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Minimal Consistent Set (MCS) Identification for 
Optimal Nearest Neighbor Decision Systems Design 

Belur V. Dasarathy 

Abstruct-A new approach is presented in this study for tackling the 
problem of high computational demands of nearest neighbor (NN) based 
decision systems. The approach, based on the concept of an optimal 
subset selection from a given training data set, derives a consistent subset 
which is aimed to be minimal in size. This minimal consistent subset 
(MCS) selection, in contrast to most of the other previous attempts of 
this nature, leads to an unique solution irrespective of the initial order 
of presentation of the data. Further, consistency property is assured at 
every iteration. Also, unlike under most prior approaches, the samples 
are selected here in the order of significance of their contribution for 
enabling the consistency property. This provides insight into the relative 
significance of the samples in the training set. Experimental results based 
on a number of independent training and test data sets are presented 
and discussed to illustrate the methodology and bring to focus its benefits. 
These results show that the nearest neighbor decision system performance 
suffers little degradation when the given large training set is replaced 
by its much smaller MCS in the operational phase of testing with an 
independent test set. A direct experimental comparison with a prior 
approach is also furnished to further strengthen the case for the new 
methodology. 

I. PRIOR DEVELOPMENTS 

Nearest Neighbor (NN) based decision systems, in  the context of 
decision problems such as pattem classification, have been studied 
at length [ l ]  over the past four decades. The main limitation on 
their usage in practice has been their computational demands in the 
operational phase. One of the concepts popularly advocated over the 
years to address this problem of high computational demands has 
been the selection of a representative subset of the training data so 
as to reduce the number of feature space distance computations in 
the operational phase. The other avenue explored in this context has 
been that of structuring the nearest neighbor search process so as to 
minimize the computational efforts. This is a purely computational 
strategy issue and involves no basic pattern recognition concepts. 
Both these have been discussed at length in the recent book on 
nearest neighbor techniques [ 11. 

The first avenue, namely, selection of a design subset of prototypes 
from a given set of training data samples, has been addressed in 
the literature with varying degrees of success [1]-[15] from two 
different objectives. The first objective is of course the computational 
efficiency of the operational phase. The second one is that of 
editing the training sample set to make the resulting classification 
more reliable. The study reported here is mainly driven by the first 
objective while ensuring that the classification does not become less 
reliable during this process. Accordingly, this introductory review 
of earlier studies is limited to those with similar computational 
demand minimization objectives. The very first study of this kind 
was probably that of Hart [2] who in 1968, presented the “Con- 
densed Nearest Neighbor Rule.” In spite of the title, the study 
did not truly offer a new classification rule, but only a method 
of condensing or reducing the given training sample set into a 
smaller subset to be used with the classical NN rule. The study 
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aims to preserve the integrity of the process by ensuring that the 
condensed set is consistent with the original set, i.e., all the original 
samples are correctly classified by the condensed set under the NN 
rule. 

The method attempts to derive a minimal consistent subset without 
an exhaustive search. But, as admitted by the author, this goal of min- 
imal subset is not realized. However, the exhaustive testing process 
ensures that the subset is indeed consistent. The method defines 
an initial condensed subset with a randomly picked representative 
prototype from each class. Using this subset, all the given samples 
are classified in an arbitrary order using the NN rule adding the 
misclassified samples onto the condensed subset. The process is 
repeated to ensure consistency and is continued till no more additions 
occur in a complete cycle. The method ensures consistency but not 
minimality of the condensed subset. In theory, it is possible here to 
end up with the original training set in its entirety. In practice, such 
a trivial result is unlikely and some savings in computations in the 
classification phase is indeed achievable. But, the method is very 
sensitive to the initial ordering of the input data. 

In 1972, Swonger [3] presented the Iterative Condensation Algo- 
rithm (ICA). This approach, unlike the previous one (21, permitted 
both addition and deletion of samples to and from the condensed 
subset. The other advantages of the method are the accommodation 
of outliers or wrongly labeled samples, tolerance to identical valued 
samples with multiple labels, and convergence of the scheme, which 
permits early manual termination of the process prior to its automatic 
ending. 

The “Reduced Nearest Neighbor Rule” of Gates [4], also presented 
in 1972, takes an opposite track to the CNN approach [2]. Instead 
of growing the condensed set from a null set [ 2 ] ,  the reduced set is 
derived by iteratively contracting the given set. This is accomplished 
by retaining only those samples whose deletion would affect the 
correct classification of the remaining samples. This is again an 
iterative process since the processing of later samples affect earlier 
results. This iterative process has to provide for the possibility 
of reinsertion of dropped samples and has to be continued till 
stability is attained. Here, RNN set is always a subset of CNN 
set. Thus, if CNN does not contain the minimal consistent subset, 
then RNN also cannot contain such a minimal consistent subset. If 
however, CNN includes the minimal consistent subset, then RNN 
does result in the minimal consistent subset. The preprocessing costs 
for RNN implementation is far higher than that for the CNN. But 
the resultant RNN subset is always smaller than the CNN subset 
and hence in the operational phase, the RNN based classification 
system tends to be computationally more efficient than the CNN 
based one. 

In 1974, Ullmann [5]  presented two more methods which are 
essentially variations of the CNN rule [2]. The first method adds 
a dead zone to the minimum distance check during the process of 
identifying the condensed neighbor set. Whenever this dead zone is 
zero, this method effectively reduces to the CNN rule [2]. The second 
one, like the RNN approach [4], attempts to eliminate samples that 
are very far from the other classes, i.e., interior samples of the classes, 
by testing the samples in the order of increasing distances from all 
the other classes. 

Also, in 1974, Chang [6] approached the problem of design data 
set reduction by viewing it as a problem of creating a customized 
design set rather than as one of just selecting a subset of the given 
set. The samples in his condensed set were therefore not directly 
identifiable members of the original set. Instead, the new pseudo- 
sample prototypes were generated by a process of merging nearest 
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TABLE I 
A DESCRIFTION OF THE TEST DATA SETS 

Data Set Number of Number of Total No. Class No. Number of 
No. Classes Features of Samples Samples 

1 2 4 500 1 250 
2 250 

2 2 4 500 1 250 
2 250 

3 3 4 150 1 50 
2 50 

4 3 6 87 1 40 
2 34 
3 13 

5 4 4 80 1 20 
2 20 
3 20 
4 20 

neighbors of the same class as long as such merger did not increase 
the error rate. This approach, tends to decrease the size of the training 
set to a much greater extent than the other approaches considered 
hitherto. Ritter et nl. [7] proposed in 1975 another method of selecting 
a subset of training samples aimed at satisfying the three criteria: i) 
consistency, ii) nearness to its own class sample than to any other, 
and iii) minimal of all solutions satisfying the previous two criteria. 
This method is more complex because of the need to satisfy these 
three criteria simultaneously. 

Tomek [8], again in 1976, proposed two more modifications to the 
CNN approach [2]. The idea behind these is to explicitly aim at the 
retention of boundary samples by identifying the nearest neighbor 
of samples from the other classes. Ichino [9], in 1979, put forth a 
nonparametric multiclass pattern classifier involving generation of 
class regions. This is viewed as a training set reduction process and 
as such he compares his results with those obtained for CNN rule. 
In 1979, Gowda and Krishna [lo] applied the concept of mutual 
neighborhood value (MNV), to the CNN approach. The MNV concept 
provides a measure of mutual nearness between NN pairs. In 1984, 
Fukunaga and Mantock [ l l ]  proposed a scheme for selecting a 
subset of representative samples from a given data set based on NN 
density estimates but made no reference to the earlier studies in this 
area. 

Here, in this study, the emphasis is on the first perspective, namely, 
the minimization of computational loads. The main underlying con- 
cept of the new approach is that of the Nearest Unlike Neighbor 
Subset (NUNS) introduced recently [l] as a critical descriptor of 
training data sets for the NN based decision system. The details of the 
Minimal Consistent Subset (MCS) methodology and its development 
from the NUNS concept are presented in Section I1 followed by the 
algorithmic procedure in Section 111. A description of the test data 
sets is given in Section IV. This is followed by the presentation and 
discussion of test results in Section V. The scope for extension to 
the domain of k-NN rules is discussed briefly in Section VI. The last 
section presents some concluding comments. 

11. MCS METHODOLOGY 
As stated in the previous section, MCS selection is based on the 

concept of NUNS, the Nearest Unlike Neighbor Subset [ 11, which can 
be looked upon as an optimal descriptor of the inter-class boundaries. 
The NUN subset is defined as the unique set of all samples which 
are the nearest unlike neighbors of one or more of the given samples. 
The properties of NUN set and other related topics are covered in [l]. 
Based on this concept, we can see that for every given sample, the 

TABLE 11-A 
RESULTS OF MCS SELECTION FOR DATA SET No. 1 UNDER C~SSBOARD M!mac 

Iteration Number Number of Samples Selected 
Class 1 Class 2 Total 

11  (2.2 %) 1 7 4 
2 6 4 10 (2.0 9%) 

TABLE JI-B 
RESULTS OF MCS SELECTION FOR DATA SET No. 1 UNDER CTY-BLOCK METRIC 

Iteration Number Number of Samples Selected 
Class 1 Class 2 Total 

10 (2.0 %) 1 5 5 
2 3 3 6 (1.2 ?4) 

TABLE 11-C 
RESULTS OF MCS SELECTION FOR DATA SET No. 1 UNDER EUCLDEAN METRIC 

Iteration Number Number of Samples Selected 
Class 1 Class 2 Total 

1 6 4 10 (2.0 %) 
2 5 4 9 (1.8 %) 

sufficient condition for its correct classification, i.e., for consistency, 
is the presence within MCS a sample from its own class that is closer 
than its NUN (nearest unlike neighbor). Obviously, many samples 
independently satisfy this sufficiency condition for each given sample 
under consideration. This can be looked upon as a vote of confidence 
cast by the given sample and received by such closer-than-NUN 
samples. The sample with the most such votes, i.e., the sample 
that satisfies the consistency conditions for most number of samples, 
therefore represents the prime candidate for inclusion in MCS. Once 
this is picked, all the samples which were the voters contributing 
to the selection of the candidate for MCS can be disregarded from 
further consideration (a typical post-election phenomenon) and the 
vote counts of other candidates are reduced to reflect this. The 
candidate with the maximum votes after this update becomes the 
next most effective MCS sample. This process is repeated till all 
the voters have been taken into account, Le., till full consistency is 
achieved. It is of course possible that in some cases the samples may 
have only one vote, Le., of itself. In such cases, these automatically 
become MCS candidates. It is also possible that the voters to another 
sample may themselves become candidates for MCS. 

Once a candidate MCS set (based on the NUN distances computed 
over the entire set) has been identified, it is necessary to reexamine 
the problem as the effective NUN distances are now likely to be 
larger than before as some NUNS are no longer in the subset under 
consideration. Thus there is now scope for reducing the candidate 
MCS further. However, for the process to be monotonically reducing 
(Le., we should not bring in new samples which were not required in 
the previous iteration) we have to ensure that the candidate list will 
only include samples (other than the last MCS candidates) that will 
not create any new inconsistencies (see step 5 under the algorithmic 
procedure). This process is thus repeated until the set size can no 
longer be reduced. The method, unlike most previous methods, is 
insensitive to the initial order of the data since the initial selection 
of the samples to the candidate set is not random. Instead, there is 
a sound conceptual basis for the selection process. This also assures 
consistency at every iteration. This in essence represents the core of 
the advancements made by this method over earlier attempts. Also, 
since the candidates to MCS are selected on the basis of the extent 
of their contribution to the overall consistency property, it provides 
insight into the relative significance of the samples within the input 
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TABLE 111-A TABLE IV-A 
RESULTS OF MCS SELECTION FOR DATA SET NO. 2 UNDER CHESSBOARD METRIC RESULTS OF MCS SELECTION FOR DATA SET NO. 3 UNDER CHESSBOARD METRIC 

Iteration Number Number of Samples Selected Iteration Number of Samples Selected 
Class 1 Class 2 Total Number Class 1 Class 2 Class 3 Total 

1 58 57 115 (23.0 %) 1 1 10 9 20 (13.3 %#) 
2 49 54 103 (20.6 %) 1 1 9 9 19 (12.7 %) 
3 48 52 100 (20.0 %) 

TABLE 111-9 
RESULTS OF MCS SELECTION FOR DATA SET NO. 2 UNDER CITY-BLOCK METRIC 

Iteration Number Number of Samples Selected 
Class I Class 2 Total 

1 53 51 110 (22.0 9%) 

TABLE IV-B 
RESULTS OF MCS SELECTION FOR DATA SET No. 3 UNDER CITY-BLOCK METRIC 

Number of Samples Selected Iteration 
Number Class 1 Class 2 Class 3 Total 

1 1 8 9 18 (12.0 %#) 
17 (11.3 %) 2 1 8 8 

2 50 54 104 (20.8 56) 
3 49 54 103 (20.6 %#) 

lo2 (20'4 %I) 
4 49 53 TABLE IV-C 

RESULTS OF MCS SELECTION FOR DATA SET NO. 3 UNDER EUCLIDEAN METRIC 

Iteration Number of Samples Selected 
TABLE 111-C Number Class 1 Class 2 Class 3 Total 

16 (10.7 %) 
15 (10.0 %) 

RESULTS OF MCS SELECTION FOR DATA SET NO. 2 UNDER EUCLIDEAN METRIC 1 1 6 9 
Iteration Number Number of Samples Selected 2 1 6 8 

Class 1 Class 2 Total 
1 51 55 112 (22.4 %I) 
2 49 50 99 (19.8 %) Step 7 Delete these voters from all the voter lists wherein they 
3 49 49 98 (19.6 %) currently appear and correspondingly decrement the ap- 

propriate vote counts. 
Step 8 Repeat Step 6 and Step 7 till all the voters have been 

accounted for by the selected consistent set. 
Step 9 NOW with this selected consistent set, the NUN distances 

of the input samples are likely to be greater than before 
as some of the original NUN samples may no longer be 

training set. The methodology as outlined here is currently applicable 
to the single k-" rule scenario. However, conceptually this can be 
extended to other scenarios, such as k-NN rules, as well, as discussed 
in a later section. 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

111. ALGORITHMIC PROCEDURE 

Define an initial consistent set to be the given training 
data set, since the given set is by definition consistent with 
itself. 
For a specific sample in the given training data set, deter- 
mine the nearest sample distance among all the samples 
from all classes other than its own in the consistent set, 
Le., identify and store the Nearest Unlike Neighbor (NUN) 
distance of the sample from the consistent set. 
For this same sample, Identify all the neighboring samples 
from its own class in the given data set which are closer 
than this NUN distance and cast an approval vote to 
each of these samples in the given set by incrementing 
the corresponding vote registers, while noting this voter's 
(sample) identity by updating the corresponding voter lists. 
Repeat Step 2 and 3 for all samples in the given training 
set, which results in a list of the number of votes received 
by each sample in the given set along with the records of 
identity of its voters. 
Create a potential candidate consistent set consisting of 
all samples in the given set which are either (a) already 
present in the current consistent set or (b) whose inclusion 
will not create an inconsistency; i.e., the sample should 
not be nearer to any member of any other class than that 
member's current NUN distance. In the first iteration, the 
entire consistent set (i.e., the given set) remains as the 
candidate consistent set as all samples satisfy condition 

in the selected consistent set. Accordingly, repeat Step 2 
using this selected consistent set to determine the NUN 
distance thresholds for each sample in the given set. 

Step 10 Repeat Step 3 through 8 using all the samples in the 
given set to identify a new consistent set. This process of 
recursive application of step 2 through 8 is continued 
till the selected set is no longer getting smaller. It is 
easy to see that under this procedure this final subset 
remains consistent, i.e., is able to classify all samples in 
the original set correctly. 

Iv. TEST DATA SET DESCRIPTION 

As shown in Table I, five independent data sets were used to test 
the new methodology. The selection was motivated by the desirability 
to have broad spectrum of variations in all the different parameters 
of relevance such as number of classes, number of features, and 
number of samples. The first is a two-class, four-dimensional data 
set consisting of 2.50 samples from each of the two well-separated 
classes. The second set is also of similar size and dimensionality 
but with more overlap between the classes. These two data sets were 
generated in-house under some discrimination simulation studies. The 
third one is the now famous Iris data set [12] consisting of three 
classes each with SO four-dimensional samples. The fourth one is 
a three class, six-dimensional Fossil data set [12] with 87 samples 
in total. The fifth one is a real world textural feature data set [13] 
extracted from cell imagery data. The spectrum of data sets used 
in the experiments help in assessing the possible effects of data 
dimensionality, multi-class effects and such other factors. 

V. EXPERIMENTAL RESULTS 
( 4 .  
Identify the most voted sample in this candidate consistent 
list and designate it as a member of a newly selected 
consistent set and identify all of its contributing voters. 

The results corresponding to these five data sets are shown in the 
set of Tables 11-A, B, and C through VI-A, B, and C. Three alternative 
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TABLE V-A 
RESULTS OF MCS SELECTION FOR DATA SET NO. 4 UNDER CHESSBOARD METRIC 

Iteration Number of Samules Selected 
Number Class 1 Class 2 Class 3 Total 

1 6 1 6 13 (14.9%) 
2 5 1 5 11(12.6%) 

TABLE V-B 
RESULTS OF MCS SELECTION FOR DATA SET NO. 4 UNDER CITY-BLOCK METRIC 

Iteration Number of Samples Selected 
Number Class 1 Class 2 Class 3 Total 

1 2 2 2 6 (6.9%) 
2 2 1 1 4 (4.6%) 

TABLE V-C 
RESULTS OF MCS SELECTION FOR DATA SET NO. 4 UNDER EUCLIDEAN METRIC 

Iteration Number of Samples Selected 
Number Class 1 Class 2 Class 3 Total 

1 3 2 4 9(10.3%) 
2 2 1 2 5(5.7%) 

distance metrics, the chessboard [14], city-block, and Euclidean, were 
employed to evaluate the sensitivity of the approach to the type metric 
used. Table parts -A, -B, and -C, respectively, present the results 
corresponding to these three metrics. 

In the first data set (Tables 11-A, B, and C), the application of 
the MCS selection technique resulted in minimal consistent subsets 
of 10, 6, and 9 samples respectively under the three metrics. This 
corresponds to no more than 2% of the input set and thus represents 
an impressive computational demand optimization. In the second 
case (Tables 111-A, B, and C), the resulting subset was much larger 
and consisted of 100, 102, and 98 samples under the three metrics 
respectively, Le., about 20% of the original set. For the Iris data set 
(Tables IV-A, B, and C), the results were in between with 19, 17, and 
15 samples being chosen for MCS under the three metrics, Le., about 
10-12% of the original data set. For the Fossil data set (Tables V-A, 
B, and C), the resulting MCS size was 11, 4, and 5 respectively for 
the three metrics. This is once again an example of a very significant 
computational demand minimization. For the image textural data set 
, the resulting MCS size was of the order of 8 to 12%, showing 
that even with the increase in the number of classes, the reduction in 
sample set size was still significant. 

These results indicate that the method is not very sensitive to 
the specific metric chosen, although in some cases the chessboard 
metric tends to result in less minimization. This is mainly because 
the chessboard metric effectively represents a single feature at a 
time and hence the class overlap can be considerably higher under 
this metric. Under all the three metrics, most of the reduction is 
achieved at the very first iteration and since consistency is guaranteed 
at each iteration, one could halt the process after the first iteration 
for all practical purposes. Also, the reduction in set size is more 
or less equal across the classes for each of these data sets, except 
for class 1 in the case of the Iris data set. This is because class 1 
of Iris data set is significantly farther from the other two classes, 
which are. closer to each other and hence require more number of 
representative samples to achieve consistency. From the view point 
of the computational demands, it is interesting to determine how much 
loss in the consistency property results from an incomplete set. Fig. 
1 shows the variation in the extent of consistency achieved by the 
selected subset as a function of the size of the selected subset for 
the data set 1 under the Euclidean norm. As is to be expected from 

TABLE VI-A 
RESULTS OF MCS SELECTION FOR DATA SET NO. 5 UNDER CHEsSBOARD METRIC 

Iteration Number of Samples Selected 
Number Class 1 Class 2 Class 3 Class 4 Total 

1 4 4 3 1 12 (15.0%) 
2 3 3 2 1 9 (11.3%) 

TABLE VI-B 
RESULTS OF MCS SELECTION FOR DATA SET NO. 5 UNDER CITYBLOCK METRIC 

Iteration Number of Samples Selected 
Number Class 1 Class 2 Class 3 Class 4 Total 

1 3 3 1 1 8(10.0%) 
2 3 2 1 1 7 (8.8%) 

TABLE VI-C 
RESULTS OF MCS SELECTION FOR DATA SET No. 5 UNDER EUCLIDEAN METRIC 

Iteration Number of Samples Selected 
Number Class 1 Class 2 Class 3 Class 4 Total 

1 3 3 1 1 8(10.0%) 
2 2 3 1 1 7 (8.8 %) 
3 2 2 1 1 6 ( 7.5%) 
4 2 2 1 1 6 (7 .5  %) 
5 2 2 1 1 6 ( 7.5 %) 

0.0 0.5 1 .a 1.5 r.a 
Percentage of Samples S e l d  

Fig. 1 Consistency vs. percentage of samples selected for data set no. 1 .  

the logic underlying the selection process, the contribution of the 
selected samples to the overall consistency property monotonically 
decreases with the initial sample offering the most. As such the total 
consistency offered by the subset increases faster initially but slows 
down gradually until hundred percent consistency is achieved. This 
is further confirmed by the results shown in Figs. 2 through 5 for the 
other four data sets under the Euclidean norm. Except for data set 
no. 2, close to 100% consistency is achieved in all cases with a very 
small percentage of samples. Results are more or less similar under 
the chessboard and city-block distance metrics also. 

While consistency is a measure of performance relative to the 
training set, a true test of the subset selection process would be 
to determine its effect on the classification of a separate test data 
set. This can be done by comparing the classification performances 
obtained on an independent test data set using the original training set 
and the selected subset. Such a test was carried out using the same 
five data sets by dividing them into two equal halves, with one half 
serving as training set and the other as test set and later switching 
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Percentage of Samples Selected Percentage of Samples Selected 

Consistency vs. percentage of samples selected for data set no. 2. Fig. 5. Consistency vs. percentage of samples selected for data set no. 5.  

TABLE VII-A 
FULL SET AND MCS BASED CLASSIFICATION RESULTS USING DATA SET No. 1 

Test Set Full Set MCS 
(Training Set) size Efficienc y Size Efficiency 

2 (1) 250 100.0 4 97.20 
1 ( 2 )  250 100.0 5 100.00 

TABLE VII-B 
FULL SET AND MCS BASED CLASSIFICATION RESULTS USING DATA SET No. 2 

Test Set Full Set MCS 
(Training Set) Size Efficiency Size Efficiency 

2 (1) 250 88.80 49 88.80 
I 1 ( 2 )  250 86.80 5 84.00 

Percentage of Samples Selected TABLE VII-C 
FULL SET AND MCS BASED CLASSIFICATION RESULTS USING DATA SET No. 3 

Fig. 3. Consistency vs. percentage of samples selected for data set no. 3 .  
Test Set Full Set MCS 

100 
'8 
6 9 0  2 ' 80 

.3 70 
2 
8 
$io 

50 

40 
6 

- - 

1 1 " ' 5 "  4 6 
Percentage of Samples Selectcd 

(Training Set) Size Efficiency Size Efficiency 
2 (1) 150 94.67 9 92.00 
1 (2) 150 94.67 11 92.00 

TABLE VII-D 
FULL SET AND MCS BASED CLASSIFICATION RESULTS USING DATA SET NO. 4 

Test Set Full Set MCS 
(Training Set) Size Efficiency Size Efficiency 

2 (1) 43 95.00 3 93.33 
I (2) 44 94.44 6 100.0 

TABLE VII-E 
FULL SET A N D  MCS BASED CLASSIFICATION RESULTS USING DATA SET No. 5 

Test Set Full Set MCS 
I 

(Training Set) Size Efficiency Size Efficiency 
2 (1) 40 97.50 4 97.50 
1 (2) 40 100.0 6 97.50 Fig. 4. Consistency vs. percentage of samples selected for data set no. 4. 

their roles. The results of classification of the test set corresponding 
to the of using the entire training set as well as its MCS are 
tabulated in Table VII-A through E. For three of the data sets (nos. 

is only a Slight marginal reduction. For data Set no. 3, there is an 
identical marginal decrease under both dichotomies. For data set no. 
4 in one case there is again a marginal loss and in the other there is 
in fact a gain of over 5%. This increase is of course not necessarily 

that the observed loss in the other cases may also not be necessarily 

L2 ,  and 9, there is no loss whatsoever in classification performance 

of the traininghest set dichotomy. Under the other dichotomy, there 

significant in a statistical the fact 

significant in the statistical sense. This shows that the huge savings 

except perhaps to 
(attributable to the reduction in the size of the training set) under one 
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TABLE VIII 
A COMPARISON OF THE COMFVTATIONAL LOADS UNDER CNN RELATIVE To MCS 

Data Set No. CNN Set Size MCS Size Excess Computational 
Demands under CNN 

frelative to M C S  
1 9 9 0.00 % 
2 124 98 26.53 % 
3 24 15 60.00 % 
4 10 5 100.00 % 
5 1 1  6 83.73 % 

in the computational effort (ranging from about 98% for set no. 1 to 
about 80% for set no. 2 with all the others somewhere in between) 
is well worth the possible small loss in the recognition accuracy. 

As a final measure of evaluation of the new methodology, experi- 
mental comparison of MCS with the CNN Rule was carried out (using 
Euclidean norm) and the results thereof are tabulated in Table VIII. 
As shown therein, except for data set no. 1 (which is a essentially a 
completely separated data set and hence requires very few samples 
to describe the separation surface), in every other case the excess 
computational load of using CNN over MCS is very significant. This 
convincingly demonstrates the benefits to be accrued by using the 
MCS methodology. Likewise, comparisons with other methods can 
also be conceived, but were beyond the resources available for this 
study. 

VI. EXTENSION TO THE k-NN RULES DOMAIN 
Although the single NN rule was employed in these experiments, 

the method can conceivably be extended to the k-NN rule domain. 
Under this scenario, instead of requiring only one sample (from its 
own class) nearer than its NUN to be present in MCS for each input 
sample, we would, for sufficiency, need at least ( k / 2  + 1) number of 
samples within the NUN distance to be present in MCS for each input 
sample. The steps 1 through 5 listed under the algorithmic procedure 
(Section 111) would remain essentially the same. The steps 6 and 7 
will have to be suitably modified so that the optimal combination 
that delivers the maximum consistency is identified at each stage. 
For example, for the case k = 3, we will have to identify the 
pair of samples that together satisfy the consistency property for the 
largest number of input samples and repeat the process to identify 
each addition to the candidate set. The remaining steps once again 
would more or less be similar to that under the current procedure as 
described for the single-” rule. One could also visualize extension 
to other scenarios such as the weighted k-NN rule domain [l]. 

All of these potential extensions, although conceptually feasible, 
make the combinatorial search procedures of identifying the MCS 
much more complex. It is likely that the resultant consistent sets 
under these complex rules would be larger than under the single- 
NN rule, thus reducing the gains in terms of computational demand 
optimization. But this has to be weighed against the possible benefits 
of robustness that could result by using such rules. The possible 
extensions of the method therefore pose trade-off problems that need 
to be addressed for evaluating the practicality of this methodology 
under such complex NN-rule environments. These extensions are 
accordingly considered outside the scope of the present study and 
will be reported in due course at other appropriate forums. 

VII. CONCLUDING COMMENTS 

The MCS method offers an effective tool for minimizing the 
computational demands of NN based decision systems. This is 
accomplished by development of a rational procedure for the selection 
of an optimal subset out of the available training sample set. The 

main features of this approach as compared to prior approaches are 
as follows: 

The results are independent of the order of presentation of the 
data and hence the selected subset is always unique both in terms 
of the number and identity of the selected samples. 
Consistency property is always assured at every stage of the 
iterative process, which permits the iterative process to be man- 
ually terminated when desired without loss of the consistency 
property. 
Since almost all of the minimization that can be expected for 
any specific data set is achieved in the first couple of iterations, 
there is no compelling need to go beyond the first one or two 
iterations. 
Also, with very little sacrifice in the consistency criterion, one 
can achieve further savings in the computations by picking a 
subset of desired size (starting with the first) of the MCS. This is 
possible, since samples in MCS are selected in the order of their 
contribution to the consistency property rather than randomly as 
is the case under most other approaches. 
A truly encouraging aspect of these results is the negligible loss 
in recognition efficiency when the full training set is replaced 
by its MCS in the operational phase of testing an independent 
test data set. 
A direct comparison with the popular CNN approach further 
confirms the efficacy of the new approach. 

Thus, it is clear that the new approach offers significant advance- 
ment in the state of the art in the area of computational demand 
optimization as applied to NN-based decision systems. While no 
formal mathematical proof of convergence of the iterative process 
has been established by this study, the iterative algorithmic procedure 
ensures that such is indeed the case and all of the experiments have 
also further confirmed this fact. With regard to the issue of attaining 
true minimality of the size of subset derived under this approach, 
although experimental evidence strongly suggests this to be the case, 
a formal mathematical analysis would be required to substantiate this 
claim. However, this was deemed beyond the scope of the support 
available for this study. The potential for expanding the MCS concept 
to the domain of learning and recognition in imperfectly supervised 
and/or partially exposed environments [l] as well as under fuzzy 
teacher environments [15] is currently under exploration and will be 
reported in due course. 
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Collision Avoidance of Two General Robot 
Manipulators by Minimum Delay Time 

Cheol Chang, Myung Jin Chung, and Bum Hee Lee 

Abstract-A simple time delay method for avoiding collisions between 
two general robot arms is proposed. Links of the robots are approximated 
by polyhedra and the danger of collision between two robots is expressed 
by distance functions defined between the robots. The collision map 
scheme, which can describe collisions between two robots effectively, is 
adopted. The minimum delay time value needed for collision avoidance 
is obtained by a simple procedure of following the boundary contour of 
collision region on collision map. To demonstrate the effectiveness of the 
proposed time delay method, a computer simulation study is shown where 
a collision is likely to occur realistically. 

I. INTRODUCTION 

Industrial robots have made a significant contribution toward 
automating the manufacturing processes. The efficient use of robots 
shows productivity increase, production cost reduction, and product 
quality improvement. However, most robots currently in use perform 
simple repetitive jobs, such as pick-and-place, machine loading and 
unloading, spray painting, and spot welding. 

Only one robot in a common work space limits the classes of 
tasks that can be performed. Two or more robots in a work space 
can improve potential application area of robots. Multiple robots can 
be used to accomplish a task where each performs its own subtask 
in parallel, and to save the production time. Also, multiple robots 
can accomplish complex tasks that can not be performed by a single 
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robot such as transporting an object beyond the payload capability of 
a single robot. Among the previous applications of multiple robots, 
the parallel tasking feature is only an example especially in industry 
aiming to mass production. However, at present, the parallel tasking 
is not fully utilized since there is no practical methodology that can 
make several robots operate safely in a common workspace. In the 
case that more than one robot operate simultaneously in a common 
workspace, the problem of avoiding potential collisions between the 
robots should be considered very carefully. 

To solve the collision avoidance problem, zone-blocking methods 
have been proposed. In these methods only one robot operates at a 
time. So, this semaphore mechanism is not efficient because of not 
providing the parallel tasking feature. Besides zone-blocking methods 
some collision avoidance methods [ 11-[5] have been proposed for 
multiple robots. These methods can be divided into two categories: 
1) time adjusting methods while maintaining the given geometric 
path and 2)  trajectory modification methods which modifies given 
geometric path. The former adjusts the time evolution representing 
the moving speed of robots while the geometrical paths of the robots 
are fixed. The robot path, which guarantees a robot not to collide with 
stationary obstacles, can be obtained using some existing methods 
[6]-[lo]. One of the major features of time adjusting approaches is 
that the number of variables to be considered for collision avoidance 
does not exceed the number of robots because one variable, usually 
the time, is enough to express the moving speed for each robot. For 
instance, in the case of two robots, at most two variables are needed 
for solving the collision avoidance problem. This fact suggests that a 
collision avoidance problem in multiple robots can be easily solved 
comparing with a collision avoidance problem for a single robot and 
stationary obstacles which requires at least three variables in a three 
dimensional work space. 

Lee et al. [2] presented several time adjusting methods for two 
robots using a collision map. In their paper, only a wrist of each robot 
is treated as a possible collision obstacle and modeled by a sphere. 
A collision map is used to describe potential collisions between two 
robots efficiently under the condition that given geometrical paths for 
two robots are fixed. However, the collisions in three-dimensional 
work space are transformed into collision region(s) in the map and 
this transformation usually requires an excessive computational effort. 
Furthermore, the collision region@) in the map is approximated by 
box(es) to determine the departure time of one robot. Therefore, this 
approximation of collision region(s) results in unnecessary extra time 
delay. 

This paper proposes an effective collision avoidance method for 
two general robot manipulators which are approximated by polyhedra 
as an extension of Lee et al. The proposed method determines the 
minimum time delay needed for avoiding collisions between two 
general robot manipulators using distance functions. 

Basically the computational scheme for obtaining the delay time 
adopts the concept of the collision map which represents the re- 
gion corresponding to collisions between two robots. To obtain 
the collision-free minimum delay time, a scheme which follows 
the boundary contour of the collision region in a collision map is 
proposed. This scheme only checks a part of the boundary contour of 
the collision region and the TLVST (traveling length versus sampling 
time) curve conceptually. Due to the computational simplicity, the 
overall procedure is very simple. Also, this method of avoiding 
collisions through time delay is relatively easy to implement, because 
the geometrical paths and time evolution of two robot manipulators 
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