
MDL and Categorical Theories (Continued)J.R. QuinlanBasser Department of Computer ScienceUniversity of SydneySydney Australia 2006quinlan@cs.su.oz.auAbstractThis paper continues work reported at ML'94on the use of the Minimum DescriptionLength Principle with non-probabilistic the-ories. A new encoding scheme is devel-oped that has similar bene�ts to the ad-hoc penalty function used previously. Thescheme has been implemented in c4.5rulesand empirical trials on 25 real-world datasetsreveal a small but useful improvement in clas-si�cation accuracy.1 INTRODUCTIONWhen classi�ers are induced from data, the resultingtheories are commonly interpreted as functions fromattribute values to classes rather than to class distri-butions. So, for example, we talk of the accuracy of thelearned classi�er on unseen cases, measured as the per-centage of such cases for which the classi�er predictsthe actual class. Such theories and their interpretationwill be described as categorical, although the synonymdeterministic is also in common use.A concern when learning in real-world domains is thatthe theory should not over�t the data because overlycomplex theories often have lower accuracy on newcases.1 Among the many techniques for over�ttingavoidance such as cost-complexity pruning [Breiman,Friedman, Olshen, and Stone, 1994] and reduced-errorpruning [Quinlan, 1987], those based on the Mini-mum Description Length Principle [Rissanen, 1983]or the analogous Minimum Message Length Principle[George� and Wallace, 1985] are particularly attrac-tive because they have both an intuitive interpretationand a strong theoretical base. In the MDL approach,possible theories fTig derived from data D are charac-terized by their description length, the number of bits1However, Scha�er [1993] points out that all over�ttingavoidance is a form of bias that must lead to worse perfor-mance in some situations.

needed to encode both the theory and the data fromwhich it was learned. Choosing the theory Ti withminimum description length is equivalent to maximiz-ing the probability Pr(TijD) of Ti given the data.This raises an immediate problem because the besttheory learned from noisy data would not be expectedto �t that data exactly. If Ti is interpreted categor-ically and does not �t D, then Pr(TijD) is zero. AsPednault [1991] puts it,In the deterministic case, any theory thatdoes not absolutely agree with the observa-tions can be ruled out.In such situations, MDL makes sense only if the theo-ries are interpreted probabilistically:The objective sought by MML ... is not thecorrect classi�cation of the maximum num-ber of [unseen] cases, but the minimizationof the amount of information needed to de-termine the class once the category is known.[Wallace and Patrick, 1993, p18]Despite this, MDL is often used in situations where thelearned theory is assessed on the categorical accuracyof its predictions, e.g. [Quinlan and Rivest, 1989].Examples of tasks in which MDL leads to poor choicesamong competing categorical theories are given in[Quinlan, 1994]. For those tasks, theories with largercategorical error rates tend to assign an unexpectedlyhigh or low prior probability to the described class.That paper recommended an additional bias in favorof theories whose predicted class distribution matchesthat observed in the data. I can o�er no theoreticaljusti�cation for this preference, but it could be arguedfrom a more philosophical perspective that a theorylearned from data should accurately summarize thatdata. If a theory is intended to be interpreted categori-cally, it should not misrepresent the prior probabilitiesof the classes.Although limited empirical trials showed that this biasis e�ective in selecting theories with a lower categorical



error rate on unseen cases, its implementation usinga penalty function was rather ad-hoc and the paperconcluded:... a new encoding scheme that re
ected cat-egorical performance and reasonable prior as-sumptions would be more satisfying.An encoding scheme along the lines envisaged has nowbeen developed. The following section de�nes the kindof theories considered here and their use with MDL.After summarizing the problem and the previous ap-proach, the paper introduces the new encoding schemethat has been incorporated into a learning programc4.5rules [Quinlan, 1993]. Experiments on 25 real-world domains demonstrate the bene�t of the scheme.2 CLASS DESCRIPTIONTHEORIES AND MDLSymbolic classi�ers come in many forms including de-cision trees [Hunt, Marin, and Stone, 1966], decisionlists [Rivest, 1987], CNF and DNF expressions [Pa-gallo and Haussler, 1989], and concepts described inspecial-purpose logics [Michalski, 1980]. Like [Quin-lan, 1994], this paper concerns two-class tasks in whichthe learned theory is a description of one of the classes,called the target class, although the formalism in whichthis description is expressed is not important. A the-ory covers a case if the case matches the description;cases so covered are predicted to belong to the tar-get class while all other cases are assigned to the non-target class.The MDL Principle can best be explained in terms ofa communicationmodel in which a sender transmits toa receiver a description consisting of a theory T andthe data D from which it was derived [Quinlan andRivest, 1989]. The description length associated withT consists of the cost of a message encoding T itself(the theory cost) and then the data given T . Intu-itively, the length of the former component measurestheory complexity and that of the latter the degree towhich the theory fails to account for the data, so thatdescription length represents a balancing of model �tagainst complexity. If there is a choice among severaltheories, the MDL Principle states that the theory as-sociated with the shortest description length should bepreferred.We assume some agreed language in which all theoriesare expressed, so that the theory cost is the numberof bits needed to transmit the particular sentence rep-resenting T . The cost of encoding D given the theorycan be broken down into the bits needed to transmitthe attribute values for each case plus the bits requiredfor the cases' classes. The former is the same for alltheories and can be ignored, since description lengthsare used only to compare possible theories. For the lat-

ter, identifying each case's class given a theory comesdown to identifying the cases misclassi�ed by the the-ory, since their classes can be inverted under the two-class assumption. The number of bits needed to iden-tify the errors made by a theory is referred to as itsexceptions cost.Several methods for encoding exceptions are discussedin [Quinlan, 1994]. Instead of specifying such schemesin detail, this paper follows Wallace and Patrick [1993]in adopting a more abstract perspective. If messagesfm1;m2; :::g occur with probabilities fp1; p2; :::g, wepostulate an encoding scheme in which message mjrequires �log(pj) bits (all logarithms being taken tobase 2). Of course, this assumes that the probabilityof a message occurring is independent of the previousmessages and that the receiver also knows the relevantprobabilities fpjg.For instance, suppose that T misclassi�es e cases inD. The errors can be identi�ed by sending one of themessages fcorrect, incorrectg for each case in D withprobabilities e=jDj and 1 � e=jDj respectively. Sincethe receiver must know these probabilities in order todecode the messages, we �rst transmit e (which rangesfrom 0 to jDj). The total number of bits to be trans-mitted is thenlog(jDj+ 1)+ e � (�log( ejDj))+ (jDj � e)� (�log(1� ejDj )): (1)This will be called the uniform coding strategy sinceerrors across D are identi�ed as a single group.An alternative divided strategy identi�es separatelythe errors in the cases covered by the theory (the falsepositives) and those in the remaining cases (false neg-atives). If there are fp and fn of these respectively,and C and U are the numbers of cases covered and notcovered by the theory respectively, the exceptions costis log(C + 1)+ fp� (�log(fpC ))+ (C � fp)� (�log(1� fpC ))+ log(U + 1)+ fn � (�log(fnU ))+ (U � fn)� (�log(1� fnU )): (2)Although the divided strategy often requires more bitsthan the uniform strategy, the approach of identifyingerrors in subsets of the data is used in both [Quinlanand Rivest, 1989] and [Wallace and Patrick, 1993].



Table 1: Exceptions costs for �ve competing theoriesTheory False False Cases Uniform Divided BiasedPos Neg Covered Encoding Encoding EncodingT1 19 28 291 283.5 289.1 282.0T2 24 24 300 287.8 289.2 281.4T3 47 10 337 325.4 289.0 293.2T4 74 0 374 390.6 286.2 333.4T5 681 272 709 283.5 289.1 546.73 AN ANOMALY AND APREVIOUS SOLUTIONAs discussed in [Quinlan, 1994], MDL can lead to poorchoices among candidate categorical theories. One hy-pothetical illustration used in that paper supposes adataset of 1000 cases of which 300 belong to the tar-get class, with �ve candidate theories that give rise tovarious numbers of false positive and false negative er-rors as shown in Table 1. All �ve theories are furtherpresumed to have the same theory cost, so that MDLwill choose the theory with lowest exceptions cost. Inthis situation the uniform strategy will �nd an exacttie between T1, with 47 errors on the training data,and T5, with 953! The divided approach will choseT4, with 74 errors, over the equally complex theory T1that makes far fewer errors. The choices made by MDLin this (admittedly contrived) example are clearly atodds with intuition.The number of cases covered by a theory is given bytp + fp � fnwhere tp is the number of (true positive) cases belong-ing to the target class. In a categorical context, theproportion of cases covered by the theory can be in-terpreted as the predicted prior probability of the tar-get class. Theories T4 and T5, which cover 37.4% and70.9% of the cases respectively, are at marked vari-ance with the data in which the prior probability ofthe target class is 30%.In an attempt to force categorical theories to agreewith the training data in this respect, [Quinlan, 1994]penalizes atypical theories. The details are unimpor-tant here, but the idea is to multiply the descriptionlength of a theory by a factor based on the discrepancybetween the predicted proportion of target cases andthat observed in the data.4 A NEW SOLUTIONResorting to an ad-hoc penalty function is inherentlyunsatisfying, particularly since the principal attrac-tion of MDL methods is their clean theoretical base.My justi�cation for using it was an inability to �nda method for coding theories that favors those whose

predicted class distribution is similar to that observedin the data. I realized recently that I was concen-trating on the wrong component of description lengthand that the method of encoding exceptions could beadapted to prefer such theories.The proportions of target class cases predicted by atheory and observed in the training data are the samewhen the numbers of false positives and false negativesare equal. This suggests a new biased coding schemeas follows: Just as with the uniform scheme, the totalnumber e of errors is sent to the receiver. Instead oftransmitting the error messages for all the data, thesender �rst transmits the errors in the C cases coveredby the theory and then those in the U uncovered cases.Under the assumption that false positives and falsenegatives are balanced, the probability of error in thecovered cases is e=2C and this probability is used toencode the error messages for covered cases. Once thefalse positives have been identi�ed, the receiver cancalculate the true number of false negatives as e-fp,so the probability of error on the uncovered cases isknown to be fn=U . The total exceptions cost thenbecomes log(jDj+ 1)+ fp� (�log( e2C ))+ (C � fp)� (�log(1� e2C ))+ fn � (�log(fnU ))+ (U � fn)� (�log(1� fnU )): (3)There is a slight complication: if the number C ofcovered cases is small, e=2C may be greater than 1. Toovercome this problem while retaining symmetry, theabove scheme is followed when at least half the casesare covered by the theory; if less than half are covered,the (false negative) errors in the uncovered cases aretransmitted �rst, using the probability e=2U , followedby the false positives using fp=C.The �nal column of Table 1 shows the biased excep-tions costs for the �ve theories of Section 3. Theseare smaller than either the uniform or the divided en-coding costs when fp is close to fn, but larger whenthe assumption of balanced errors is grossly incorrect.



In this example, MDL would now place T1 and T2 wellahead of the other theories, an intuitively sensible out-come.5 APPLYING THE SCHEME TOC4.5RULESc4.5rules is a program that generates rule-based clas-si�ers from decision trees [Quinlan, 1993]. The algo-rithm proceeds in three phases:1. A rule if L1&L2&:::&Lk then class X is formu-lated for each leaf of the decision tree, where X isthe majority class at the leaf. The left-hand sideinitially contains every condition Li that appearsalong the path from the root of the tree to the leaf,but rules are usually generalized by dropping oneor more of these conditions. As a result, the rulesare no longer mutually disjoint.2. For each class in turn, all rules for that class areexamined and a subset of them selected.3. An order for these class rule subsets is then de-termined and a default class chosen.The second phase in which a subset of rules is selectedfor each class is guided by MDL. Although the learningtask may have any number of classes, every subset se-lection is essentially a two-class problem in which thegoal is to cover cases of the class in question while notcovering cases belonging to any other class. The de-scription length of each candidate subset is determinedas before by calculating its theory cost (to encode theconstituent rules) and exceptions cost (to identify mis-classi�ed cases). The subset with the lowest descrip-tion length is then chosen.2The use of MDL in c4.5rules �ts squarely in the con-text addressed by this paper, since a rule subset is acategorical theory that characterizes one class againstall other classes. If the new encoding is doing its job,it should lead to a better choice of rules for each classand, ultimately, to a more accurate classi�er.To test this hypothesis, two versions of c4.5ruleswere prepared that di�er only in the method used tocalculate exceptions costs. One version uses the uni-form strategy as set out in (1) since this has been foundto be generally more robust than the divided strat-egy [Quinlan, 1994]. The biased version employs the2If there are more than a few rules, the considerationof subsets is not exhaustive. From Release 6, C4.5 nowcarries out a series of greedy searches, starting �rst with norules, then a randomly-chosen 10% of the rules, then 20%,and so on; each search attempts to improve the currentsubset by adding or deleting a single rule until no furtherimprovement is possible. The best subset found in anyof these searches is retained. This di�ers from Release 5,described in [Quinlan, 1993], in which simulated annealingis used to search for the best subset.

new strategy of (3); like the uniform strategy, this alsotransmits a single global error count, but uses the ini-tial assumption of equal numbers of false positive andfalse negative errors to derive separate error probabil-ities for covered and uncovered cases.A comprehensive collection containing 25 real-worlddatasets was assembled from the UCI Repository. Theintention was to cover the spectrum of properties suchas size, attribute numbers and types, number of classesand class distribution, with no attempt to favor eithercoding strategy. A summary of their main character-istics is given in the Appendix.One hundred trials were carried out with each dataset.In each trial, the data were split randomly into a train-ing set (90%) and a test set (10%). Rule-based clas-si�ers were learned from the training data using bothversions of c4.5rules above, and these classi�ers wereevaluated on the test data. Table 2 shows, for eachdataset, the average over 100 trials of the respectiveerror rates on the test data and numbers of rules re-tained. The �nal columns record the numbers of trialsin which the biased and uniform exceptions costs ledto a more accurate classi�er.There are several ways in which these results can beused to compare the coding strategies:� The biased strategy gives a lower average errorthat the uniform approach in 20 of the 25 do-mains, the same error rate in two domains, anda higher error rate in three domains (credit ap-proval, horse colic, and sonar).� If the performance of a strategy on a dataset isjudged instead by the number of trials on which itis superior, the biased coding wins on 19 domains,ties on one, and loses on �ve domains.� The biased approach gives a more accurate classi-�er on 593 of the 2500 trials, versus 318 trials onwhich the uniform strategy comes out ahead.� For a particular domain, the ratio of the averageerror rate using the biased strategy to that ob-tained with the uniform approach measures theextent of the bene�t (values less than 1) or loss(values greater than one) associated with usingthe former. The values of this ratio range from0.94 (splice junction) to 1.02 (sonar), the averageacross all domains being 0.97. On a new domain,then, use of the biased strategy with c4.5ruleswould be expected to lead to a lower error ratethan if the uniform strategy were adopted.� When the above ratio is computed for just thetrials on which the strategies give di�erent num-bers of errors on the test data, the average ratio is0.93. If coding strategy matters for a trial, there-fore, the biased coding approach should give anerror rate considerably lower than that obtainedby the alternative.



Table 2: Comparison of biased and uniform exceptions coding strategies implemented in c4.5rules.Dataset Biased Coding Uniform Coding Trials SuperiorError Rules Error Rules Biased Uniform(%) (%)audiology 22.8 20.6 23.1 21.2 10 5auto insurance 25.0 19.1 26.1 18.9 16 7breast cancer (Wi) 4.5 8.5 4.5 8.6 2 2chess endgame 7.1 21.9 7.4 21.1 31 20Congress voting 4.5 6.3 4.7 6.4 4 1credit approval 15.9 15.0 15.8 15.6 14 21glass identi�cation 30.4 13.2 31.4 12.6 19 10heart disease (Cl) 23.1 11.1 23.1 11.2 7 9hepatitis 18.8 6.5 19.3 6.2 8 6horse colic 15.8 9.5 15.7 9.9 8 13hypothyroid 0.56 9.8 0.59 9.8 19 11image regions 4.0 28.1 4.1 27.4 28 23iris 4.7 4.1 4.9 4.1 1 0led digits 32.0 12.4 33.3 11.6 31 13lymphography 19.4 9.9 19.6 9.6 10 5nettalk (phoneme) 22.9 335 24.2 353 87 7nettalk (stress) 16.7 229 17.5 253 68 32Pima diabetes 27.6 13.3 27.7 13.1 34 37primary tumor 60.1 17.0 63.1 11.5 56 21promoters 16.5 8.2 16.9 8.2 5 1sick euthyroid 1.3 13.9 1.4 16.6 31 22sonar 31.1 7.0 30.7 7.5 6 13soybean disease 8.1 34.6 8.3 34.0 24 10splice junction 6.6 72.0 7.0 73.2 56 22tic-tac-toe 7.5 21.3 7.6 21.7 8 7� The number of rules retained is a rough indica-tor of the complexity of the �nal theory. In thisrespect there is no systematic di�erence betweenthe strategies: the biased coding approach leadsto fewer rules in 12 domains, the same numberof rules in three domains, and more rules in 10domains.By any of the accuracy metrics, the biased strategyde�ned in (3) emerges as clearly preferable to the uni-form strategy over these trials.6 RELATED RESEARCHThe anonymous reviewers drew my attention to two al-ternative approaches to selecting categorical theories,both of which resemble MDL in trading o� the accu-racy of a theory against its complexity. Both considerfamilies of loss functions, or criteria used to judge theappropriateness of the selected theory.Selecting a theory to minimize categorical error rate,under the title of the pattern recognition problem, isone of the tasks considered by Vapnik [1982]. He �rstderives an upper bound on the error rate of a selectedtheory such that, with con�dence 1-�, the true error

rate of the theory will not exceed the bound. Besidesfactors such as �, the amount to training data jDj, andthe observed error rate of the theory, this bound alsodepends on the capacity of the set of candidate the-ories { roughly, the largest amount of data that canbe partitioned into two subsets in all possible ways bythe theories. This is the basis for structural risk min-imization: candidate theories are �rst grouped into asequence of subsets with increasing capacity (e.g., byplacing all theories with similar complexity in one sub-set). The best candidate in each subset is found and a�nal theory selected by choosing one of the subsets, ei-ther by minimizing the upper bound on the error rateor by estimating the value of the loss function for eachsubset using a leave-one-out cross-validation.Barron [1991] is also concerned about problems arisingfrom the use of MDL with general loss functions anddevelops an alternative strategy of complexity regular-ization. A theory is chosen to minimize the sum of theerror rate and a complexity component; for categoricalloss functions, this is ejDj + �r mjDj (4)where m is the cost of encoding the theory and e is itsnumber of errors on the training dataD. So long as the



constant � has a value greater than 1=p2 log(2:718)or approximately 0.6, Barron shows that the expectedpenalty for choosing this theory approaches zero as jDjincreases. When this criterion (using �=0.6) was triedwith c4.5rules, however, results were quite poor { forthese datasets, the error rate component is dominatedby the complexity component and very few rules areselected.One reviewer also pointed out that exceptions codingcosts can often be reduced by quantizing the trans-mitted number of errors e. If e is expressed in unitsof pjDj, rounded to the nearest integer, the numberof bits needed to encode the error count is approxi-mately halved. This gain is o�set by the fact that themessage probabilities are now known with lower ac-curacy. However, such quantization does not appearto be advantageous in the application discussed here,representing as it does a windfall bene�t to values ofe for which the message probabilities do not changeappreciably. Among the theories of Table 1, T3 hasthe lowest biased encoding cost if quantization is em-ployed. Further, when the above quantization schemewas implemented in c4.5rules, performance was de-graded in almost all of the 25 domains.7 CONCLUSIONLike its predecessor, this paper focuses on the com-mon learning scenario in which a theory induced froma training set is used to classify an unseen case by pre-dicting its class, rather than by determining the pos-terior probabilities of all classes. The straightforwardapplication of the Minimum Description Length Prin-ciple in such situations can lead to anomalous choicesamong contending theories. Better choices are ob-tained by the addition of a bias towards theories whoseprobability of predicting each class is similar to therelative frequency of that class in the training data.Instead of relying on an arti�cial penalty function toimplement this bias, as was the case in [Quinlan, 1994],we have presented a biased exceptions coding strategythat achieves the same e�ect in a manner more in tunewith the MDL Principle itself.The new scheme has been tested in a rule learning pro-gram c4.5rules and has been shown to lead to greaterpredictive accuracy in most of the domains investi-gated. The improvement is not dramatic but couldbe described as \useful". The biased scheme involvesno additional computation and will be incorporated inthe next release of the C4.5 software.33Anyone who has C4.5 Release 5 (published by Mor-gan Kaufmann) can obtain an update to the latestversion via anonymous ftp from ftp.cs.su.oz.au, �lepub/ml/patch.tar.Z. This compressed tar �le containsreplacements for those source code �les that have beenchanged since Release 5. The more recent releases incorpo-rate several changes that a�ect the system's performance,
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Appendix: Summary of DatasetsThe following provides a brief description of thedatasets used in these experiments in terms of� size, the number of instances in the dataset;� attributes, the number and types of attributesinvolved (c=continuous-valued, b=binary,n=nominal); and� the number of distinct classes.Dataset Size Attributes Classesaudiology 226 60b+9n 24auto insurance 205 15c+10n 6breast cancer (Wi) 699 9c 2chess endgame 551 39b 2Congress voting 435 16n 2credit approval 690 6c+3b+6n 2glass identi�cation 214 9c 6heart disease (Cl) 303 8c+3b+2n 2hepatitis 155 cc+12b+1n 2horse colic 368 10c+1b+11n 2hypothyroid 3772 7c+20b+2n 5image regions 2310 19c 7iris 150 4c 3led digits 200 7b 9lymphography 148 18n 4nettalk (phoneme) 5438 7n 47nettalk (stress) 5438 7n 5Pima diabetes 768 8c 2primary tumor 339 17n 22promoters 106 57n 2sick euthyroid 3772 7c+20b+2n 2sonar 208 60c 2soybean disease 683 2b+33n 19splice junction 3190 60n 3tic-tac-toe 346 9n 2


