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a b s t r a c t

This paper describes a new discretization algorithm, called Ameva, which is designed to work with super-
vised learning algorithms. Ameva maximizes a contingency coefficient based on Chi-square statistics and
generates a potentially minimal number of discrete intervals. Its most important advantage, in contrast
with several existing discretization algorithms, is that it does not need the user to indicate the number of
intervals.
We have compared Ameva with one of the most relevant discretization algorithms, CAIM. Tests per-
formed comparing these two algorithms show that discrete attributes generated by the Ameva algorithm
always have the lowest number of intervals, and even if the number of classes is high, the same compu-
tational complexity is maintained. A comparison between the Ameva and the genetic algorithm
approaches has been also realized and there are very small differences between these iterative and com-
binatorial approaches, except when considering the execution time.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Knowledge extraction and automated processing of databases
are important tasks to be performed by machine learning algo-
rithms. Several of these algorithms are expressly designed to han-
dle numerical or nominal data such as the CN2 algorithm (Clark &
Niblett, 1989; Su & Hsu, 2005), CLIP algorithms (Cios & Kurgan,
2002) and AQ algorithms (Kaufman & Michalski, 1999), hence such
algorithms cannot be applied to mixed-mode (both continuous and
discrete) data unless the continuous features are first discretized.
Other algorithms perform better with discrete-value attributes,
despite the fact that they can also handle continuous attributes
(Catlett, 1991; Kerber, 1992).

The discretization process converts continuous attributes into
discrete ones by yielding intervals in which the attribute value
can reside instead of singleton values, and by associating a discrete,
numerical value with each interval. The usual approach for learn-
ing tasks which use mixed-mode data is to perform discretization
prior to the learning process as a preprocessing step (Catlett, 1991;
Dougherty, Kohavi, & Sahami, 1995; Fayyad & Irani, 1992). There-
fore the discretization process first finds the number of discrete
intervals, and the width or boundaries for the intervals, given the
range of values a continuous attribute has (Kurgan & Cios, 2004;
Macskassy, Hirsh, Banerjee, & Dayanik, 2003). Furthermore, dis-
ll rights reserved.
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cretization itself may be viewed as a discovery of knowledge in
that critical values in a continuous domain may be revealed.

A desirable feature for practical discretization is that discretized
attributes have fewer values possible since a large number of pos-
sible attribute values contributes to a slow and ineffective process
of inductive machine learning (Catlett, 1991). However, the advan-
tages of discretizing during the learning process have not yet been
shown although some comparisons have been made (Dougherty et
al., 1995). For example, in Macskassy et al. (2003) it was shown
that, even on numerical-valued data, the results of text classifica-
tion on the derived text-like representation outperforms the more
naive numbers-as-tokens representation and, more importantly, is
competitive with numerical classification methods such as C4.5
(Quinlan, 1993), Ripper (Cohen, 1995) and SVM (Angulo, Anguita,
Gonzalez-Abril, & Ortega, 2008; Gonzàlez, Angulo, Velasco, &
Català, 2006).

A proliferation of discretization methods can be found in the lit-
erature; from unsupervised algorithms such as the equal-width
interval, equal-frequency interval k-mean clustering or unsuper-
vised MCC algorithms (Dougherty et al., 1995); to supervised algo-
rithms such as CAIM (Kurgan & Cios, 2004), ChiSplit (Bertier &
Bouroche, 1981), ChiMerge (Kerber, 1992), Chi2 (Liu & Setiono,
1997; Tay & Shen, 2002), Khiops (Boullé, 2004), CADD (Ching,
Wong, & Chan, 1995), maximum entropy (Kumar & Zhang, 2007;
Le & Satoh, 2007) or 1R (Holte, 1993). An extensive list may be
found in Dougherty et al. (1995).

In this paper, a new discretization method called Ameva based
on Chi-square statistics (v2) is presented. It is well known that
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Table 2
Columns which are different in the contingency table of X for discretization schemes
LðkÞ and Lðkþ 1Þ

L�k Lk Lkþ1

C1 n�1k = n1k þ n1kþ1
..
. ..

. ..
. ..

. ..
. ..

.

Ci n�ik = nik þ nikþ1
..
. ..

. ..
. ..

. ..
. ..

.

C‘ n�
‘k = n‘k þ n‘kþ1

n��k = n�k þ n�kþ1
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there are other approaches based on a Chi-square statistics: Chi-
Merge, ChiSplit and Chi2. All these algorithms need an expert to
provide parameters in order to use the algorithms which leaves a
wide margin for error (e.g. in the cases of noise, experts’ absence,
measurement errors, and bad data). For this reason the Ameva
algorithm is compared with the CAIM algorithm (Kurgan & Cios,
2004), which is one of the most relevant discretization algorithms,
since both share similar characteristics and do not need any user to
provide any parameter for the algorithms.

The remainder of the paper is organized as follows. Section II
presents the problem and the notation. Sections III and IV the Ame-
va criterion and Ameva algorithm are introduced. Section V com-
pares the Ameva method with other related methods. In the
following section an extensive experimental evaluation is carried
out. Finally, some conclusions are drawn.

2. Definition of the problem

Let X ¼ fx1; . . . ; xNg be a training data set of a continuous attri-
bute X of mixed-mode data such that each example xi belongs to
only one of the ‘ classes of the class variable denoted by
C ¼ fC1; . . . ; C‘g. A continuous attribute discretization is a function
D : X! C which assigns a class Ci 2 C to each value x 2 X.

Let us consider a discretization D which discretizes X into k dis-
crete intervals fL1; . . . ; Lkg where L1 ¼ ½ðd0; d1� and Lj ¼ ðdj�1; dj� for
j ¼ 2; . . . ; k such that dk is the maximal value and d0 is the minimal
value of attribute X and the values di are arranged in ascending
order. Thus, a discretization variable is defined as Lðk; X;CÞ ¼
L1; . . . ; Lkf g which verifies that, for all xi 2 X, a unique Lj exists such

that xi 2 Lj for i ¼ 1; . . . ;N and j ¼ 1; . . . ; k. The discretization vari-
able Lðk; X;CÞ (denoted as LðkÞ for the sake of simplicity) of attri-
bute X and the class variable C are treated from a descriptive point
of view and Table 1 is drawn up where nij denotes the total number
of continuous values belonging to the ith class that are within the
jth interval, ni� is the total number of instances belonging to the ith
class, and n�j is the total number of instances belonging to the jth
interval for i ¼ 1; . . . ; ‘ and j ¼ 1; . . . ; k (Table 2).

3. Ameva discretization

Given discrete attributes C and LðkÞ, the contingency coeffi-
cient, denoted by v2ðkÞ ¼def v2ðLðkÞ;C j XÞ, defined as

v2ðkÞ ¼ N �1þ
X‘
i¼1

Xk

j¼1

n2
ij

ni�n�j

 !
ð1Þ

is considered. It is straightforward to prove that

max
X;LðkÞ;C

v2ðkÞ ¼ Nðminf‘; kg � 1Þ: ð2Þ

Hence, the Ameva coefficient, AmevaðkÞ ¼def AmevaðLðkÞ;C j XÞ, is
defined as follows:

AmevaðkÞ ¼ v2ðkÞ
kð‘� 1Þ ð3Þ

for k; ‘ P 2. The Ameva criterion has the following properties:
Table 1
Contingency table for attribute X and discretization variable LðkÞ

Ci j Lj L1 � � � Lj � � � Lk ni�

C1 n11 � � � n1j � � � n1k n1�
..
. ..

. . .
. ..

. . .
. ..

. ..
.

Ci ni1 � � � nij � � � nik ni�
..
. ..

. . .
. ..

. . .
. ..

. ..
.

C‘ n‘1 � � � n‘j � � � n‘k n‘�
n�j n�1 � � � n�j � � � n�k N
� The minimum value of Ameva(k) is 0 and when this value is
achieved then both discrete attributes C and LðkÞ are statisti-
cally independent and viceversa.

� The maximum value of Ameva(k) indicates the best correlation
between the class labels and the discrete intervals. If k P ‘ then,
for all x 2 Ci a unique j0 exists such that x 2 Lj0 (the remaining
intervals (k� ‘) have no elements); and if k < ‘ then, for all
x 2 Lj, a unique i0 exists such that x 2 Ci0 (the remaining classes
have no elements), i.e. the highest value of the Ameva coefficient
is achieved when all values within a particular interval belong to
the same associated class for each interval.

� The aggregated value is divided by the number of intervals k,
hence the criterion favours discretization schemes with the low-
est number of intervals.

� In order to make a comparison with the CAIM coefficient, the
aggregated value is divided by ‘� 1.

� From (2), it is followed that AmevamaxðkÞ ¼def maxX;LðkÞ;C

AmevaðkÞ ¼ Nðk�1Þ
kð‘�1Þ if k < ‘ and N

k otherwise. Hence, AmevamaxðkÞ
is an increasing function of k if k 6 ‘, and a decreasing function
of k if k > ‘. Therefore, maxkP2AmevamaxðkÞ ¼ Amevamaxð‘Þ, i.e.
the maximum of the Ameva coefficient is achieved in the opti-
mal situation (all values of Ci are in a unique interval Lj and
viceversa).

Therefore, the aim of the Ameva method is to maximize the
dependency relationship between the class labels C and the con-
tinuous-values attribute LðkÞ, and at the same time to minimize
the number of discrete intervals k.

4. The Ameva algorithm: two approaches

Usually the problem of finding a discretization scheme LðkÞ
with a globally optimal value is a highly combinatorial problem.
Hence, a first approach is given which by starting with a single
interval, the algorithm, see Appendix A, works in a top-down
way, repeatedly dividing one of the existing intervals into two
new intervals by using a criterion which results in achieving the
optimal value of (3) after the split. This approach performs the dis-
cretization task at reasonable computational cost, hence it may be
applied to continuous attributes with a large number of unique val-
ues, and it then finds local maximum values of the Ameva criterion.

The number of labels is small in some problems and, as the
Ameva criterion provides few intervals, it is possible to define a ge-
netic algorithm for these problems (two approach) which finds glo-
bal maximum values of the Ameva criterion which has no
excessive computational cost.

Both approaches find the lowest number of intervals which pro-
vides the best ‘‘number of interval/association coefficient” ratio
based on the Ameva value.

5. The Ameva criterion versus other criteria

In this section, the Ameva method is compared with other dis-
cretization methods from a theoretical point of view.
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5.1. Criteria based on Chi-square statistics

ChiSplit, ChiMerge, Chi2, Khiops and Ameva are based on Chi-
square statistics for which the following lemma is very important.

Lemma 5.1. Let X ¼ x1; . . . ; xNf g be a training data set of a contin-
uous attribute X, and C be a class variable with ‘ classes. Let LðkÞ and
Lðkþ 1Þ be two discretization schemes where Lðkþ 1Þ is obtained
from LðkÞ by splitting an interval into two intervals. Hence

v2ðkþ 1ÞP v2ðkÞ; for k P 2

Proof. For the sake of simplicity the last interval is split into two
intervals. In this case the contingency table of LðkÞ and Lðkþ 1Þ
are the same except in the last columns. In Table 1 can be seen this
situation and some equalities where L�k is the k interval of LðkÞ,
and where Lk and Lkþ1 are the k and kþ 1 intervals of Lðkþ 1Þ) Fol-
lowing this notation and from (1) it is verified that

v2ðkþ 1Þ � v2ðkÞ ¼ N
X‘
i¼1

1
ni�

ðnikn�kþ1 � nikþ1n�kÞ2

n�kn�kþ1ðn�k þ n�kþ1Þ
ð4Þ

whereby the lemma is proved. h

On the other hand, the ChiSplit, ChiMerge and Chi2 algorithms
need a stopping criterion which is used to measure if the difference
between iterations is irrelevant. In these algorithms the stopping
criterion must be chosen by an expert from a set of parameters.
Nevertheless, in the Ameva algorithm, the stopping criterion is
automatically chosen. Let us see: Following (4), it holds that:

Amevaðkþ 1Þ ¼ k
kþ 1

AmevaðkÞ þ AAðkþ 1Þ
kþ 1

ð5Þ

where AAðkþ 1Þ ¼ N
ð‘�1Þ

P‘
i¼1

1
ni�

ðnikn�kþ1�nikþ1n�kÞ2
n�kn�kþ1ðn�kþn�kþ1Þ

. That is, Amevaðkþ 1Þ

is a weighted arithmetic mean of Ameva(k), with weight k
kþ1, and

of AAðkþ 1Þ with weight 1
kþ1. Thus, the stopping criterion is auto-

matically chosen owing to (5), whereby step 2.4 of the Ameva algo-
rithm may be written v2ðkÞ < ð‘� 1ÞkAAðkþ 1Þ. On the other hand,
it is important to note that if C and LðkÞ are considered as random
variables then it may be proved that the random variable v2ðkÞ pos-
sesses a distribution which is approximately a Chi-square for a suf-
ficiently large N. This approach is used in Khiops which is a bottom-
up method whose stopping criterion is based on the confidence le-
vel with the Chi-square statistic.

In this paper no comparison has been made with the above
methods, however in Risvik (1999) comparisons between four
other discretization algorithms were carried out and the results
of the Ameva algorithm and the ChiMerge algorithm in classifica-
tion accuracy can be compared. Furthermore, in Boullé (2004)
the results of the Ameva algorithm and the Chi2, ChiSplit and Khi-
ops algorithms in classification accuracy can also be compared.

5.2. Ameva versus CAIM

The CAIM criterion (Kurgan & Cios, 2004) uses the class attri-
bute dependency information as the criterion for the optimal dis-

cretization. It is denoted as CAIMðkÞ ¼def CAIMðLðkÞ;C j XÞ and,

given Table 1, is defined as CAIMðkÞ ¼ 1
k

Pk
j¼1

maxi¼1;...;‘fn2
ij
g

n�j
. The value

of CAIMðkÞ has the following properties: (i) The algorithm favours
discretization schemes where each interval has all its values
grouped within a single class label; (ii) minX;LðkÞ;CCAIMðkÞ ¼ N

k‘2;
(iii) The aggregated value is divided by the number of intervals k,
and therefore the criterion favours discretization schemes with
the lowest number of intervals; and (iv) the maximum value of
CAIMðkÞ is the best correlation between the class labels and the
discrete intervals. It is proved (Kurgan & Cios, 2004) that given k,
maxX;LðkÞ;CCAIMðkÞ ¼def CAIMmaxðkÞ ¼ N
k 6 CAIMmaxð2Þ; and (v) If the

attributes C and LðkÞ are statistically independent then
CAIMðkÞ ¼ 1

kN maxi¼1;...;‘n2
i� .

The main objective of the CAIM method is the same than the
Ameva method and the Ameva algorithm is similar to the CAIM
algorithm except that in step 2.4 a second condition is presented.
The complete conditional clause is (CAIM > GlobalCAIM or k < ‘).
This constraint overrides the fact that usually CAIMðkÞ >
CAIMð‘þ 1Þ for all k ¼ 2;3; . . . ; ‘, and therefore guarantees that
LðkÞ has at least as many intervals as the number of classes.

This clause causes a serious drawback since takes into account
that CAIMmaxðkÞ plunges hyperbolically, hence the CAIM algorithm
cannot always provide the minimum number of discrete intervals
because it is impossible to find a discretization scheme such that
k < ‘. It is empirically proved that if, in the conditional clause,
the constraint k < ‘ is omitted then there is a high probability that
the number of intervals is two or three.

On the other hand, it is seldom necessary to continue the pro-
cess for k > ‘ since almost always, CAIMð‘Þ > CAIMð‘þ 1Þ. This
may be seen by taking in account the values of CAIMmaxð‘Þ and
CAIMmaxð‘þ 1Þ, and the next section.

6. Empirical comparisons

The results of the Ameva algorithm compared with the CAIM
algorithm on several well-known, continuous and mixed-mode
data sets are presented in this section. To this end, three experi-
ments have been carried out.

In the first experiment Ameva has been compared with CAIM
with the same data sets as used in Kurgan & Cios (2004). For the
second experiment, four other data sets are used which have a
greater number of classes than in the data sets in the first experi-
ment. The last experiment is a comparison between the two sepa-
rate approaches of the Ameva algorithm, Ameva and AmevaR

proposed in this paper. In these experiments the CAIM and Ameva
algorithms are applied to every data set whereby new discretized
sets are obtained by following a 10-fold cross-validation scheme.
The discretized sets are used in a learning task performed by the
C4.5 algorithm (Quinlan, 1993).

The measure of the discretization quality of both algorithms is
given by the total number of intervals, the time spent in the dis-
cretization process, the number of nodes included in the decision
tree (generated by the C4.5 algorithm) and the accuracy achieved
in the identification.

6.1. First experiment

The names of the data sets (the number of classes and the short
forms) used are: Iris Plants (3, IRIS), John Hopkins University Iono-
sphere (3, ION), Statlog Project Heart Disease data set (2, HEA),
Pima Indians Diabetes (2, PID), Statlog Project Satellite Image (6,
SAT), Thyroid Disease (3, THY), Waveform (3, WAV) and Attitudes
Towards Workplace Smoking Restrictions (3, SMO). All data sets
are obtained from the UCI Machine Learning Repository (Blake &
Merz, 1998) except the last data set which was obtained from
the Statlib data set archive (Vlachos, 2000).

We compare the Ameva algorithm with the CAIM algorithm by
means of these data sets since in Kurgan & Cios (2004), CAIM was
compared with six other well-known discretization algorithms by
means of the same data sets and was found to be superior to them.

Table 3 shows the values of the quality criteria selected for
those data sets discretized by the CAIM and Ameva algorithms.
The best result in each case is shown in bold. Since a cross-valida-
tion method is followed, the mean value and standard deviation
are presented.



Table 3
Results obtained in the first experiment

Criterion Discretization method Dataset

IRIS SAT THY WAV

Mean StdD. Mean StdD. Mean StdD. Mean StdD.

Total number of intervals CAIM 12 0.000 216 0.000 18 0.000 63 0.000
Ameva 10.0 0.000 100.4 .699 15.6 .699 47.1 3.81

Execution time (in s) CAIM 0.012 0.004 3.69 0.011 0.924 0.007 9 0.021
Ameva 0.010 0.000 3.30 0.015 0.896 0.010 7.44 0.363

Tree size C4.5 CAIM 4.3 0.949 884 67.8 29.3 8.29 493 43.2
Ameva 4.3 0.949 528 48.9 17.6 1.26 319 27.4

% Accuracy C4.5 CAIM 93.3 5.4 85.8 1.9 98.7 0.520 76.2 2.6
Ameva 93.3 5.4 82.8 1.4 99.1 0.340 76.8 1.3

ION SMO HEA PID

Total number of intervals CAIM 67.0 .000 6.0 .000 12.0 0.000 16.0 0.000
Ameva 107.1 2.13 7.1 1.91 13.6 1.9 18.8 0.919

Execution time (in s) CAIM 0.76 0.006 0.115 0.006 0.031 0.003 0.192 0.004
Ameva 1.49 0.038 0.134 0.020 0.042 0.008 0.226 0.005

Tree size C4.5 CAIM 21.2 4.37 1.9 1.45 31.8 4.71 16.0 4.74
Ameva 18.7 3.02 1.00 0 31.2 5.29 23.2 7.48

% Accuracy C4.5 CAIM 88.9 5.5 69.5 .20 80.8 4.9 72.9 3.3
Ameva 88.0 4.6 69.6 .10 80.8 6.7 76.0 3.7
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Due to the drawback of the CAIM method, in all these data sets,
the number of intervals can be previously estimated by multiply-
ing the number of attributes (s) by the number of classes (‘). In
the ION data set, this rule is broken, whereby 67 intervals are ob-
tained from a theoretical value of 68 (34 � 2); the reason being that
one of the attributes in this data set presents only one single value
and is therefore included in one interval.

By comparing the number of intervals generated by the CAIM
and Ameva methods, the best results are provided by CAIM in four
data sets and by Ameva in the other four data sets. However, it is
interesting note that CAIM is superior in the three data sets with
only two classes and only one of the four data sets which presents
3 classes. Methods have similar behaviour with a clear advantage
of Ameva over CAIM in the SAT and WAV data sets, and a lower
number of intervals for CAIM in the ION data set.

The same situation is found in the execution time since a lower
number of intervals implies fewer iterations and the evaluation of
fewer candidate intervals.

From only the ‘‘number of nodes” perspective, there is a clear
advantage for Ameva whereby the results are better than CAIM
in 6 cases, equal to CAIM in 1 case and inferior in 1 case. This is
an important factor since a lower number of nodes conveys a faster
implementation of the identification task. Obviously, the more
intervals there are, the longer the time required and the greater
the tree. In the SAT and WAV data sets the C4.5 learning algorithm
generates 884 and 493 nodes over the CAIM discretized data sets
as opposed to 528 and 319 nodes generated for Ameva
respectively.

It is important to note that, in general, a lower number of inter-
vals implies a smaller tree size, but is not a sufficient condition as
can be seen in the ION, SMO and HEA data sets, in the C4.5
algorithm.

Finally, the accuracy is nearly identical in six data sets, with dif-
ferences lower than 1%. In the two remaining data sets there is a 3%
advantage for that method which produces a greater number of
intervals, CAIM for SAT and Ameva for PID.

The results shows a possible relation between the number of
classes and the number of intervals obtained with each method:
when the number of classes is equal to 2, CAIM produces fewer
intervals, and when the number of classes increases the method
which generates fewer intervals is Ameva.

Very few differences can be found between these two methods
in terms of the number of intervals, execution time and accuracy in
classification. The conclusion from this experiment is that there is
an equivalent behaviour of these two methods, with Ameva being
better than CAIM in the number of intervals obtained.

6.2. Second experiment

As previously stated, the CAIM algorithm is obliged to produce at
least the same number of intervals as classes in the data set. All the
sets presented in Kurgan& Cios (2004) have only two or three classes
except the SAT data set (six classes). Thus, in this second experi-
ment, the influence of the CAIM constraint, which produces as many
intervals as classes, is studied when the number of classes increases.

Four new data sets from the UCI ML Repository have been se-
lected with a number of classes greater than 3. These data sets
(the number of classes and their short forms) are: Glass Identifica-
tion Database (6, GLA), Image Segmentation database (7, SEG),
Vehicle Silhouettes (4, VEH), and Vowel Recognition (11, VOW).
The results of the experiment using these data sets are presented
in Table 4.

The results show that with these four data sets the Ameva algo-
rithm produces the lowest number of intervals since it is not influ-
enced by the CAIM constraint which dictates that the number of
intervals must be equal to or greater than the number of classes.
The fewer the intervals found, the fewer the iterations of the algo-
rithm. Hence, the Ameva implementation has a shorter execution
time, from a 20% reduction in the VEH to a 66% reduction in the
VOW data set. Analogously, a reduced number of intervals pro-
duces a smaller tree in the C4.5 algorithm. The number of nodes
obtained from the Ameva discretized data set are at most half of
its CAIM counterpart (and a third in the VOW data set). The num-
ber of intervals generated by CAIM with the SEG data set is lower
than the theoretical value calculated by following the aforemen-
tioned reasoning for the ION set.

The accuracy is slightly better in two of the four CAIM discret-
ized data sets. The differences in accuracy are wider in the SEG data
set (about 4%) and in the VOW data set (nearly 6%). However, if the
loss of accuracy for these data sets is contrasted with the radical
reduction in the number of intervals and the tree size, (�50% for
the SEG and �70% for the VOW in both criteria) it can be con-
cluded that, in some applications, this slight reduction in identifi-
cation is a minor inconvenience.

These results are coherent with the restriction that when the
number of intervals is equal to the number of classes then informa-



Table 4
Comparison of results obtained by CAIM, Ameva and AmevaR algorithms in data sets with a high number of classes

Criterion Discretization method Data sets

GLA SEG VEH VOW

Mean StdD. Mean StdD. Mean StdD. Mean StdD.

Total number of intervals CAIM 54 0 119.9 .316 72 0 110 0
Ameva 25.5 1.84 50.8 .422 44 1.63 30.2 0.919
AmevaR 54.9 0.748 127 0.000 72.1 0.316 110.1 0.316

Execution time (in s) CAIM 0.415 0.005 64.7 0.371 0.538 0.007 54.1 0.192
Ameva 0.280 0.036 30.2 0.596 0.444 0.037 16.2 0.543
AmevaR 0.554 0.019 59.0 0.316 0.582 0.007 53.9 0.368

Tree size C4.5 CAIM 58 11.7 187.2 20.1 164.2 27.0 635.7 47.5
Ameva 31.7 4.0 88.8 12.7 100.5 10.4 225.7 30.6
AmevaR 54.6 8.59 204.7 16.3 170.4 8.54 601.9 36.0

% Accuracy C4.5 CAIM 67.3 6.63 94.8 1.69 67.4 2.22 68.5 3.92
Ameva 68.3 6.89 90.5 2.26 67.9 3.89 62.5 5.07
AmevaR 65.4 9.30 95.0 1.80 68.1 3.00 70.8 4.5

Table 5
Results obtained by Ameva and the genetic algorithm (GA)

Criterion Discretization method Dataset

IRIS SAT THY WAV

Mean StdD. Mean StdD. Mean StdD. Mean StdD.

Total number of intervals Ameva 10 0.000 100.4 0.699 15.6 0.699 47.1 3.81
GA 10 0.000 100.4 0.843 15.5 .972 47.2 1.55

Execution time (in s) Ameva 0.010 0.000 3.30 0.015 0.896 0.010 7.44 0.363
GA 2.74 .218 234 5.07 9.17 .406 54.7 15.9

Tree size Ameva 4.30 0.949 527.9 48.9 17.6 1.26 318.7 27.4
C4.5 GA 4.5 1.58 565.2 43.7 16.9 3.70 337 18.8
% Accuracy Ameva 93.3 .056 82.8 0.056 99.1 0.056 76.8 0.056
C4.5 GA 96.0 0.056 81.7 0.056 99.1 0.056 77.1 0.056

ION SMO HEA PID

Total number of intervals Ameva 107.1 2.13 7.10 1.91 13.6 1.90 18.8 0.919
GA 104.6 2.07 8.1 0.568 13.8 1.03 18.6 0.699

Execution time (in s) Ameva 1.49 0.038 0.134 0.020 0.042 0.008 0.226 0.005
GA 13.6 0.404 1.92 .203 1.34 0.107 2.78 0.275

Tree size C4.5 Ameva 18.7 3.02 1 0.000 31.2 5.29 23.2 7.48
GA 20.4 4.35 1 0.000 26.9 4.01 24.3 6.16

% Accuracy C4.5 Ameva 88 0.056 69.6 0.056 80.8 0.056 76.0 0.056
GA 89.4 0.056 69.6 0.056 81.9 0.056 75.6 0.056
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tion is better-preserved for classification tasks (Kurgan, 2004).
Hence, this reduction in accuracy can be justified by the selection
of a lower number of intervals. Table 4 displays the results ob-
tained when the Ameva method includes the CAIM constraint
and generates at least as many intervals as classes. This version
of the algorithm is called AmevaR.

The results of AmevaR are similar to those obtained with CAIM
and present smaller differences in the four criteria under consider-
ation than with the original Ameva.

In the number of intervals, the only difference is a 5% increase
for the SEG data set. The execution time is the criterion which pre-
sents the greatest differences where AmevaR takes from 8% less
time to 25% longer than CAIM in the SEG and GLA data sets
respectively.

The number of nodes in the generated tree is very similar, vary-
ing from 7% smaller to 8% greater. The accuracy also has very minor
differences, where AmevaR is more accurate than CAIM in three
data sets.

This comparison demonstrates that the information lost due to
the lower number of intervals selected is the reason for the accu-
racy reduction in some data sets using AmevaR.

Hence, the conclusions to be drawn from this experiment are
that with a high number of classes, the Ameva method drastically
reduces the number of intervals, the execution time and the size of
the classification tree. On the other hand, a slight reduction in
accuracy can be found in some data sets due to the lower number
of intervals.

6.3. Third experiment

A genetic algorithm has been designed which finds global max-
imum values of the Ameva criterion for k ¼ 2; . . . ;2‘ and the same
data sets have been used as in the first experiment.

A comparison between the Ameva and the genetic algorithm
approaches has been realized and the results are shown in Table
5. There are very small differences between these iterative and
combinatorial approaches, except when considering the execution
time. The number of intervals from the discretized data sets are
nearly identical. The execution time increases exponentially since
the combinatorial approach must find the best value for all the
possible number of intervals, and does not stop when a value is
lower than the previous one. Hence execution time grows dra-
matically, from a 7� factor in WAV data set to a 274� factor
for IRIS.

The trees generated by the C4.5 algorithm are bigger in 4 data
sets, equal in 1 and smaller in 3 when applying the combinatorial
approach rather than with the original Ameva, although these dif-
ferences are no higher than 10%.



5332 L. Gonzalez-Abril et al. / Expert Systems with Applications 36 (2009) 5327–5332
The improvement over the genetic algorithm, in terms of accu-
racy, is very low. There is an improvement in only four data sets
which is never higher than 3% and usually lower than 1%. This im-
plies that the iterative algorithm, designed in Kurgan & Cios
(2004), is efficient since it finds a near-optimal solution of the max-
imum Ameva values. With little, if any, improvement in accuracy
over Ameva and such a long execution time there is no reason
for a practical implementation of the genetic algorithm.

7. Conclusions

A new algorithm for the discretization of continuous variables
featuring the selection of a low number of intervals and their limits
has been presented.

The Ameva algorithm uses a measure based on v2 as the crite-
rion for the optimal discretization which has the minimum num-
ber of discrete intervals and minimum loss of class attribute
interdependence. The algorithm uses a greedy approach, which
finds local maximum values of Ameva criterion and a stopping cri-
terion, which depends on the data with no user interaction re-
quired, that promotes a low number of intervals. When the
number of classes in the data set increases, Ameva computes very
reduced sets of intervals which lead to shorter execution times and
smaller decision trees than those generated by CAIM. Although the
identification accuracy might be slightly reduced in some situa-
tions, a drastic improvement of the other three criteria is guaran-
teed. A greatly improved algorithm is presented for those tasks
which involve more than 2 or 3 classes and for which a quick re-
sponse is required. Furthermore, even when the number of classes
is only 2 or 3, the Ameva algorithm matches or is an improvement
on CAIM in efficiency.
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Appendix A. The Ameva algorithm

Input: Data consisting of N examples, ‘ classes, and

continuous variables Xi

For every Xi do:
Step 1: Initialization of the candidate interval

boundaries and the initial discretization scheme.
1.1 Find the maximum ðdkÞ and minimum ðdoÞ values of Xi.
1.2 Form a set of all distinct values of Xi, in ascend-

ing order, and initialize all possible interval

boundaries B with the minimum, maximum and all the

midpoints of all the adjacent pairs in the set.

1.3 Set the initial discretization scheme to L:
f½d0; dk�g, set GlobalAmeva ¼ 0.
Step2. Consecutive additions of a new boundary which

results in the locally highest value of the Ameva

criterion.

2.1 Initialize k ¼ 1;
2.2 Tentatively add an inner boundary, which is not

already in L, from B, and calculate the corresponding
Ameva value.
2.3 After all the tentative additions have been tried,

accept the one with the highest value of Ameva.

2.4 If (Ameva > GlobalAmeva ) then update L with the

accepted boundary in step 2.3 and set

GlobalAmeva ¼ Ameva , else terminate.

2.5 Set k ¼ kþ 1 and go to 2.2

Output: Discretization scheme LðkÞ.
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