one class to favor 
the other. Rather, it aims at producing an ensemble which 
produces high values against both. 

ROC Curves of Hepatitis Data Set
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Figure 3: ROC Curve of the Hepatitis Data Set 
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Figure 4:  ROC Curve of ten iteration of the DataBoost-IM 
algorithm  

 

To better understand the achievements of the DataBoost-IM 
method, we also present the ROC analysis results of the Hepatitis 
data set. This data set was chosen since it contains both 
continuous and discrete features, and has a moderately imbalance 
degree and instance size. We repeated the previous experiment 
against the Hepatitis data set, using the optimal parameter values 
for all algorithms as shown in Table 5. We varied the decision 
thresholds of the C4.5 algorithm, by varying the proportion of 
instances at the leaf node of the decision tree for labeling a class, 
to obtain the ROC curve. We produced an average ROC curve, as 
shown in Figure 3, by averaging the TP and FP rates over ten runs 
[15]. Also, we drew the ROC curves of the ten iterations of the 
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DataBoost-IM algorithm as shown in Figure 4.  From the analysis 
of the ROC curves as shown in Figure 3, we conclude that the 
DataBoost-IM ensemble’s ROC curve is of a high quality. This 
result indicates that the DataBoost-IM method achieved a high 
outcome, which compares well to that of the C4.5, AdaBoostM1, 
DataBoost and SMOTEBoost algorithms over most of the 
threshold values of the ROC space. Further analysis of Figure 4 
shows us an essential fact of the DataBoost-IM approach, namely 
that each component classifier in the DataBoost-IM ensembles 
was pursuing a point with both a high TP rate and a low FP rate 
in the ROC space.  This implies that the DataBoost-IM was able 
to produce a series of high quality classifiers, and each of them 
will be better able to predict examples for which the previous 
classifier’s performance is poor. 
 

4. CONCLUSIONS 
This paper introduced a novel approach for learning from 
imbalanced data sets through combining boosting and data 
generation. In this approach, the class frequencies and the total 
weights against different the classes within the ensemble’s 
training set, which consist of both the synthesis and the original 
training data, are rebalanced during all iterations of the boosting 
algorithm. The DataBoost-IM algorithm was illustrated by means 
of seventeen data sets with various features, degrees of imbalance 
and sizes. The results obtained indicate that the DataBoost-IM 
approach performs well against imbalanced data sets. In 
particular, the DataBoost-IM algorithm achieved comparable and 
slightly better predictions, in terms of the G-mean and F-
measures metrics, against both the minority and majority classes, 
when compared with a component classifier as well as four other 
boosting algorithms. Importantly, our method does not sacrifice 
one class for the other, but produce high predictive accuracy 
against both the majority and the minority class.                 

In conclusion, these results indicate four reasons for the 
performance improvements achieved by the DataBoost-IM 
algorithm. The first is that the additional synthetic data provide 
complementary knowledge for the learning process. The second is 
that rebalancing the class frequencies alleviates the classifiers’ 
learning bias toward the majority class. The third one is that 
rebalancing the total weight distribution of different classes forces 
the boosting algorithm to focus on the hard examples as well as 
rare examples. The last one is that the synthetic data prevent 
boosting from over-emphasize the hard examples. This property is 
especially important when considering the minority class which 
contains few examples.        

Our future research will address some issues to extend the 
DataBoost-IM approach, including further investigating the 
optimal number of new seed examples to generate, experimenting 
with other component classifiers and considering the performance 
against noisy data. Also, other weight-assignment methods will be 
further investigated. Future work will also include studying the 
voting mechanism of the boosting algorithm using different 
metrics such as the ROC curve. Although the DataBoost-IM and 
the experiments addressed only two-class problems, we believe 
that a similar approach can be used in the frame of multi-class 
learning problems. This will be further investigated. 
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APPENDIX A 
 

Experimental results against nine moderately imbalanced data sets:  F-measure of minority class, F-measure of majority class, 
overall accuracy , G-mean, true positive rate of minority class, and true positive rate of majority class for the  data sets using (1) 
C4.5,  (2) AdaBoostM1 ensembles, (3) DataBoost, (4) AdaCost, (5) CSB2, (6) SMOTEBoost, and (7) DataBoost-IM ensembles. 
 

Data Set 
Name 

Methods F-measure of 
min. class 

F-measure of 
maj. class 

Overall 
Accuracy 

G-Mean TP rate of 
min. class 

TP rate of 
Maj. Class 

  C4.5 71.6 73.4 72.5 72.6 74.2 71.1 
  AdaBoostM1 81.2 83.9 82.6 82.5 80.4 84.6 
  DataBoost 81.4 83.8 82.7 68.2 81.4 83.8 
 AdaCost   (Cost Factor: 2) 73.7 71.4 72.5 72.6 82.5 64.0 
SONAR (Cost Factor: 5) 76.5 67.1 72.5 70.8 95.9 52.3 
  (Cost Factor: 9) 72.7 52.6 65.3 59.7 99.0 36.0 
 CSB2        (Cost Factor: 2) 79.7 73.3 76.9 75.9 96.9 59.5 
  (Cost Factor: 5) 67.1 25.2 54.3 37.9 100 14.4 
  (Cost Factor: 9) 64.2 5.3 48.0 16.4 100 2.7 
 SMOTEBoost      (N=100) 78.6 79.9 79.3 79.3 81.6 77.2 
    (N=300) 76.9 80.4 78.8 78.5 75.6 81.6 
      (N=500) 75.8 79.2 77.6 77.4 75.2 79.8 
  DataBoost-IM 82.1 84..9 83.6 83.3 80.4 86.4 
  C4.5 29.2 74.6 62.7 42.4 20.3 88.5 
  AdaBoostM1 45.9 69.4 60.9 55.9 43.7 71.4 
  DataBoost 41.0 68.8 59.2 27.1 37.5 72.4 
 AdaCost   (Cost Factor: 2) 53.8 35.5 46.1 44.3 82.8 23.8 
MONK2 (Cost Factor: 5) 54.7 12.7 40.3 25.8 95.1 7.0 
  (Cost Factor: 9) 54.9 0 37.8 0.0 100 0 
 CSB2        (Cost Factor: 2) 56.2 28.1 45.5 39.7 92.2 17.1 
  (Cost Factor: 5) 54.9 0 37.8 0.0 100 0 
  (Cost Factor: 9) 54.9 0 37.8 0.0 100 0 
 SMOTEBoost      (N=100) 46.8 62.4 55.9 54.9 51.2 58.8 
    (N=300) 54.3 60.2 57.5 58.8 66.8 51.8 
      (N=500) 53.8 57.6 55.8 57.3 68.1 48.3 
  DataBoost-IM 52.7 70.8 63.9 61.1 53.1 70.4 
  C4.5 83.3 91.3 88.6 86.2 79.3 93.7 
  AdaBoostM1 87.2 93.5 91.4 88.9 81.7 96.8 
  DataBoost 89.3 94.3 92.6 82.8 86.0 96.3 
 AdaCost   (Cost Factor: 2) 88.4 93.6 91.7 90.6 87.3 94.2 
Ionosphere (Cost Factor: 5) 84.7 90.2 88.0 88.8 92.1 85.8 
  (Cost Factor: 9) 79.6 84.9 82.6 84.7 94.4 76.0 
 CSB2        (Cost Factor: 2) 89.7 93.6 82.9 93.0 96.5 89.7 
  (Cost Factor: 5) 68.9 67.1 61.2 70.8 99.1 50.7 
  (Cost Factor: 9) 54.3 12.0 35.8 25.3 100 6.4 
 SMOTEBoost      (N=100) 90.2 94.7 93.1 92.0 88.4 95.8 
    (N=300) 89.4 94.4 92.7 91.2 86.5 96.1 
      (N=500) 88.6 94.0 92.1 90.5 85.3 96.0 
  DataBoost-IM 91.2 95.4 94.0 92.3 87.3 97.7 
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Data Set 
Name 

Methods F-measure of 
min. class 

F-measure of 
maj. class 

Overall 
Accuracy 

G-Mean TP rate of 
min. class 

TP rate of 
Maj. Class 

  C4.5 92.4 95.9 94.7 94.3 93.3 95.4 
  AdaBoostM1 93.9 96.8 95.8 95.4 94.1 96.7 
  DataBoost 93.7 96.7 95.6 90.8 94.2 96.4 
 AdaCost   (Cost Factor: 2) 93.2 96.2 95.1 95.4 96.7 94.3 
BREAST-W (Cost Factor: 5) 93.5 96.3 95.2 96.0 98.8 93.4 
  (Cost Factor: 9) 92.2 95.5 94.2 95.2 98.8 91.9 
 CSB2       (Cost Factor: 2) 93.6 96.4 95.4 95.7 96.7 94.8 
  (Cost Factor: 5) 87.9 92.3 90.5 92.4 99.6 85.8 
  (Cost Factor: 9) 68.3 67.6 67.9 71.4 100 51.1 
 SMOTEBoost      (N=100) 94.1 96.8 95.9 95.8 95.6 96.1 
    (N=300) 94.3 96.9 96.0 95.9 95.6 96.1 
      (N=500) 94.5 97.0 96.1 96.2 96.3 96.0 
  DataBoost-IM 95.2 97.4 96.7 96.4 95.4 97.3 
  C4.5 39.3 84.3 75.1 50.8 27.0 95.5 
  AdaBoostM1 44.0 74.9 65.3 58.1 45.8 73.6 
  DataBoost 40.2 75.9 65.7 29.9 38.8 77.1 
 AdaCost   (Cost Factor: 2) 46.5 56.1 51.7 55.6 70.6 43.8 
BREAST- (Cost Factor: 5) 47.3 12.0 34.0 24.7 93.0 6.6 
CANCER  (Cost Factor: 9) 46.1 0 29.9 0.00 100 0 
 CSB2        (Cost Factor: 2) 42.4 41.5 41.9 45.9 71.8 29.4 
  (Cost Factor: 5) 45.8 0 29.7 0.00 100 0 
  (Cost Factor: 9) 45.8 0 29.7 0.00 100 0 
 SMOTEBoost      (N=100) 44.9 75.6 66.2 58.8 46.3 74.6 
    (N=300) 45.9 73.9 64.8 59.7 50.3 70.9 
      (N=500) 46.1 72.8 63.9 59.8 52.0 68.9 
  DataBoost-IM 46.5 77.0 67.8 60.0 47.0 76.6 
  C4.5 77.2 90.0 86.1 84.2 79.8 88.7 
  AdaBoostM1 81.8 92.6 89.4 86.7 80.8 93.0 
  DataBoost 81.8 92.7 89.6 74.9 80.1 93.5 
 AdaCost   (Cost Factor: 2) 78.8 88.9 85.4 87.3 92.3 82.6 
PHONEME (Cost Factor: 5) 71.9 81.5 77.7 82.2 97.3 69.6 
  (Cost Factor: 9) 67.2 75.3 71.7 77.3 98.4 60.8 
 CSB2        (Cost Factor: 2) 80.4 89.8 86.6 88.4 93.4 83.8 
  (Cost Factor: 5) 58.0 57.4 57.7 63.4 99.5 40.4 
  (Cost Factor: 9) 46.2 6.0 31.5 17.6 100 3.1 
 SMOTEBoost      (N=100) 82.4 92.4 89.4 87.8 84.3 91.5 
    (N=300) 80.5 91.3 88.0 86.9 84.4 89.4 
      (N=500) 79.8 90.9 87.5 86.4 84.0 89.0 
  DataBoost-IM 83.8 93.2 90.5 88.4 83.7 93.3 
  C4.5 87.9 96.1 94.2 92.5 89.4 95.6 
  AdaBoostM1 92.5 97.6 96.4 95.5 93.9 97.2 
  DataBoost 91.6 97.5 96.1 88.8 91.0 97.7 
 AdaCost   (Cost Factor: 2) 88.3 96.2 94.2 93.8 93.0 94.6 
VEHICLE (Cost Factor: 5) 86.2 95.0 92.6 94.3 97.5 91.2 
  (Cost Factor: 9) 85.1 94.4 91.8 94.1 99.0 89.6 
 CSB2        (Cost Factor: 2) 90.5 96.7 95.1 96.1 98.0 94.3 
  (Cost Factor: 5) 73.1 87.3 82.7 87.8 99.5 77.6 
  (Cost Factor: 9) 45.0 39.7 42.4 49.7 100 24.7 
 SMOTEBoost      (N=100) 92.4 97.6 96.4 95.3 93.4 97.3 
    (N=300) 92.1 97.5 96.2 95.5 94.3 96.8 
      (N=500) 91.0 97.1 95.6 95.1 94.1 96.1 
  DataBoost-IM 93.7 98.0 97.0 95.7 93.4 98.1 
  C4.5 42.1 86.9 78.7 57.9 37.5 89.4 
  AdaBoostM1 52.4 88.3 81.2 66.8 50.0 89.4 
  DataBoost 58.3 89.2 83.9 50.0 54.7 91.5 
 AdaCost   (Cost Factor: 2) 59.5 87.3 80.6 75.8 68.8 83.7 
HEPATITIS (Cost Factor: 5) 50.9 73.0 65.1 72.0 87.5 59.3 
  (Cost Factor: 9) 48.8 66.3 59.3 68.7 93.8 50.4 
 CSB2        (Cost Factor: 2) 63.4 86.8 80.6 80.9 81.3 80.5 
  (Cost Factor: 5) 42.3 51.2 47.0 57.3 93.8 35.0 
  (Cost Factor: 9) 36.0 13.6 26.4 27.0 100 7.3 
 SMOTEBoost      (N=100) 58.9 89.3 83.0 72.6 59.3 89.2 
    (N=300) 59.2 88.4 82.0 74.0 63.1 86.9 
      (N=500) 58.4 87.8 81.1 74.1 64.3 85.5 
 DataBoost-IM 62.6 89.7 83.8 76.2 65.6 88.6 
  C4.5 87.2 97.8 96.3 92.2 86.9 97.9 
  AdaBoostM1 93.5 98.9 98.1 95.9 93.0 99.0 
  DataBoost 93.9 99.0 98.3 92.5 93.3 99.1 
 AdaCost   (Cost Factor: 2) 90.7 98.4 97.2 96.0 94.5 97.7 
SEGMENT (Cost Factor: 5) 86.4 97.4 95.6 96.1 96.7 95.5 
  (Cost Factor: 9) 84.3 96.9 94.7 96.2 98.5 94.1 
 CSB2        (Cost Factor: 2) 91.7 98.5 97.4 97.4 97.3 97.5 
  (Cost Factor: 5) 75.2 94.2 90.6 94.0 99.1 89.2 
  (Cost Factor: 9) 44.7 74.1 64.7 76.6 100 58.8 
 SMOTEBoost      (N=100) 94.2 99.0 98.3 96.2 93.4 99.1 
    (N=300) 95.4 99.2 98.6 97.2 95.2 99.2 
      (N=500) 94.1 99.0 98.3 96.4 94.0 99.0 
 DataBoost-IM 95.5 99.2 98.7 97.3 95.4 99.2 
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