
Using a Genetic Algorithm for Editing k-Nearest
Neighbor Classifiers

R. Gil-Pita1 and X. Yao2,3,�
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Abstract. The edited k-nearest neighbor consists of the application of
the k-nearest neighbor classifier with an edited training set, in order to
reduce the classification error rate. This edited training set is a sub-
set of the complete training set in which some of the training patterns
are excluded. In recent works, genetic algorithms have been successfully
applied to generate edited sets. In this paper we propose three improve-
ments of the edited k-nearest neighbor design using genetic algorithms:
the use of a mean square error based objective function, the implementa-
tion of a clustered crossover, and a fast smart mutation scheme. Results
achieved using the breast cancer database and the diabetes database
from the UCI machine learning benchmark repository demonstrate the
improvement achieved by the joint use of these three proposals.

1 Introduction

Editing a k-nearest neighbor (kNN) consists of the application of the kNN clas-
sifier with an edited training set in order to improve the performance of the
classifier in terms of error rate [1]. This edited training set is a subset of the
complete training set in which some of the training patterns are excluded. So,
depending on the characteristics of the database [2], and due to the exclusion of
these patterns, the kNN may render better results using the edited set, in terms
of both error rate and computational cost.

Genetic algorithms (GA) have been successfully applied to select the training
patterns included in the edited training set. In [3] a study of editing kNN classi-
fiers using GAs with different objective functions is presented. Several databases
like the Iris database or the Heart database are used in the experiments. The
paper concludes that, from the analyzed objective functions, the best results
are obtained when the counting estimator with penalizing term is selected as
objective function. Other interesting article is [4], in which a GA with a novel
crossover method is applied. When two parents are crossed, a high number of
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Alcalá (CCG06-UAH/TIC-0378) and the Spanish Ministry of Education and Science
(TEC2006-13883-C04-04/TCM).

H. Yin et al. (Eds.): IDEAL 2007, LNCS 4881, pp. 1141–1150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



1142 R. Gil-Pita and X. Yao

possible offsprings are evaluated, and the best two individuals are selected. The
work presented in [5] is other interesting paper that studies the kNN edited with
other heuristic techniques, in which the authors study the use of tabu search to
solve the problem of editing a 1NN classifier (nearest neighbor rule). They use
the counting estimator objective function with a penalizing term, and they eval-
uate the results with the iris database and a synthetic two-dimensional database.
At last, the use of a multi-objective evolutionary algorithm to simultaneously
edit and select the features of an 1NN classifier is evaluated in [6].

In this paper we propose a novel application of GAs for editing kNN clas-
sifiers. We describe the design of a genetic algorithm in order to edit training
sets for kNN classifiers, focusing on the selection of the objective function to
be minimized, and on the different parameters of the genetic algorithm like,
for example, the crossover and the mutation techniques. Three improvements
are proposed to the editing process using genetic algorithms: the use of a mean
square error (MSE) based objective function, the implementation of a clustered
crossover, and a fast smart mutation scheme. Results are compared using the
breast cancer database and the diabetes database from the UCI machine learning
benchmark repository. The computational cost after training and the classifica-
tion error rate are considered in the study.

2 Materials and Methods

In this section we carry out a brief description of the main classification method
this paper deals with: the kNN. After describing the statistical basis of the kNN
method, we mathematically describe the editing process of a kNN method, and
how the genetic algorithms can be used for editing training sets.

2.1 kNN Statistical Analysis

The kNN classifier is statistically inspired in the estimation of the posterior
probability p(Hi|x) of the hypothesis Hi, conditioned to the observation point x.
Considering a volume around the observation point that encompasses k patterns
of the training set and k[i] patters belonging to hypothesis Hi, then equation
(1) is an approach of the posterior probability of the class Hi [7].

p(Hi|x) =
p(x|Hi)p(Hi)

p(x)
� k[i]

k
(1)

The Maximum A Posteriori criterion establishes that, for a given observa-
tion x, the decision that maximizes the associated posterior probability must be
taken. The kNN method fixes k, the number of patterns included in the volume,
being these patterns the k nearest (less distanced) patterns from the observation
point. The decision is taken by evaluating the values of k[i], i = 1, . . . , C, and
selecting the class which obtains a highest k[i] value, and, therefore, maximizes
approximation the posterior probability p(Hi|x) given by equation (1). Concern-
ing the distance measurement, in this paper we use the Euclidean distance, so
that the volumes are hyper-spheres around the observation point.
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2.2 Editing a Training Set with a GA

The edited training set is defined by the indexes of the patterns included in
the subset. In order to apply genetic optimization, each subset is associated to a
binary vector b, with N bits, being N the total number of patterns in the original
training set, so that if the n-th bit is activated b[n] = 1, then the corresponding n-
th training pattern is included in the subset. So, being S the number of patterns
included in the reduced set so that S ≤ N , then

∑
n b[n] = S. The bit-stream

b is determined by the minimization of a given objective function. In this task,
different algorithms can be applied, and we focus on the application of GAs to
obtain the value of b.

Concerning the objective function, its selection is an important issue in the
design of edited kNN methods. Most of the papers use the classification error
as objective function (equation (2)), adding in some cases a penalizing term, to
consider the number of patterns in the edited training set.

F =
1
N

N∑

n=1

h(xn) + αb[n] (2)

where h(xn) is 1 if the n-th pattern is wrongly classified, and 0 in other cases.
This objective function is equivalent to the counting estimator with penalizing
term (CEPT) function, described in [3].

In this paper GAs are applied to determine the optimal bit-stream b, in order
to implement an edited kNN rule. So, the process to determine an edited subset
for the kNN method using a GA is described as follows:

– The objective function is evaluated with the validation set for several values
of k, and the value that performs better results is selected.

– Using a GA, a subset is selected using the training patterns, trying to mini-
mize the objective function measured with the training set. The genetic algo-
rithm is based on the use of natural selection, local mutations and crossover.
The population is composed of P = 100 individuals, and the best 10 are se-
lected in each generation. The remaining 90 individuals are then generated
by single point crossover of the 10 survivors. Then, binary mutations are
applied to the whole population, changing a bit with a probability of 0.8%.
This process is iterated G = 100 generations.

– During the training process, the objective function over the validation set
is calculated for the best individual of each population. The subset that
achieves the lowest objective value over the validation set is selected as the
final subset.

3 Description of the Proposals

In this section descriptions of the three proposals of this paper are included. The
first proposal deals with the definition of a novel objective function, inspired in
the mean square error (MSE) function, used in many adaptive systems, like, for
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example, neural networks. The second proposal defines a novel crossover strategy
for the GA, designed using a priori knowledge of the problem. The third and
last proposal establishes a new mutation scheme for the GA, that allows to lead
the mutations in the population, improving the performance of the GA in the
search of local minima of the objective function.

3.1 Editing kNN with a MSE-Based Objective Function

In this paper we propose the use of a novel objective function, based on the
MSE function. Let’s consider the kNN as a system with C outputs, so that each
output is calculated using equation (1). Therefore, the C outputs of the kNN
system are approximations of the posterior probabilities of the data. So, yn[i],
described in equation (3), is the i-th output of the kNN system, obtained for the
n-th training pattern xn.

yn[i] =
kn[i]

k
(3)

where kn[i] is the number of nearest patterns of class i for the n-th training
pattern. Considering the approximation described in equation (1), the outputs
of this kNN system are estimations of the posterior probabilities of the classes.
So, the objective function to minimize is designed using all the outputs of the
system, by minimizing the mean square error, defined by equation (4).

F =
1

NC

N∑

n=1

C∑

i=1

(yn[i] − dn[i])2 (4)

where yn[i] is the i-th output of the system for the n-th training pattern, and
dn[i] is the desired i-th output for the n-th training pattern, so that dn[i] is 1
for the patterns of the i-th class and 0 for the rest. In function of the Kronecker
delta, dn[i] = δ[i − cn], being cn the index of the class for the n-th training
pattern. Replacing (3) in (4), we obtain (5).

F =
1

NC

N∑

n=1

C∑

i=1

(
kn[i]

k
− δ[i − cn]

)2

(5)

The error surface defined by this function is smoother than those obtained
using counting estimator based functions, making easier the obtaining of its local
minima.

3.2 Editing kNN Using a GA with Clustered Crossover

Single point crossover (SPC) and random crossover (RC) are two of the most
commonly used crossover methods used in the literature. Single point crossover
generates the offspring by combining the first part of the bit stream of one
parent with the last part of the bit stream of the other parent. On the other
hand, random crossover generates the offsprings randomly selecting each bit-gene
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from one of the parents. These two schemes do not consider possible relationship
between the genes.

In this paper we propose a novel crossover scheme for the GA, denominated
clustered crossover (CC), in order to improve the determination of the best
subset of the training set, that minimizes the selected objective function. In the
problem of the selection of the edited training set, it is possible to determine the
relationship between the different bits of the bit stream. Each gene is related to
the inclusion in the reduced subset of a training pattern. So, the value of a given
gene is related to the performance of the classifier in the region of the space
around the associated training pattern. Therefore, genes can be grouped into
clusters considering the spatial position of their training patterns, using a non
supervised clustering technique. In this paper we apply the k-means clustering
algorithm [8] to the training data, so that these patterns are grouped in some
sets of near patterns (clusters). Each group of patterns defines a cluster of genes,
that is considered as a transfer unity in the crossover process. So, the bit-stream
of the offsprings are obtained by mixing the clusters of genes of two parents. The
clustering process is carried out every generation, and the number of clusters has
been selected at random. So, every generation the crossover is carried out with
different gene clusters.

3.3 Editing kNN Using a GA with a Fast Smart Mutation Scheme

In this section we describe the application of a mutation scheme that allows
to select the best gene or group of genes to be changed, taking into account
the variations of the objective function with respect to each gene for a given
edited set. We design a fast method for evaluating the error variation when each
gene is changed, and we propose a mutation strategy based on these variations
of the objective function. We denominate this mutation scheme as “fast smart
mutation” (FSM), as it allows to increase the effectiveness of the mutation stage
in the genetic algorithm.

The evaluation of the objective function for all the possible bit mutations of
a pattern is implemented taking into account prior knowledge of the objective
function. Let’s consider the bit stream b, then the goal is to find the bit or bits
which changes produce the highest reduction in the performance associated to b.

The change of one bit of b produces the addition or the removal of a training
pattern from the edited subset. It causes changes in the values of kn[i], with a
consequent change in the value of the objective function, that might be consid-
ered. Let’s consider Bn(k) is the distance from the n-th training pattern to its
k-th nearest pattern, then:

– If the m-th bit changes from 0 to 1, then the pattern xm must now be
considered in the subset. If the distance from this pattern to a training
pattern xn is lower than Bn(k), then this new pattern replaces the k-th
nearest neighbor of the training pattern xn. Due to the addition of this new
pattern of class cm, the value of kn[cm] is incremented in 1, and due to the
removal of the k-th training pattern, the value of kn[ck

n] is decremented in 1,
where ck

n is the class of the k-th nearest neighbor of the training pattern xn.
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– If the m-th bit changes from 1 to 0, then the pattern xm is removed from
the subset. If the distance from this pattern to a training pattern xn is lower
than Bn(k), then this pattern will cause changes in the values of kn[i]. The
pattern xm will not continue in the group of the k nearest neighbors of the
pattern xn, and there will be a new pattern in this group. Due to the removal
of this pattern of class cm, the value of kn[cm] is decremented in 1, and due
to the inclusion of the k + 1-th training pattern in the group, the value of
kn[ck+1

n ] is incremented in 1.

Equation (6) represents the function fmn[i], the variations in the values of
kn[i] due to a change in the m-th.

fmn[i] =
{

Dmn · (δ[i − cm] − δ[i − ck
n]), if b[m] = 0

Dmn · (δ[i − ck+1
n ] − δ[i − cm]), if b[m] = 1 (6)

where Dmn is 1 if the distance from the pattern xm to the pattern xn is lower
than Bn(k), and 0 in other case. So, the MSE-based objective function Fm

obtained after changing the m-th gene is represented in equation (7).

Fm =
1

CN

N∑

n=1

C∑

i=1

(
kn[i] + fmn[i]

k
− δ[i − cn]

)2

(7)

The variation in the objective function Δm = Fm − F due to a change in the
m-th bit can be expressed using equation (8).

Δm =
1

CNk2

N∑

n=1

−2kfmn[cn] +
C∑

i=1

fmn[i]2 + 2kn[i]fmn[i] (8)

Using (6) in (8), we obtain (9).

Δm =
2

k2CN

N∑

n=1

Dmn(1 + gmn) (9)

where gmn is defined by equation (10).

gmn =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if b[m] = 0 and ck
n = cm

h0mn, if b[m] = 0 and ck
n �= cm

−1, if b[m] = 1 and ck+1
n = cm

h1mn, if b[m] = 1 and ck+1
n �= cm

(10)

being h0mn and h1mn defined by equations (11) and (12), respectively.

h0mn =

⎧
⎨

⎩

kn[cm] − kn[ck
n] + k, if cn = ck

n

kn[cm] − kn[ck
n] − k, if cn = cm

kn[cm] − kn[ck
n], other case

(11)

h1mn =

⎧
⎨

⎩

−kn[cm] + kn[ck+1
n ] − k, if cn = ck+1

n

−kn[cm] + kn[ck+1
n ] + k, if cn = cm

−kn[cm] + kn[ck+1
n ], other case

(12)
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The value of Δm (equation (9)) is evaluated for all the possible values of m,
in each generation and for every individual. The described algorithm allows to
quickly evaluate the variation of the objective function with a unique bit change.
So, the change in the value of m that efforts the lowest Δm will cause the highest
reduction of the objective function.

The GA can be speeded up changing more than one bit in every mutation.
In many classification environments, the large size of the training set makes
this method quite slow, in so only a gene is changed for each individual every
mutation stage. On the other hand, using the clustering process described in
subsection 3.2, it is possible to establish groups of “independent” genes. A change
in a bit that belongs to a cluster affects to the performance of the classifier in the
region of the space nearer to the corresponding training pattern. So, we propose
to use the gene clusters to select a group of genes to be mutated. For each cluster,
the value of m that efforts the lowest Δm is changed, which allows to mutate as
many genes as clusters.

The implementation of the algorithm requires the previous calculation of the
values of kn[i], ck

n and ck+1
n . The process of the genetic algorithm with fast smart

mutation is described as follows:

1. The initial population with 100 individuals is generated, all the variables are
initialized.

2. The mean square error is measured for every individual of the population.
The values of Δm are obtained.

3. The k-means algorithm is applied to the training set. The number of clusters
is selected at random.

4. For each cluster and each individual, the gene with the value of m that efforts
the lowest value of Δm is muted.

5. Every 10 generations, clustered crossover is applied to the data. 10 best
individuals are chosen as parents, and remaining 90 individuals are generated
by clustered crossover of the parents.

6. The validation error of the best individual is calculated.
7. The process is iterated in step 2, until 100 generations are reached.
8. Finally, the selected individual is the one that achieved the lowest validation

error.

4 Results

This section includes the results obtained by the methods described in the paper.
The databases used in the experiments of the paper have been the breast cancer
database and the diabetes database, collected from the UCI machine learning
benchmark repository. Choosing these two databases we try to be able to com-
pare the performance of the different methods in two different environments,
allowing to extract more general conclusions.

In order to carry out the experiments, each database has been divided in
three subsets: the training set, the validation set and the test set. The training
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set has been used to generate the edited subsets. The validation set has been
used to select the best classifier, and to determine the values of k. The test set
has been used to evaluate the final error rate for each classifier. This third set has
not been used during the design of the classifier. These three databases and the
data preparation techniques are identical to those used in other papers [9,10],
allowing to make comparisons of the obtained results with other different type
of classifiers. Table 1 shows a summary of the main characteristics of the used
two databases.

Table 1. Characteristics of the databases

Breast cancer Diabetes

Number of classes C 2 2
Number of inputs L 9 8
Total number of patterns 699 768
Number of training patterns N 349 384
Number of validation patterns 175 192
Number of test patterns 175 192
k value (using the validation set) 3 27

The parameter k of the kNN method is a user-specific parameter. In this work
we have selected it in a first stage, making use of the validation set, and it has
remained fixed for the rest of the experiments. Different kNN classifiers with
values of k from 1 to 50 have been implemented using each database, and the
value of k that efforts the lowest classification error rate over the validation set
has been selected. This value has been k = 3 for the breast cancer database and
k = 27 for the diabetes database.

In order to assess the performance of the classification methods, the error rate
over the test set is used. Due to the small size of the test sets, the precision in
the estimation of the error rate is considerably low, and some statistical analysis
of the results must be used. So, each experiment has been repeated 30 times,
measuring the error rate for each experiment. Results are represented in function
of the mean, the standard deviation, the maximum, the minimum of the error
rate over the 30 experiments. The average number of patterns selected in the
edited subset (S) is also included. Table 2 shows the results obtained by the
different methods for the breast cancer database and the diabetes database.

From the obtained results, we can derive the next conclusions:

– The use of the proposed MSE-based objective function has an associated
reduction greater than 12%, when it is compared to the use of the CEPT
objective function [3].

– The use of the proposed clustered crossover doest not significantly improve
the performance in the case of the diabetes database, but it achieves a re-
duction of 15% in the error rate in the case of the breast cancer database.
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– The results obtained by the joint use of the three proposals has an associated
reduction greater than 10%, compared to the use of a kNN classifier without
editing technique. Obtained results demonstrate the good accuracy of the
proposed GA-based editing technique.

Table 2. Results (%) obtained for the different methods studied in the paper

Editing Breast Cancer Diabetes
technique Mean Std Max Min S Mean Std Max Min S

none 1.14 0.00 1.14 1.14 349 21.88 0.00 21.88 21.88 384
Wilson [1] 1.71 0.00 1.71 1.71 323 27.08 0.00 27.08 27.08 262
GA CEPT SPC [3] 1.96 1.06 4.57 0.00 101 22.76 2.00 26.04 18.75 173
GA MSE SPC 1.43 0.76 2.86 0.00 157 19.84 1.27 21.88 16.67 192
GA MSE RC 1.68 0.78 4.00 0.57 163 19.62 1.18 21.88 17.19 193
GA MSE CC 1.22 0.65 3.43 0.00 186 19.60 1.00 22.40 18.23 191
GA MSE CC FSM 0.72 0.54 2.29 0.00 174 19.39 1.63 22.92 16.67 195

5 Conclusions

In this paper genetic algorithms have been successfully applied to select the
training patterns included in an edited set of a kNN classifier. We have proposed
three improvements of the editing process using genetic algorithms. Considering
the statistical properties of the kNN classifier, we have proposed a novel mean
square error based objective function, which performs better than the counting
estimator based objective function. The second proposal presents an analysis of
the relationship of the genes in the GA, which is used to propose a clustered
crossover. At last, a new fast smart mutation scheme that allows to quickly
evaluate the variations in the MSE-based objective function for a change in one
bit is described.

Results achieved using the breast cancer database and the diabetes database
from the UCI machine learning benchmark repository have been included. The
obtained results make the joint use of the three proposed methods quite inter-
esting. Comparing these results with the best one obtained using kNN without
editing, with Wilson’s editing, and with GA-based editing using CEPT and
SPC, the proposed method achieves an average reduction of greater than 10%
for the considered databases (36% for the breast cancer database and 12% for
the biabetes database).
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