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Abstract

This paper continues work reported at ML’94
on the use of the Minimum Description
Length Principle with non-probabilistic the-
ories. A new encoding scheme is devel-
oped that has similar benefits to the ad-
hoc penalty function used previously. The
scheme has been implemented in C4.5RULES
and empirical trials on 25 real-world datasets
reveal a small but useful improvement in clas-
sification accuracy.

1 INTRODUCTION

When classifiers are induced from data, the resulting
theories are commonly interpreted as functions from
attribute values to classes rather than to class distri-
butions. So, for example, we talk of the accuracy of the
learned classifier on unseen cases, measured as the per-
centage of such cases for which the classifier predicts
the actual class. Such theories and their interpretation
will be described as categorical, although the synonym
deterministic is also in common use.

A concern when learning in real-world domains is that
the theory should not overfit the data because overly
complex theories often have lower accuracy on new
cases.! Among the many techniques for overfitting
avoidance such as cost-complexity pruning [Breiman,
Friedman, Olshen, and Stone, 1994] and reduced-error
pruning [Quinlan, 1987], those based on the Mini-
mum Description Length Principle [Rissanen, 1983]
or the analogous Minimum Message Length Principle
[Georgeff and Wallace, 1985] are particularly attrac-
tive because they have both an intuitive interpretation
and a strong theoretical base. In the MDL approach,
possible theories {T;} derived from data D are charac-
terized by their description length, the number of bits

"However, Schaffer [1993] points out that all overfitting
avoidance is a form of bias that must lead to worse perfor-
mance in some situations.

needed to encode both the theory and the data from
which it was learned. Choosing the theory 7; with
minimum description length is equivalent to maximiz-
ing the probability Pr(T;|D) of T; given the data.

This raises an immediate problem because the best
theory learned from noisy data would not be expected
to fit that data exactly. If T; is interpreted categor-
ically and does not fit D, then Pr(T;|D) is zero. As
Pednault [1991] puts it,

In the deterministic case, any theory that
does not absolutely agree with the ohserva-
tions can be ruled out.

In such situations, MDL makes sense only if the theo-
ries are interpreted probabilistically:

The objective sought by MML ... is not the
correct classification of the maximum num-
ber of [unseen| cases, but the minimization
of the amount of information needed to de-

termine the class once the category is known.
[Wallace and Patrick, 1993, p18]

Despite this, MDL is often used in situations where the
learned theory is assessed on the categorical accuracy
of its predictions, e.g. [Quinlan and Rivest, 1989].

Examples of tasks in which MDL leads to poor choices
among competing categorical theories are given in
[Quinlan, 1994]. For those tasks, theories with larger
categorical error rates tend to assign an unexpectedly
high or low prior probability to the described class.
That paper recommended an additional bias in favor
of theories whose predicted class distribution matches
that observed in the data. I can offer no theoretical
justification for this preference, but it could be argued
from a more philosophical perspective that a theory
learned from data should accurately summarize that
data. If a theory is intended to be interpreted categori-
cally, it should not misrepresent the prior probabilities
of the classes.

Although limited empirical trials showed that this bias
is effective in selecting theories with a lower categorical



error rate on unseen cases, its implementation using
a penalty function was rather ad-hoc and the paper
concluded:

. anew encoding scheme that reflected cat-
egorical performance and reasonable prior as-
sumptions would be more satisfying.

An encoding scheme along the lines envisaged has now
been developed. The following section defines the kind
of theories considered here and their use with MDL.
After summarizing the problem and the previous ap-
proach, the paper introduces the new encoding scheme
that has been incorporated into a learning program
C4.5RULES [Quinlan, 1993]. Experiments on 25 real-
world domains demonstrate the benefit of the scheme.

2 CLASS DESCRIPTION
THEORIES AND MDL

Symbolic classifiers come in many forms including de-
cision trees [Hunt, Marin, and Stone, 1966], decision
lists [Rivest, 1987], CNF and DNF expressions [Pa-
gallo and Haussler, 1989], and concepts described in
special-purpose logics [Michalski, 1980]. Like [Quin-
lan, 1994], this paper concerns two-class tasks in which
the learned theory is a description of one of the classes,
called the target class, although the formalism in which
this description is expressed is not important. A the-
ory covers a case if the case matches the description;
cases so covered are predicted to belong to the tar-
get class while all other cases are assigned to the non-
target class.

The MDL Principle can best be explained in terms of
a communication model in which a sender transmits to
a receiver a description counsisting of a theory T and
the data D from which it was derived [Quinlan and
Rivest, 1989]. The description length associated with
T consists of the cost of a message encoding T itself
(the theory cost) and then the data given T. Intu-
itively, the length of the former component measures
theory complexity and that of the latter the degree to
which the theory fails to account for the data, so that
description length represents a balancing of model fit
against complexity. If there is a choice among several
theories, the MDL Principle states that the theory as-
sociated with the shortest description length should be
preferred.

We assume some agreed language in which all theories
are expressed, so that the theory cost is the number
of bits needed to transmit the particular sentence rep-
resenting T'. The cost of encoding D given the theory
can be broken down into the bits needed to transmit
the attribute values for each case plus the bits required
for the cases’ classes. The former is the same for all
theories and can be ignored, since description lengths
are used only to compare possible theories. For the lat-

ter, identifying each case’s class given a theory comes
down to identifying the cases misclassified by the the-
ory, since their classes can be inverted under the two-
class assumption. The number of bits needed to iden-
tify the errors made by a theory is referred to as its
exceptions cost.

Several methods for encoding exceptions are discussed
in [Quinlan, 1994]. Instead of specifying such schemes
in detail, this paper follows Wallace and Patrick [1993]
in adopting a more abstract perspective. If messages
{m1,my. ...} occur with probabilities {p1,p2»,...}, we
postulate an encoding scheme in which message m;
requires —log(p;) bits (all logarithms being taken to
base 2). Of course, this assumes that the probability
of a message occurring is independent of the previous
messages and that the receiver also knows the relevant
probabilities {p;}.

For instance, suppose that T misclassifies e cases in
D. The errors can be identified by sending one of the
messages { correct, incorrect} for each case in D with
probabilities e/|D| and 1 — e/|D| respectively. Since
the receiver must know these probabilities in order to
decode the messages, we first transmit e (which ranges
from 0 to |D]). The total number of bits to be trans-
mitted is then

log(|D| + 1)
+ e x (—log(ﬁ))
+(ID] - €) x (~log(1 — ﬁ». (1)

This will be called the uniform coding strategy since
errors across D are identified as a single group.

An alternative divided strategy identifies separately
the errors in the cases covered by the theory (the false
positives) and those in the remaining cases (false neg-
atives). If there are fp and fn of these respectively,
and C' and U are the numbers of cases covered and not
covered by the theory respectively, the exceptions cost
is

log(C' + 1)

+ £ x (~log(42))

+(C = 1) x (~log(1 ~ 1)
+log(U + 1)

+ o x (“log(H2))

FU ) x (log(1 - ) (2)

/

Although the divided strategy often requires more bits
than the uniform strategy, the approach of identifying
errors in subsets of the data is used in both [Quinlan
and Rivest, 1989] and [Wallace and Patrick, 1993].



Table 1: Exceptions costs for five competing theories

Theory | False False Cases Uniform Divided Biased
Pos Neg  Covered | Encoding | Encoding | Encoding

T, 19 28 291 283.5 289.1 282.0

T, 24 24 300 287.8 289.2 281.4

Ty 47 10 337 325.4 289.0 293.2

T 74 0 374 390.6 286.2 333.4

15 681 272 709 283.5 289.1 546.7

3 AN ANOMALY AND A
PREVIOUS SOLUTION

As discussed in [Quinlan, 1994], MDL can lead to poor
choices among candidate categorical theories. One hy-
pothetical illustration used in that paper supposes a
dataset of 1000 cases of which 300 belong to the tar-
get class, with five candidate theories that give rise to
various numbers of false positive and false negative er-
rors as shown in Table 1. All five theories are further
presumed to have the same theory cost, so that MDL
will choose the theory with lowest exceptions cost. In
this situation the uniform strategy will find an exact
tie between 77, with 47 errors on the training data,
and 75, with 953! The divided approach will chose
T,, with 74 errors, over the equally complex theory T}
that makes far fewer errors. The choices made by MDL
in this (admittedly contrived) example are clearly at
odds with intuition.

The number of cases covered by a theory is given by

tp +fp — fn

where tp is the number of (true positive) cases belong-
ing to the target class. In a categorical context, the
proportion of cases covered by the theory can be in-
terpreted as the predicted prior probability of the tar-
get class. Theories Ty and Ts, which cover 37.4% and
70.9% of the cases respectively, are at marked vari-
ance with the data in which the prior probability of
the target class is 30%.

In an attempt to force categorical theories to agree
with the training data in this respect, [Quinlan, 1994]
penalizes atypical theories. The details are unimpor-
tant here, but the idea is to multiply the description
length of a theory by a factor based on the discrepancy
between the predicted proportion of target cases and
that observed in the data.

4 A NEW SOLUTION

Resorting to an ad-hoc penalty function is inherently
unsatisfying. particularly since the principal attrac-
tion of MDL methods is their clean theoretical base.
My justification for using it was an inability to find
a method for coding theories that favors those whose

predicted class distribution is similar to that observed
in the data. I realized recently that I was concen-
trating on the wrong component of description length
and that the method of encoding exceptions could bhe
adapted to prefer such theories.

The proportions of target class cases predicted by a
theory and observed in the training data are the same
when the numbers of false positives and false negatives
are equal. This suggests a new biased coding scheme
as follows: Just as with the uniform scheme, the total
number e of errors is sent to the receiver. Instead of
transmitting the error messages for all the data, the
sender first transmits the errors in the C' cases covered
by the theory and then those in the U uncovered cases.
Under the assumption that false positives and false
negatives are balanced, the probability of error in the
covered cases is e/2C and this probability is used to
encode the error messages for covered cases. Once the
false positives have been identified, the receiver can
calculate the true number of false negatives as e-fp,
so the probability of error on the uncovered cases is
known to be fn/U. The total exceptions cost then
becomes

log(|D| + 1)

+ fp % (~log(5=

2C )
+(C = fp) x (“log(1 = 52))

+ o x (Slog(T1)

+ (U = fn) x (=log(1 —

fn
) 6)

There is a slight complication: if the number C' of
covered cases is small, e/2C may be greater than 1. To
overcome this problem while retaining symmetry, the
above scheme is followed when at least half the cases
are covered by the theory; if less than half are covered,
the (false negative) errors in the uncovered cases are
transmitted first, using the probability e/2U, followed
by the false positives using fp/C.

The final column of Table 1 shows the biased excep-
tions costs for the five theories of Section 3. These
are smaller than either the uniform or the divided en-
coding costs when fp is close to fn, but larger when
the assumption of balanced errors is grossly incorrect.



In this example, MDL would now place T; and T, well
ahead of the other theories, an intuitively sensible out-
come.

5 APPLYING THE SCHEME TO
C4.5RULES

C4.5RULES is a program that generates rule-based clas-
sifiers from decision trees [Quinlan, 1993]. The algo-
rithm proceeds in three phases:

1. A rule if L1&Ly&...& Ly, then class X is formu-
lated for each leaf of the decision tree, where X is
the majority class at the leaf. The left-hand side
initially contains every condition L; that appears
along the path from the root of the tree to the leaf,
but rules are usually generalized by dropping one
or more of these conditions. As a result, the rules
are no longer mutually disjoint.

[N]

For each class in turn, all rules for that class are
examined and a subset of them selected.

3. An order for these class rule subsets is then de-
termined and a default class chosen.

The second phase in which a subset of rules is selected
for each class is guided by MDL. Although the learning
task may have any number of classes, every subset se-
lection is essentially a two-class problem in which the
goal is to cover cases of the class in question while not
covering cases belonging to any other class. The de-
scription length of each candidate subset is determined
as before by calculating its theory cost (to encode the
constituent rules) and exceptions cost (to identify mis-
classified cases). The subset with the lowest descrip-

tion length is then chosen.?

The use of MDL in c4.5RULES fits squarely in the con-
text addressed by this paper, since a rule subset is a
categorical theory that characterizes one class against
all other classes. If the new encoding is doing its job,
it should lead to a better choice of rules for each class
and, ultimately, to a more accurate classifier.

To test this hypothesis, two versions of C4.5RULES
were prepared that differ only in the method used to
calculate exceptions costs. One version uses the uni-
form strategy as set out in (1) since this has been found
to be generally more robust than the divided strat-
egy [Quinlan, 1994]. The biased version employs the

2If there are more than a few rules, the consideration
of subsets is not exhaustive. From Release 6, C4.5 now
carries out a series of greedy searches, starting first with no
rules, then a randomly-chosen 10% of the rules, then 20%,
and so on; each search attempts to improve the current
subset by adding or deleting a single rule until no further
improvement is possible. The best subset found in any
of these searches is retained. This differs from Release 5,
described in [Quinlan, 1993], in which simulated annealing
is used to search for the best subset.

new strategy of (3); like the uniform strategy, this also
transmits a single global error count, but uses the ini-
tial assumption of equal numbers of false positive and
false negative errors to derive separate error probabil-
ities for covered and uncovered cases.

A comprehensive collection containing 25 real-world
datasets was assembled from the UCI Repository. The
intention was to cover the spectrum of properties such
as size, attribute numbers and types, number of classes
and class distribution, with no attempt to favor either
coding strategy. A summary of their main character-
istics is given in the Appendix.

Oune hundred trials were carried out with each dataset.
In each trial, the data were split randomly into a train-
ing set (90%) and a test set (10%). Rule-based clas-
sifiers were learned from the training data using both
versions of C4.5RULES above, and these classifiers were
evaluated on the test data. Table 2 shows, for each
dataset, the average over 100 trials of the respective
error rates on the test data and numbers of rules re-
tained. The final columns record the numbers of trials
in which the biased and uniform exceptions costs led
to a more accurate classifier.

There are several ways in which these results can be
used to compare the coding strategies:

e The biased strategy gives a lower average error
that the uniform approach in 20 of the 25 do-
mains, the same error rate in two domains, and
a higher error rate in three domains (credit ap-
proval, horse colic, and sonar).

o If the performance of a strategy on a dataset is
judged instead by the number of trials on which it
is superior, the biased coding wins on 19 domains,
ties on one, and loses on five domains.

e The biased approach gives a more accurate classi-
fier on 593 of the 2500 trials, versus 318 trials on
which the uniform strategy comes out ahead.

e For a particular domain, the ratio of the average
error rate using the biased strategy to that ob-
tained with the uniform approach measures the
extent of the benefit (values less than 1) or loss
(values greater than one) associated with using
the former. The values of this ratio range from
0.94 (splice junction) to 1.02 (sonar), the average
across all domains being 0.97. On a new domain,
then, use of the biased strategy with c4.5RULES
would be expected to lead to a lower error rate
than if the uniform strategy were adopted.

¢ When the above ratio is computed for just the
trials on which the strategies give different num-
bers of errors on the test data, the average ratio is
0.93. If coding strategy matters for a trial, there-
fore, the biased coding approach should give an
error rate considerably lower than that obtained
by the alternative.



Table 2: Comparison of biased and uniform exceptions coding strategies implemented in C¢4.5RULES.

Dataset Biased Coding | Uniform Coding Trials Superior
Error  Rules | Error Rules Biased  Uniform
() (%)
audiology 22.8 20.6 23.1 21.2 10 5
auto insurance 25.0 19.1 26.1 18.9 16 7
breast cancer (Wi) 4.5 8.5 4.5 8.6 2 2
chess endgame 7.1 21.9 7.4 21.1 31 20
Congress voting 4.5 6.3 4.7 6.4 4 1
credit approval 15.9 15.0 15.8 15.6 14 21
glass identification | 30.4 13.2 314 12.6 19 10
heart disease (Cl) 23.1 11.1 23.1 11.2 7 9
hepatitis 18.8 6.5 19.3 6.2 8 6
horse colic 15.8 9.5 15.7 9.9 8 13
hypothyroid 0.56 9.8 0.59 9.8 19 11
image regions 4.0 28.1 4.1 27.4 28 23
iris 4.7 4.1 4.9 4.1 1 0
led digits 32.0 12.4 33.3 11.6 31 13
lymphography 19.4 9.9 19.6 9.6 10 5
nettalk (phoneme) | 22.9 335 24.2 353 87 7
nettalk (stress) 16.7 229 17.5 253 68 32
Pima diabetes 27.6 13.3 27.7 13.1 34 37
primary tumor 60.1 17.0 63.1 11.5 56 21
promoters 16.5 8.2 16.9 8.2 5 1
sick euthyroid 1.3 13.9 14 16.6 31 22
sonar 31.1 7.0 30.7 7. 6 13
soybean disease 8.1 34.6 8.3 34.0 24 10
splice junction 6.6 72.0 7.0 73.2 56 22
tic-tac-toe 7.5 21.3 7.6 21.7 8 7

e The number of rules retained is a rough indica-
tor of the complexity of the final theory. In this
respect there is no systematic difference between
the strategies: the biased coding approach leads
to fewer rules in 12 domains, the same number
of rules in three domains, and more rules in 10
domains.

By any of the accuracy metrics, the biased strategy
defined in (3) emerges as clearly preferable to the uni-
form strategy over these trials.

6 RELATED RESEARCH

The anonymous reviewers drew my attention to two al-
ternative approaches to selecting categorical theories,
both of which resemble MDL in trading off the accu-
racy of a theory against its complexity. Both consider
families of loss functions, or criteria used to judge the
appropriateness of the selected theory.

Selecting a theory to minimize categorical error rate,
under the title of the pattern recognition problem, is
one of the tasks considered by Vapnik [1982]. He first
derives an upper bound on the error rate of a selected
theory such that, with confidence 1-7, the true error

rate of the theory will not exceed the hound. Besides
factors such as 7, the amount to training data | D], and
the observed error rate of the theory, this bound also
depends on the capacity of the set of candidate the-
ories  roughly, the largest amount of data that can
be partitioned into two subsets in all possible ways by
the theories. This is the basis for structural risk min-
imization: candidate theories are first grouped into a
sequence of subsets with increasing capacity (e.g., by
placing all theories with similar complexity in one suhb-
set). The best candidate in each subset is found and a
final theory selected by choosing one of the subsets, ei-
ther by minimizing the upper bound on the error rate
or by estimating the value of the loss function for each
subset using a leave-one-out cross-validation.

Barron [1991] is also concerned about problems arising
from the use of MDL with general loss functions and
develops an alternative strategy of complexity reqular-
1zation. A theory is chosen to minimize the sum of the
error rate and a complexity component; for categorical
loss functions, this is

W_F/\”W (4)

where m is the cost of encoding the theory and e is its
number of errors on the training data D. So long as the



constant A has a value greater than 1/4/2 log(2.718)

or approximately 0.6, Barron shows that the expected
penalty for choosing this theory approaches zero as | D|
increases. When this criterion (using A=0.6) was tried
with C4.5RULES, however, results were quite poor for
these datasets, the error rate component is dominated
by the complexity component and very few rules are
selected.

One reviewer also pointed out that exceptions coding
costs can often be reduced by quantizing the trans-
mitted number of errors e. If e is expressed in units
of /| D|, rounded to the nearest integer, the number
of bits needed to encode the error count is approxi-
mately halved. This gain is offset by the fact that the
message probabilities are now known with lower ac-
curacy. However, such quantization does not appear
to be advantageous in the application discussed here,
representing as it does a windfall benefit to values of
e for which the message probabilities do not change
appreciably. Among the theories of Table 1, T3 has
the lowest biased encoding cost if quantization is em-
ployed. Further, when the above quantization scheme
was implemented in C4.5RULES, performance was de-
graded in almost all of the 25 domains.

7 CONCLUSION

Like its predecessor, this paper focuses on the com-
mon learning scenario in which a theory induced from
a training set is used to classify an unseen case by pre-
dicting its class, rather than by determining the pos-
terior probabilities of all classes. The straightforward
application of the Minimum Description Length Prin-
ciple in such situations can lead to anomalous choices
among contending theories. Better choices are ob-
tained by the addition of a bias towards theories whose
probability of predicting each class is similar to the
relative frequency of that class in the training data.
Instead of relying on an artificial penalty function to
implement this bias, as was the case in [Quinlan, 1994],
we have presented a biased exceptions coding strategy
that achieves the same effect in a manner more in tune
with the MDL Principle itself.

The new scheme has been tested in a rule learning pro-
gram C4.5RULES and has been shown to lead to greater
predictive accuracy in most of the domains investi-
gated. The improvement is not dramatic but could
be described as “useful”. The biased scheme involves
no additional computation and will be incorporated in
the next release of the C4.5 software.?

#Anyone who has C4.5 Release 5 (published by Mor-
gan Kaufmann) can obtain an update to the latest
version via anonymous ftp from ftp.cs.su.oz.au, file
pub/ml/patch.tar.Z. This compressed tar file contains
replacements for those source code files that have heen
changed since Release 5. The more recent releases incorpo-
rate several changes that affect the system’s performance,

The biased exceptions cost has also been tested in-
dependently by William Cohen on 37 domains that
include only seven of the datasets reported here. His
RIPPER2 rule induction system [Cohen, 1995] previ-
ously used a uniform coding strategy; when this was
altered to the biased strategy. the latter proved supe-
rior on 17 domains and inferior on 13. The average
ratio of the error rate using the biased encoding to
that using the uniform encoding is 0.96. but one do-
main in which the error rate dropped to zero has an
undue impact on this average. Excluding the highest
and lowest value of the ratio, we obtain an average over
the remaining datasets of 0.98, a more modest gain.

Finally, the particular strategy described in (3) is not
the only way to exploit an expected balance between
false positive and false negative errors. For instance,
we could transmit the number of false positive errors,
then estimate the probability of false negatives under
the assumption that there are the same number of er-
rors in the uncovered cases. It will be interesting to see
whether alternative biased encoding schemes might be
more beneficial still.
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