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Algorithms reducing the storage requirement of the nearest neighbor classifier (NNC) can
be divided into three main categories: Fast searching algorithms, Instance-based learn-
ing algorithms and Prototype based algorithms. We propose an algorithm, LVQPRU,
for pruning NNC prototype vectors and a compact classifier with good performance is
obtained. The basic condensing algorithm is applied to the initial prototypes to speed
up the learning process. The learning vector quantization (LVQ) algorithm is utilized to
fine tune the remaining prototypes during each pruning iteration. We evaluate LVQPRU
on several data sets along with 12 other algorithms using ten-fold cross-validation. Sim-
ulation results show that the proposed algorithm has high generalization accuracy and
good storage reduction ratios.

Keywords: Prototype selection; nearest neighbor classifier; editing; condensing; instance-
based learning, pruning technology.

1. Introduction

The nearest neighbor classifier (NNC) is used for many pattern recognition ap-
plications where the underlying probability distribution of the data is unknown
priori. The behavior of the NNC is bounded by two times the optimal Bayes risk
(Ref. 1). Since the traditional NNC stores all the known data points as labelled
instances, the algorithm is prohibitive for very large databases. To overcome these
challenges several techniques have been proposed by researchers. k—d trees (Ref. 2)
and projection (Ref. 3) can reduce the search time for the nearest neighbors bus
still do not decrease storage requirements, and they become less effective as the
dimensijonality of the data increases.

To reduce both the storage requirements and search time, a better way is to
reduce the data size under the restriction that the classification accuracy is kept
similar (or even higher if noisy instances are removed). To select a subset of instances
from the original training set, there are usually three types of search directions to

261



262 J. Li et al.

perform the selection procedure, including Incremental, Decremental and Batch. An
Incremental search algorithm begins with an empty subset and adds an instance if
it satisfies some criteria. For example, IB1 through IB5 (Ref. 4, 5) belong to this
category. A Decremental search algorithm, however, begins with the full training set
and removes instances until some predefined condition is fulfilled. Reduced nearest
neighbor (RNN) (Ref. 6, 7), condensing nearest neighbor (CNN}) (Ref. 1, 8), DROP1
through DROPS5 (Ref. 9, 10), editing nearest neighbor (ENN) and repeated ENN
(RENN) (Ref. 11) can be viewed as decremental search methods. The ENN and
CNN algorithms can delete outliers or internal instances to improve the generaliza-
tion accuracy and the processing speed. The performance can be further improved
by employing adaptive NNC (Ref. 12). The All k-NN rule (Ref. 13) is an example of
a batch search algorithm, in which the potential instances to be removed are flagged
first. The actual deletion of the flagged instances is performed until finishing passing
through all instances in the data.

The above classes of algorithms do not modify instances, but merely remove
instances that appear to be noisy or redundant. One also can generate prototypes by
modifying data instances such as in Chang’s method (Ref. 14) or the Self-Organizing
Map (SOM) (Ref. 15). Recently developed algorithms for reducing data size include
boosting-based algorithms (Ref. 16, 17, 18, 19), Genetic algorithms (Ref. 20) and
statistical pruning (Ref. 21).

Reducing data size for classification tasks is one application of case-based reason-
ing (CBR). CBR systems solve problems by retrieving and adapting the solutions to
similar problems that have been previously stored as a case base. CBR deals with a
wide range of problem-solving tasks such as prediction, planning, decision support,
classification, etc. There are many approaches proposed in CBR community to ob-
tain a concise case base with good quality and to manage the case base over time.
This paper discusses reducing data size based on prototype selection algorithms for
classification problem. Readers interested in CBR systems can refer to the papers
by Yang & Zhu (Ref. 22) and by Portinale & Torasso (Ref. 23).

Generally, there are some problems a designer must face when using prototype-
based algorithms. Consider the artificially constructed example in Fig. 1 where
the probability density functions of both inputs are uniform. It is obvious that the
classification error is minimized and a perfect decision boundary is defined with only
one prototype located in the middle of C; and two prototypes in Cs. Two challenges
are: 1) the number of prototypes necessary for a classifier is difficult to determine
and 2) the optimal placement of these prototypes is not obvious. Note that in this
example the ideal locations of the prototypes are not unique, we can move them and
keep the decision boundary fixed and the classification error remains unchanged. In
order to overcome these challenges, we propose an algorithm that prunes prototypes
based on the error their elimination produces. LVQ2.1 (Ref. 24) is used to fine-tune
the placements of the prototypes, and the number of prototypes needed by a NNC
is determined by the structural risk minimization principle that is introduced later
in the paper.
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Fig. 1. Uniform Data Example

The rest of paper is organized as follows. Section 2 describes some existing
instance-based algorithms. Section 3 introduces a distance measure which is used
for measuring the similarity between two instances or prototypes. Section 4 presents
details of the proposed algorithm. LVQPRU is demonstrated in Section 5. Section
6 presents empirical results comparing 12 existing algorithms with the LVQPRU
method on 13 data sets. Finally, Section 7 gives conclusions and future work.

2. Related Work

Many researchers have investigated instance-based learning algorithms for training
set size reduction, i.e., searching for a subset S of instances to keep from training
set D. In this section we give a briefly introduction of algorithms that will be
compared with our proposed algorithm. Interested readers can find details in Wilson
& Martinez (Ref. 10).

2.1. Decremental Instance-Based Learning Algorithms

Common decremental instance-based learning algorithms include CNN, ENN and
the series of Decremental Reduction Optimization Procedure (DROP) algorithms
proposed by Wilson & Martinez (Ref. 9, 10).

The basic idea of CNN (Ref. 1, 8) is to delete internal or central instances such
that the subset & can be used to classify all the instances in D correctly. The
algorithm begins by randomly selecting one instance belonging to each class from
D and putting them into &. Then using the instances in & to classify one instance
in D, if the instance is misclassified, it is added to &. Otherwise, it is returned to
D. This process is repeated until either there is no instance left in D or there is no
instance transferring from D to §. The ENN (Ref. 11) algorithm begins with & = D,
and then each instance in S is removed if it does not agree with the majority of its &
nearest neighbors. Unlike the CNN algorithm, ENN keeps all the internal instances
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but deletes the border instances as well as the noisy instances. RENN applies ENN
repeatedly until there are no instances in S that can be removed.

The aim of DROP algorithms is to find instance reduction techniques that pro-
vide noise tolerance, high generalization accuracy, insensitivity to the order of pre-
sentation of instances, and significant storage reduction. DROP1 is identical to
RNN (Ref. 6, 7) except that the accuracy is evaluated on S instead of D. DROP2
considers the effect of the removal of an instance on all the instances in D instead
of considering only those instances remaining in S. DROP3 uses a noise-filtering
pass first. This is done using a rule similar to the ENN: Any instance misclassified
by its k nearest neighbors is removed. This allows points internal to clusters to
be removed early in the process, even if there were noisy points nearby. DROP4 is
identical to DROP3 except that instead of blindly applying ENN, the noise-filtering
pass removes each instance only if it is (1) misclassified by its k nearest neighbors,
and (2) it does not hurt the classification of other instances.

2.2. Incremental Instance-Based Learning Algorithms

Aha et al. (Ref. 4, 5) proposed a series of Instance-Based Learning algorithms: IB1
through IB5. IB1 is just simple 1-NN algorithm and is used as a benchmark. IB2
is very similar to Hart’s CNN rule, except that IB2 does not first pick one instance
from each class to add to S. It begins with an empty S, and each instance in D
is added to S if it is not classified correctly by the instances already in S. This
algorithms also retains the border instance and removes the central points. Like the
CNN algorithm, IB2 is very sensitive to noisy instances. The IB3 algorithm (Ref. 4,
5) tries to solve the IB2’s problem of keeping noisy instances by retaining only
acceptable instances. An instance is acceptable if the lower bound on its accuracy is
significantly higher at a 90 % confidence level than the upper bound on the frequency
of its class. IB3 reduces the sensitivity to noisy instances seen in IB2, and achieves
higher accuracy as well as greater reduction of instances than IB2. The IB4 and IB5
(Ref. 5) algorithms are to address irrelevant attributes and to handle the addition
of new attributes to the problem after training has already begun respectively, and
they are both extensions of IB3.

2.3. Baitch Instance-Based Learning Algorithms

The All k-NN algorithm is an example of the batch learning algorithm. Here we also
include the Encoding Length and Explore algorithms (Ref. 25) as batch algorithms
even though they do not perform a strictly batch search.

Tomek (Ref. 13) extended the ENN to his All k-N N method of editing. Starting
from & = D, this algorithm works as follows: for ¢ = 1 to k, flag any instance as
bad if it is not classified correctly by its i nearest neighbors. After completing
the loop for all the instances, remove any instances from & which are flagged as
bad. Cameron-Jones proposed an Encoding Length Heuristic (Ref. 25) to evaluate
how good the subset & represents D. The basic algorithm starts with a growing
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phase followed by a pruning phase. In the growing phase & begins with an empty
subset, and each instance in D is added to it if that results in a lower cost than
not adding it. After all instances in D are presented once, the pruning phase starts.
Each instance in S is removed if doing so will lower the cost function. By adopting
the terminology of Wilson & Martinez (Ref. 10) we call this algorithm the Fncoding
Length Growing (ElGrow) method. The Ezplore method (Ref. 25) begins by growing
and pruning S using the ELGrow method, and then performs 1000 mutations to
improve the classifier. Each mutation tries to add an instance to S, removing one
from S or swapping one in & with one in D-S, and retains these changes if they do
not increase the cost function.

3. A Weighted Distance Measure

In this section, a distance measure is introduced which can suppress random or use-
less features in the input vector. Training data sometimes contains inputs, which
are either useless or random. When the standard Euclidean distance is used in clus-
tering such data during NNC training, this can lead to many more prototypes than
is necessary. A variety of distance functions have been developed for continuously-
valued attributes, including the Minkowsky (Ref. 26), the Context-Similarity mea-
sure (Ref. 27), the optimal distance measure (Ref. 28) and others. Euclidean is
common for applications with linear attributes, overlap metric (Ref. 4) and Value
Difference Metric (VDM) (Ref. 29) are useful for nominal, and the Heterogeneous
Value Difference Metric (HVDM) (Ref. 10) is useful for applications with both.

Consider a training set D = {Xp,ip}j,vz"l for NNC design, where for the pth
instance, x, € RY and 4, is the integer class label associated with x,. N, is the
total number of instances. Here we develop a weighted distance measure directly
based on the available data with continuous attributes in the form

N
d(xp, m) = Zw(j)[xp(j) — my(5))? 1)

where my, is the kth prototype generated by SOM. We first design a simple classifier
such as the functional link network (FLN) by minimizing

| Ne N
B= 1303 (t(0) — £(0))? @)
Y o=1p=1
where N, is the number of classes, t,(i) denotes the ith desired output for the pth
input vector x,. Specifically, t,(i.) = 1 and t,(iq) = 0, where 3, denotes the correct
class number for x,, and ¢4 denotes any incorrect class number for x,.
The ith observed output of the classifier for x,, can be written as

No
(D) = > wolis /) Xp () ®)
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where w, (4, ) denotes the weight connecting the jth unit to the ith output unit.
Xp(j) denotes the jth basis function for the pth pattern, and N, is the number of
basis functions. In an FLN, X,(j) often represents a multinomial combination of
N elements of x,, The following theorem provides the basis for determining useful
distance measure weights from training data.

Theorem 3.1. For a given training set D, convert i, to tp, and use vector t(x)
to denote the desired output. Let £(x) denote the minimum mean-square error
(MMSE) estimate of the desired output vector t(x). Assume that z(j), the jth
element of input vector x, is statistically independent of t(x) and the other elements
of the input vector. Then the derivative of £(x) with respect to z(j) is zero for all
X.

Proof. The MMSE estimate of t(x) is
t(x) = E[t]x] = / tf; (t]x)dt (4)

where f;(t|x) denotes the joint probability density of the desired output vector t
conditioned on x. Using Bayes law,

Letting x’ denote x without the element z(j),
fi o (t T
£ (t]x) = (t, ,X)f o ()
£ () fu ) (2(5))
. ft,x’(tvxl)
a fx/ (X’)
_ B G) )
= £ () = 1 (t|x')
Now the derivative of t(x) with respect to z(j) is
ot(x) / *® 9 ,
A ——[tf (t]|x')]dt
52G) ~ J-oo Bay) )
We complete the proof. O
Corollary. Given the assumptions of Theorem 3.1,
ot(x) m
6
=53 ©

where || - || denotes the L; norm.
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Now we train a functional link network network, whose output for the pth pattern
is denoted by Ep. The corollary above then implies that u(j) ~ 0 where

w Ne

L ¥
U(j)zmzz

p=1i=1

Do(i)
9,(j)

As a heuristic, the distance measure’s weights are determined as

: (7)

, u(j)
wi) = =~ ®)
Zn:l u(n)
u(3), which represents the importance of z(j) to the network outputs, is normalized
to yield w(j), which is used in (1) when calculating a distance.

4, NNC Pruning Algorithm

In this section, we describe the LVQPRU algorithm. First a list of the algorithm
steps is presented, and then explanations for those steps are given.

4.1. Algorithm Outline

Suppose a testing data set with the same format as that of the training data set is
available. Otherwise, the training data set could be divided to two parts for training
and testing. The pruning algorithm is described as follows,

(1) Let Npe be the number of prototypes per class, with N, sufficiently large

(2) Randomly initialize these Ny, = Np. - N, prototypes, and train a separate SOM
network with IV, prototypes for each class in the training data set. Denote the
number of instances closest to the kth prototype as N, (k), where 1 < k < Ny,

(3) Delete the kth prototype if it does not contain any members (empty prototypes),
i.e.,, Ny(k) =0, and decrease the total number of prototypes Ny by 1

(4) Change the class label of a prototype if it disagrees with the plurality of the
instances closest to it

(5) Use LVQ2.1 (Ref. 24) to refine the locations of the prototypes

(6) Apply the basic condensing algorithm to the remaining prototypes to remove
the internal ones

(7) Prune the prototype whose removal causes the least increase in classification
error, and set Nye = Ny — 1

(8) Use LVQ2.1 to fine-tune the locations of the remaining prototypes

(9) Apply the trained network to the testing data set to obtain the testing error

(10) If Nie > N, go back to (7). Otherwise if Ny, = N, identify the network with

the minimum testing error and stop.

The network corresponding to the minimum testing error is the final NNC classi-
fier. In steps (5) and (8), we stop LVQ if it has run a predefined number of iterations
(e.g, 10 in this paper) or if the classification error for the training data set increases,
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whichever comes first. If the testing error increases at the very beginning and never
decreases, it probably means that the initial number of prototypes Ny is not large
enough. We then increase this number and rerun the algorithm.

4.2, Algorithm Details

In the section we present the details for each step in the algorithm and give some
discussion.

4.2.1. Choosing the Number of Initial Prototypes

In the first step of the algorithm, determining the exact number of prototypes
required for each class to accurately represent the given data is a very difficult
model selection procedure, and there is no widely accepted method for doing this.
Even though many researchers, for example Yager and Stephen (Ref. 30, 31), have
proposed such methods, the user still needs to choose some parameters to initialize
the algorithms.

It is well known that for a given finite set of training data, the training error can
eventually go to zero if we keep increasing the number of prototypes. However, this
“overtraining” or “memorization” decreases the generalization capability (Ref. 32).
In our algorithm, instead of giving control parameters before training, we choose
the final number of prototypes based on the testing result. This idea is based on
the structural risk minimization principle (Ref. 33).

Consider an ensemble of classifiers {F(x,m)}, and define a nested structure of
n, ensembles of such classifiers

Fr={F(x,m),m e My},k=1,2,3...,n; 9)
where M, is a set of parameter vectors, such that we have
FiCFCFs...C Fu. (10)
Correspondingly, the complexity of the classifier satisfies the condition
h1 <hs <hg...< hy. (11)

The structural risk minimization may proceed as follows,

e The training error for each classifier is minimized to obtain m.
e The classifier F* with the smallest testing error is identified, which provides
the best compromise between the training error and the confidence interval.

Our goal here is to find a classifier such that the testing error reaches its mini-
mum. The principle of structural risk minimization may be implemented in a variety
of ways, and in this paper we use a pruning algorithm. The number of prototypes
corresponding to the minimum of the test error is chosen as the final model (clas-
sifier) for the given data set such that it satisfies the structural risk minimization
principle. The initial number of prototypes should be a number that is greater than
the final one.
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4.2.2. Training Initial SOM Network for the Data

Given N, prototypes for each class, we then train a separate SOM network for each
class in step (2). Due to the complexity of the data, there might be some empty
prototypes that are not surrounded by data instances. Alternately, a prototype
assigned to the ith class may have nearby data instances which belongs to the jth
class. For the first case, these empty prototypes (N, (k) = 0) are deleted in step (3).
For the second case the category of the prototype needs to be changed as discussed
in the following subsection.

4.2.3. Changing a Prototype’s Category

In order to change the categories of the prototypes in step (4), we count the members
of each prototype. If a plurality of the members of a prototype belongs to the ith
class, for example, but the class category of that prototype initially is assigned as
7, we change the category of the prototype from j to i.

For a NNC, let T};; denote the number of instances from the kth class closest
to the jth prototype. Also let i.(j) denote the class category of the jth prototype.
The two-dimensional array containing 7} is generated by the following algorithm.

(1) Set Tjp =0for 1 <j < Ny, L< k< N,
(2) Forp=1to N,
(a) Read x, and 3,
(b) Find j such that d(xp, m;) is minimized. Let k& denote the value of i,
(c) Accumulate patterns as Ty, < Ty + 1
(3) For j =1 to Ny,
(a) Find k' that maximizes Ty
(b) If ic(j) = K/, go to 2. Otherwise change i.(j) to k¥’
(4) Stop.

4.2.4. Pruning Prototypes Based on Classification Error

The goal here is to develop an algorithm to eliminate the least useful prototypes for
step (7). Let k be the index of a candidate prototype to be eliminated. Then Err(k)
is the number of misclassified data instances after prototype k has been pruned.

(1) Set Err(k) =0,1 <k < Ny
(2) Forp=1to N,

(a) Identify two nearest prototypes (whose class category is | and m respec-
tively) to input vector x,, and let n denote the class label of x,
(b) Accumulate errors as

i Err(l) «— Err(l) + L ifn=In#m
i. BErr(l) «— Err(l),ifn=0l=m,orn#l#m
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iit. Err(l) — Err(l) —1,ifn#l,n=m

(3) Now find the smallest Err(k) denoted by Err(kmn,) and eliminate the ki, th
prototype. Note that Err(km:n) can be negative sometimes.
(4) Stop.

After one prototype has been deleted, we use another epoch of LVQ2.1 to adjust the
location of the remaining prototypes. Since LVQ is not guaranteed to converge, we
stop it whenever the training error increases or it has run for a predefined number
of iterations. This pruning process continues till there are N, prototypes remaining.

5. Examples

We study the performance of the proposed algorithm on three different data sets:
uniformly distributed data, normally distributed data and data from the handwrit-
ten numeral recognition problem.

5.1. Uniformly Distributed Data

We first apply the proposed algorithm to the artificially constructed data set of
Fig. 1, which contains 1000 instances. Here 400 belong to C'1 and 600 belong to Cs,
and both inputs have a uniform distribution. A testing data set which contains 500
instances is also generated. We select the initial number of prototypes as Ny, = 20
for each class. The “small disks” in Fig. 2 represent prototypes initially generated by
SOM, and the “diamonds” represent the pruned result. The 4 squares represent the
situation when 4 prototypes remain. Those 4 prototypes form the decision bound-
ary which is the dotted line in the figure. The solid line in the figure denotes the
optimal decision boundary for this problem. For this data, the number of prototypes
corresponding to the minimum of the testing error is not unique. Actually, a zero
valued testing error can always be obtained if the number of prototypes is greater
than or equal to 3. From the previous discussion of structural risk minimization, a
simpler classifier is always preferred if it can give the same testing error as a bigger
one, so the number of prototypes finally chosen is 3. It is concluded from Fig. 2 that
the proposed algorithm can find a good solution for this specific example, since
the final prototypes form the optimal decision boundary and the testing error is
zero. We notice that the performance will degrade a lot if we try to prune even one
additional prototype. It is also observed that more prototypes for the data do not
guarantee a better solution. In Fig. 2, the remaining 3 prototypes form the optimal
decision boundary. However, the decision boundary (the dotted line) formed by the
remaining 4 prototypes is not optimal even though the testing error is still zero.
The final solution with 3 prototypes is always reached as long as N,, is large enough.
Therefore, in this example the storage percentage (number of remaining prototypes
divided by N,) can approach zero.
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Fig. 2. The Design Result for Uniformly Distributed Data

5.2. Normally Distributed Data

The second experiment is performed on a normally distributed data set. As seen in
Fig. 3 (a), the data instances from both classes have different mean and variance.
We denote the instances outside the circle as class C7 and those inside the circle as
class Cs. The probability density function for the ith class is

_ 2 _ 2
Fonl@01C) = yeap—(E el | W)y, (12)

where ¢ = 1,2, mg,, m,, are the means for the ith class, and o; is the standard
deviation for the ith class. In this example, class C; has zero mean and o1 = 0.5,
and the mean of class Cy is [mg,;, my,] = [2,2] and o2 = 1. Each class contains 20000
instances, but only 4000 of them for each class are plotted in Fig. 3 (a) for clarity.
The optimal decision boundary calculated by Bayes decision rule for this example
is

(z+ %)2 + (y + 2)2 =4.48 (13)

which is the circle plotted in Fig. 3. If a data instance is outside the circle, we decide
it is from class C, otherwise it is from class Cs.

In this example we illustrate the pruning process in detail. The starting number
of prototypes Np. for each class is 30. In Fig.3 (b) we plot the initial prototypes
Ny, which is equal to 60, generated by the SOM algorithm. After applying the
condensing algorithm to the 60 initial prototypes there are only 6 of them left as
shown in Fig. 3 (c). In Fig. 3 (c) we illustrate the pruning process when the total
number of remaining prototypes Ny, varies from 6 to 2. Fig. 3 (d) is the pruning
process results (Ref. 34) in which the condensing algorithm was not used. The testing
results corresponding to each network are listed in Table 1. The first row denotes
the number of remaining prototypes, the second and the third rows represent the
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training and testing results (the values represent classification error in %) for the
corresponding network respectively. The testing data contains the same number of
instances as the training data but the two data sets have no patterns in common.

Remarks:

(1) The initial prototypes (Fig. 3 (b)) can approximately represent the probability
distribution of the data. This agrees with the result of (Ref. 35).

(2) The basic condensing algorithm is applied directly to the initial prototypes with-
out passing through the data. These prototypes work as a compressed version
of the original data.

(3) Comparing Fig. 3 (b) with the first subgraph in Fig. 3 (c), the condensing
algorithm does not delete all the internal prototypes but does remove some
border prototypes, both of which are undesirable. These problems result from
the fact that the basic condensing algorithm is sensitive to the data presentation
order (Ref. 10).

(4) The final five prototypes do not represent the probability distribution of the
data. Instead, they approximate the optimal Bayes decision boundary. The
number of prototypes needed for the final network is determined by the data
itself.

(5) Fig. 3 (d) shows the pruning process without the condensing algorithm. The
final network determined by the algorithm also has 5 prototypes with a testing
error 2.42% (Ref.34) which is slightly better. This performance difference is due
to drawbacks of the basic condensing algorithm, and it should be overcome if a
better condensing algorithm is used. Note that the computation has been sped
up significantly since the pruning process starts with only 6 prototypes.

Under certain conditions, a multilayer perceptron {MLP) with sigmoid activation
functions in the hidden layer can approximate a Bayes classifier (Ref. 36). We run
the back propagation (BP) algorithm (Ref. 37) in a three layer MLP and compare
it to the NNC. Using the early stopping method (Ref. 38), we first determine the
iteration number for a given number of hidden units and then increase the number of
hidden units until the testing error starts to increase. The best testing performance
for the MLP, 2.42%, is observed when it has 3 hidden units with 180 training epochs.
Note that the theoretical Bayes error percentage for this data is 2.41%. Thus, if the
data is normally distributed, both the NNC and MLP classifiers can approach the
optimal Bayes classifier. However, when data is not normally distributed, NNC is
often employed since it is not based on any model. We thus test the NNC design
on a real handwritten data set with features that are not normally distributed.

5.3. Handwritten Numeral Data Set

The raw data consists of images from handwritten numerals collected from 3,000
people by the Internal Revenue Service. We randomly chose 300 characters from
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Table 1. Training and testing error percentage of normal
distributed data for various networks Ngc.

Nie 2 3 4 5 6

Training Error (%) 2.97 253 2.53 248 254
Testing Error (%) 276 249 248 244 247

each class to generate training data with 3,000 characters (Ref. 39). Images are
32 by 24 binary matrices. The feature set contains 16 elements and the 10 classes
correspond to the 10 Arabic numerals. Using the same method we generated a
testing data set that contains 3000 instances.

The initial number of prototypes is chosen to be 30 for each class so that the
total initial number of prototypes is Ny = 300. After deleting empty prototypes,
215 prototypes remain, and 107 of them are left after applying the basic condensing
algorithm to the 215 prototypes. The training and testing results during the pruning
process are plotted in Fig. 4. The best testing classification error of 8.83% is obtained
when 62 prototypes remain. It is observed that if the number of prototypes increases
the training error can decrease. However, the testing results become worse, which
indicates that over training has occurred.

3 4 s 4 5 4 4
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o
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2
N 2 2 2 -2 2
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Fig. 3. Normal Distributed Data (a) The original data; (b) The initial 60 prototypes generated
by the SOM; (c) The pruning process with condensing algorithm; (d) The pruning process without
condensing algorithm.
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Number of Remaining Prototypes

Fig. 4. Training and Testing Results for Handwritten Data

To illustrate the advantages of the proposed algorithm, we compare the designed
network (Ni. = 62) to a directly designed network in which the pruning and con-
densing steps have been eliminated. The final network has 63 prototypes and the
testing performance is 11.26% which is much worse than that of the pruned network
even though they have almost the same number of prototypes.

An MLP classifier trained using BP is also compared to the LVQPRU algorithm.
It is found that when the number of hidden units is 20 with 550 iterations of training,
the MLP gets the best testing result. After training the MLP with 50 different sets
of initial weights, the best testing result we get is 9.87%.

6. Evaluation of the Algorithm

In this section, the ten-fold cross-validation technique is used to evaluate the pro-
posed algorithm. The computational complexity is also discussed.

6.1. Cross-Validation

We test the proposed algorithm with many other instance-based algorithms on 13
data sets from the machine learning database repository at the University of Cal-
ifornia, Irvine (Ref. 40). Data sets that have missing values are not considered in
this paper. The algorithms we compared include four groups as described by Wil-
son (Ref. 10): The first group consisting of algorithms which do not have high
accuracy, include CNN, IB2 and DROP1. The second group of algorithms has sim-
ilar noise-filtering properties, high accuracy, and uses most of the instances. These
include ENN, RENN and ALLKNN. The third group consists of two aggressive
storage reduction algorithms: ELGrow and Explore. They can achieve reasonably
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good accuracy with only about 2% of the data. The 1-NN algorithm is also included
in this group as a baseline. The final group consists of some advanced algorithms
which have high accuracy and reasonably good storage reduction. These include
1B3, DROP3 and DROP4.

All of the algorithms use k=1, and all except our LVQPRU algorithm use the
HVDM distance measure (Ref. 10). LVQPRU uses the weighted distance measure
discussed in section 3.

Ten-fold cross-validation followed by a paired-t test was used for each experi-
ment. In ten-fold cross validation, we first randomly divide the available data into
10 equal-sized parts. Each of the ten parts is held out as a test set, and each prun-
ing technique is given a training set D consisting of the remaining nine parts, from
which it returns a subset S (or a set of prototypes from LVQPRU). The held out
set is classified using only the instances or prototypes in S. The training and testing
procedure are repeated 10 times using a different one of the 10 parts as the test
set. The average testing accuracy over the 10 runs is reported for each algorithm
on each data set in tables 2 through 5. The average percentage of instances (or
prototypes) in D that were included in the S is also reported in the tables. The
average accuracy and storage percentage for each method over all of the 13 data
sets is shown in bold at the bottom of the tables.

Table 2. Comparison between LVQPRU and some historical algorithms.

CNN SP 1B2 SP DROP1 SP LVQPRU SP
Database (Acc.) (%) (Acc.) (%) (Acc.) (%) (Acc.) (%)
Australian 73.04 25.23 72.17 25.46 82.32 8.81 85.12 1.60
Glass 70.95 37.96 71.90 38.16 65.02 21.39 62.16 6.39
Heart 74.07 27.74 74.07 27.74 75.19 12.76 85.41 2.61
Image segment  91.43 15.66 91.91 15.29 86.91 8.41 92.17 4.93
Tonosphere 81.20 23.04 81.20 23.04 84.04 6.36 94.70 4.27
Iris 91.33 12.44 91.33 12.44 78.00 8.67 97.91 2.45
Liver-bupa 60.34 40.26 60.34 40.26 63.66 20.26 78.40 7.62
Led-creator 63.50 36.11 64.30 36.11 71.90 10.04 75.48 2.14
Pima-indians 64.58 34.13 64.58 34.13 71.35 16.32 78.68 1.82
Vehicle 64.66 38.69 64.66 38.69 63.35 16.52 77.55 4.58
Vowel 94.70 22.73 94.70 22.73 90.34 30.37 94.52 17.64
Wine 92.71 14.98 92.71 14.98 88.17 5.43 98.40 3.62
Zoo 98.89 10.13 98.89 10.13 93.33 17.41 96.91 9.03
Average 78.57 26.08 78.67 26.09 77.97 14.06 85.95 5.28

Note: ‘Acc.” denotes the classification accuracy in percent for the testing data, averaged over ten
runs. ‘SP’ denotes the average storage percentage for the ten runs, which is the ratio in percentage
of the number of instances {(or prototypes) in D that were included in S.

The bold values in each row are the highest accuracy or the lowest storage per-
centage for each data set obtained by the algorithm(s). A paired t-test is performed
between the highest accuracy and each of the other accuracy values. If they are not
significantly different at a 90% confidence level, the tested accuracy value is shown
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Table 3. Comparison between LVQPRU and three similar noise-filtering algorithms.

ENN SP RENN SP ALLKNN SP LVQPRU SP

Database (Acc.) (%) (Acc.) (%) (Acc.) (%) (Acc.) (%)

Australian 85.51 85.06 85.08 84.27 85.65 81.22 85.12 1.60
Glass 70.61 71.03 70.61 69.94 71.02 69.52 62.16 6.39
Heart 80.00 81.56 80.00 80.70 80.74 76.83 85.41 2.61
Image segment 92.62  92.64 92.38 92.56 91.67 92.51 92.17 4.93
Ionosphere 85.18 86.39 84.90 84.71 84.90 86.48 94.70 4.27
Iris 96.00 94.44 96.00 94.37 96.00 94.44 97.91 2.45
lliver-bupa 62.91 67.34 64.34 64.99 63.17 62.32 78.40 7.62
Led-creator 73.20 74.83 73.20 74.83 73.60 72.68 75.48 2.14
Pima-indians 73.31 74.51 73.44 73.61 72.79 70.30 78.68 1.82
Vehicle 68.67 74.56 68.44 72.97 68.80 69.98 77.55 4.58
Vowel 98.29 99.03 98.29 99.03 98.29 99.01 94.52 17.64
Wine 94.35 95.32 94.35 95.32 94.35 95.32 98.40 3.62
Zoo 95.56 98.52 95.56 98.52 95.56 98.52 96.91 9.03
Average 82.78 84.25 82.81 83.53 82.81 82.24 85.95 5.28

in italics. The paired ¢-test is also performed between the lowest storage percentage
and the others for each data set. If they are not significantly different at a 90%
confidence level, the tested storage percentage is shown in italics.

It is observed in Table 2 that LVQPRU has the highest accuracy for ten of the
thirteen data sets. It also results in the greatest data reduction, keeping only 5.28%
of the original data, to get an average accuracy of 85.95%. This represents a gain
of 7% over the other three of the first group of algorithms. The DROP1 algorithm
also has a good data reduction ratio and retains an average of 14.06% of the data
instances.

Results for the second group of algorithms are shown in Table 3. For example,
ALLKNN has the highest accuracy for three data sets but all the three noise filter-
ing algorithms retain over 80% of the data instances. LVQPRU again has a higher
accuracy for 9 data sets while only keeping 5.28% of the original data. The accu-
racies of this group of algorithms are much higher than those in the first group of
algorithms.

Table 4 lists the comparison results between LVQPRN and the third group
of algorithms. The basic 1-NN algorithm in table 4 keeps all the data instances
for classifying a data instance. Both ELGrow and Explore achieved greater data
reduction than LVQPRU, keeping a little more than 2% of the data instances.
However, their accuracies are somewhat poor. In contrast, LVQPRU keeps about 5%
of the data, but a much higher average accuracy has been achieved. The performance
of LVQPRU is even better than that of 1-NN which retains all the instances. This
occurs because LVQPRU has removed noisy instances and the remaining prototypes
have been optimized so that smoother and more accurate decision boundaries are
obtained.

Similar observations are obtained in Table 5, in which the comparison results
between LVQPRU and the fourth group of algorithms are listed. LVQPRUN again
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Table 4. Comparison between LVQPRU and two Encoding Length algorithms.

1-NN SP ELGrow SP Explore SP ILVQPRU SP

Database (Acc.) (%) (Acc.) (%) (Acc.) (%) (Acc.) (%)

Australian 81.45 100.00 83.19 0.35 85.51 0.34 85.12 1.60
Glass 72.36 100.00 63.12 3.17 67.34 4.57 62.16 6.39
Heart 78.52 100.00 77.78 0.82 84.45 0.82 85.41 2.61
Image segment 92.86 100.00 90.00 2.36 90.95 2.49 92.17 4.93
Tonosphere 86.32 100.00 77.49 0.92 80.34 1.01 94.70 4.27
Iris 94.67 100.00 90.00 3.18 96.00 2.52 97.91 2.45
Liver-bupa 62.91 100.00 62.79 0.84 59.06 1.00 78.40 7.62
Led-creator 73.40 100.00 73.00 1.18 72.30 1.23 75.48 2.14
Pima-indians 71.09 100.00 73.45 0.42 76.05 0.39 78.68 1.82
Vehicle 70.93 100.00 61.69 2.09 62.29 2.55 77.55 4.58
Vowel 99.24 100.00 56.83 6.69 70.09 9.21 94.52 17.64
Wine 95.46 100.00 91.57 2.00 96.57 2.25 98.40 3.62
Zoo 98.89 100.00 94.44 7.90 95.56 8.39 96.91 9.03
Average 82.93 100.00 76.57 2.45 79.73 2.83 85.95 5.28

Table 5. Comparison between LVQPRU and three advanced algorithms.

IB3 SP DROP3 SP DROP4 SP LVQPRU SP
Database (Acc.) (%) (Acc.) (%) (Acc.) (%) (Acc.) (%)
Australian 84.35 6.25 86.24 6.88 85.07 8.34 85.12 1.60
Glass 67.27 31.93 67.31 19.99 65.91 22.12 62.16 6.39
Heart 75.93 11.44 76.67 11.89 78.52 14.32 85.41 2.61
Image segment  90.00 14.92 93.10 8.07 92.86 9.60 92.17 4.93
Tonosphere 88.89 14.24 86.03 7.03 89.45 8.77 94.70 4.27
Iris 92.66 12.07 94.00 10.30 94.00 10.59 97.91 2.45
Liver-bupa 54.13 15.27 59.96 24.09 59.96 27.47 78.40 7.62
Led-creator 71.90 24,51 73.60 8.94 73.90 9.01 75.48 2.14
Pima-indians 68.48 13.11 72.00 15.13 72.52 17.84 78.68 1.82
Vehicle 66.21 29.42 69.03 19.88 68.93 21.37 77.55 4.58
Vowel 94.89 23.65 96.78 32.49 96.78 32.49 94.52 17.64
Wine 93.79 13.49 94.97 11.11 94.97 11.11 98.40 3.62
Zoo 98.89 17.78 93.33 19.38 93.33 19.38 96.91 9.03
Average 80.57 17.54 81.77 15.01 82.02 16.34 85.95 5.28

has higher accuracy for 8 of the data sets and always reduces storage the most.
Among all the algorithms, LVQPRU has the highest average accuracy of 85.95%,
and the second highest average accuracy of 82.93% is obtained by the basic 1-NN
algorithm. For storage reduction, LVQPRU ranks third. However, it still only keeps
about 5% of the data which is much less than the other algorithms except for
ELGrow and Explore.

6.2. Complexity of the Algorithm

The training speed of the algorithm is another issue that needs to be considered. A
reasonable (e.g., O(N2) or faster, where N, is the size of D) time bound is desirable
(Ref. 10).
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The computational complexity of LVQPRU is not fixed for different data sets.
Let the final size of S be m. Suppose we start the pruning with a size of § =
1.5m, and the average number of runs of LVQ during each pruning iteration is 5
(observed for most cases during the experiments). The algorithm passes through
the data 1.5m -5 = 7.5m times. In each pass it computes the distances between
the prototypes and each data instance instead of computing the distances among
instances, thus saving a lot of computation. This algorithm needs to compute about
7.5m - 1.5m - N, = 11.25m? - N,, distances and therefore it takes approximately
O(m?- N,) time. Based on tables 2 through 5, the average size for m is about 5% of
N, so that the complexity of the algorithm is reasonable. The above estimates do
not consider the condensing algorithm in LVQPRU which also saves computation.

For a very large data base, LVQPRU can be sped up. For example, the original
data could be replaced by SOM prototypes before LVQPRU is applied.

7. Conclusions

The basic nearest neighbor algorithm has had many successful applications but
suffers from inadequate distance functions, large storage requirements, and a slow
search speed. The LVQPRU pruning algorithm combines solutions to each of these
problems into a comprehensive system.

LVQPRU uses a distance measure derived from data to suppress random or
useless features. We observe that different algorithms are better suited for some
problems than others. This suggests that the success of an algorithm is highly de-
pendent on the structure of the data space. A general solution to the problem of
optimal instance reduction has to be adapted to the specific structure of the data.
We do not have a full understanding of this problem dependency, but our algo-
rithm is a first step in achieving such adaptiveness. LVQPRU determines a distance
measure directly from data, and it prunes prototypes, fine tunes the remaining pro-
totypes and selects the final classifier based solely on the data itself. We argue that
this procedure may be helpful to extract the information of the data structure and
so that the solution is adapted to the data.

To summarize, we introduce an algorithm which performs well over 13 data sets.
We have shown that LVQPRU archives better classification accuracies for most of
the data sets and selects about 5% of the original data as prototypes. The distance
measure used by LVQPRU only deals with continuous attributes, this remains an
area of future research of its possible extensions for other kinds of attributes.
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