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Incremental training has been used for genetic algorithm (GA)-based classifiers in a dynamic
environment where training samples or new attributes/classes become available over time. In
this article, ordered incremental genetic algorithms (OIGAs) are proposed to address the incre-
mental training of input attributes for classifiers. Rather than learning input attributes in batch as
with normal GAs, OIGAs learn input attributes one after another. The resulting classification
rule sets are also evolved incrementally to accommodate the new attributes. Furthermore,
attributes are arranged in different orders by evaluating their individual discriminating ability.
By experimenting with different attribute orders, different approaches of OIGAs are evaluated
using four benchmark classification data sets. Their performance is also compared with normal
GAs. The simulation results show that OIGAs can achieve generally better performance than
normal GAs. The order of attributes does have an effect on the final classifier performance
where OIGA training with a descending order of attributes performs the best. © 2004 Wiley
Periodicals, Inc.

1. INTRODUCTION

Classification problems play a major role in various fields of computer sci-
ence and engineering, such as image processing and data mining. A number of soft
computing approaches, such as neural networks,1,2,3 evolutionary algorithms,4,5

and fuzzy logic,6,7 have been widely used to evolve solutions adaptively for clas-
sification problems. Among them, genetic algorithms (GAs) have attracted much
attention and become one of the most popular techniques for classification.4,8

Rule-based solution is widely used in GAs for classification problems, either
through supervised or unsupervised learning.9 Conventionally, most GA-based work
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in the literature concentrates on batch-mode, static domain, where the attributes,
classes, and training data are all determined a priori and the task of GA is to find
out the best rule sets that classify the available instances with the lowest error
rate.4,6 However, some learning tasks do not fit into this static model. As the real-
world situation is more dynamic and keeps changing, a classifier is actually exposed
to the changing environment, and it needs to evolve its solutions by adapting to
various changes. Classifiers may learn the solution from scratch, that is, from nil
initial knowledge, or revise the current solutions to incorporate new knowledge
and adapt to the changing environment. For example, new attributes may be found
as possible contributors for the classification problem. Then, the old solution can
be evolved to incorporate these new attributes, which demands some algorithms to
achieve this objective.

Many researchers have addressed incremental training algorithms and meth-
ods. Yamauchi et al.10 proposed incremental learning methods for retrieving inter-
fered patterns. In their methods, a neural network learns new patterns with
relearning of a small number of retrieved past patterns that interfere with the new
patterns. Fu et al.11 proposed an incremental backpropagation learning network
that employs bounded weight modification and structural adaptation learning rules
and applies initial knowledge to constrain the learning process. Polikar et al.12

introduced Learn��, an algorithm for incremental training of neural networks.
Guan and Li2 presented five incremental learning algorithms to retain the existing
neural network and train a new subnetwork incrementally when new attributes
come in. The new subnetwork and the old one are merged later to form a new
network. Su et al.3 proposed an adaptive incremental learning mechanism, which
employs pyramid-tower neural networks for automatic network structure design
and exploits information learned by the previously grown network to avoid retrain-
ing. However, most work explores incremental learning with statistical algorithms
or neural networks, and few touch on the use of evolutionary algorithms.

This article uses the incremental genetic algorithm (IGA) as a basic evolu-
tionary algorithm for incremental learning,13,14 and proposes ordered incremental
genetic algorithms (OIGAs) for the incremental training of input attributes for clas-
sifiers. Different from normal GAs, which learn input attributes in their full dimen-
sion, OIGAs learn the attributes one after another under a situation of continuous
incremental learning. Each time when learning a new attribute, OIGAs keep the
old solution and integrate it with the next new attribute to evolve further into a
new solution. Furthermore, attributes are arranged in different orders by evaluat-
ing their individual discriminating ability. By experimenting with different attribute
orders, different approaches of OIGAs are evaluated. The simulation results show
that OIGAs can achieve generally better performance than normal GAs. The order
of attributes does have an effect on the final classifier performance where OIGA
training with a descending order of attributes performs the best.

The rest of the article is organized as follows. In Section 2, the algorithm of
IGA is introduced. Then, the details of OIGAs are elaborated in Section 3. The
experimental results of OIGAs on four benchmark data sets and their analysis are
reported in Section 4. Section 5 presents some discussion based on the experimen-
tal results, and Section 6 concludes the article.
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2. INCREMENTAL GENETIC ALGORITHM ~IGA!

An incremental genetic algorithm (IGA) is proposed for incremental learning
of new attributes/classes for classifiers.13,14 It is developed on the basis of a nor-
mal GA. Figure 1 illustrates the pseudocode of IGA. When a new attribute is ready
to be integrated, an initial population is formed by integrating the old chromo-
somes (solutions) and new elements for the new attribute if available. Based on
fitness, some chromosomes are selected with a roulette wheel selection. Crossover
and mutation will be then applied on these selected chromosomes and the child
population is thus generated. A certain percentage of the parent population will be
preserved and the rest will be replaced by the child population. The evolution pro-
cess will continue until it satisfies the stopping criteria.

2.1. Encoding Mechanism

We use the non-fuzzy IF-THEN rules with continuous attributes for classifi-
ers. A rule set consisting of a certain number of rules is a solution candidate for a
classification problem.

An IF-THEN rule is represented as follows:

Ri : IF ~V1min � x1 � V1max! ∧ ~V2min � x2 � V2max! . . .

∧ ~Vnmin � xn � Vnmax) THEN y � C (1)

where Ri is a rule label, n is the number of attributes, ~x1, x2, . . . , xn ! is the input
attribute set, and y is the output class category assigned with a value of C. Vjmin

and Vjmax are the minimum and maximum bounds of the j th attribute xj , respec-
tively. We encode rule Ri according to the diagram shown below:

Figure 1. Pseudocode of IGA.
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Antecedent element 1 . . . Antecedent element n Consequence element

Act1 V1min V1max . . . Actn Vnmin Vnmax C

where Actj denotes whether condition j is active or inactive, which is encoded as 1 or 0.
Note: If Vjmin is larger than Vjmax at any time, this element will be regarded as an invalid ele-
ment. Invalid elements will make no contribution in the classification rule.

Each antecedent element represents an attribute, and the consequence ele-
ment stands for a class. Each chromosome CRj consists of a set of classification
rules Ri ~i � 1,2, . . . , m! by concatenation:

CRj � �
i�1, m

Ri j � 1,2, . . . , s (2)

where m is the maximum number of rules allowed for each chromosome, and s is
the population size. Therefore, one chromosome will represent one rule set. Because
we know the discrete value range for each attribute and class a priori, Vjmin , Vjmax ,
and C can be encoded each as a character by finding their positions in the ranges.
Thus, the final chromosome can be encoded as a string.

2.2. Genetic Operators

One-point crossover is used in this article. It can take place anywhere in a
chromosome. Referring to the encoding mechanism, as all chromosomes have the
same structure, the crossover of two chromosomes will not cause inconsistency.
On the contrary, the mutation operator has some constraints. Different mutation is
available for different elements. For example, if an activeness element is selected
for mutation, it will just be toggled. Otherwise when a boundary-value element is
selected, the algorithm will randomly select a substitute in the range of that attribute.
The rates for mutation and crossover are selected as 0.01 and 1.0.

We set the survival rate as 50% (SurvivorsPercent � 50%), which means half
of the parent chromosomes with higher fitness will survive into the new genera-
tion, whereas the other half will be replaced by the newly created children result-
ing from crossover and/or mutation. Roulette wheel selection is used in this article
as the selection mechanism.15 In this investigation, the probability that a chromo-
some will be selected for mating is given by the chromosome’s fitness divided by
the total fitness of all the chromosomes.

2.3. Fitness Function

As each chromosome in our approach comprises an entire rule set, the fitness
function actually measures the collective behavior of the rule set. The fitness func-
tion simply measures the percentage of instances that can be correctly classified
by the chromosome’s rule set.

Because there is more than one rule in a chromosome, it is possible that there
can be multiple rules matching the conditions for all the attributes but predicting
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different classes. We use a voting mechanism to help resolve any conflict. That is,
each rule casts a vote for the class predicted by itself, and finally the class with the
highest votes is regarded as the conclusive result. If any classes tie on one instance,
it means that this instance cannot be classified correctly by this rule set.

2.4. Stopping Criteria

There are three factors in the stopping criteria. The evolution process stops
after a preset generation limit, or when the best chromosome’s fitness reaches a
preset threshold (which is set as 1.0 through this article), or when the best
chromosome’s fitness has shown no improvement over a specified number of
generations—stagnationLimit. The detailed settings are reported along with the
corresponding results.

2.5. Initial Population for IGA

The formation of the initial population is one of the main features of IGA, in
which the integration of old chromosomes with new elements is performed. Fig-
ure 2 shows how the new element for a new attribute is inserted into an old rule to
form a new rule. Note that it only shows the operation on a single rule for the
purpose of simplicity. The other rules in the chromosome will undergo similar
operations.

Figure 3a illustrates the formation of a new population under IGA and Fig-
ure 3b shows the corresponding pseudocode of how new chromosomes are created
by integrating old chromosomes with new elements. We can see that IGA copies
the group chromosomes into the new chromosomes, and new elements are inte-
grated with the old chromosomes with a class-matching mechanism as explained
in Figure 3b.

3. ORDERED INCREMENTAL GENETIC ALGORITHMS ~OIGAs!

Let us assume a classification problem has c classes in the n-dimensional
pattern space, and p vectors Xi � ~xi1, xi2, . . . , xin !, i � 1,2, . . . , p, p �� c, are
given as training patterns. The task of classification is to assign instances to one
out of a set of predefined classes, by discovering certain relationship among

Figure 2. Formation of a new rule in a new chromosome.
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attributes. Then, the discovered rules can be evaluated by classification accuracy
or error rate either on the training data or test data.

Figure 4 illustrates the concepts of normal GAs and OIGAs. As shown in
Figure 4a, a normal GA maps attributes to classes directly in a batch manner, which
means all the attributes, classes, and training data are used together to train a group
of GA chromosomes. OIGAs are significantly different. As shown in Figure 4b,
they consist of several stages, each stage employing an IGA to accommodate a
new attribute. They may start from nil knowledge. With the continuous introduc-
tion of new attributes, the rule set can be incrementally evolved step by step and
achieve the final solution. OIGAs can also stop at any intermediate stage, and the
solution at that time can be used to tackle the problem with a subset of attributes.

The single-attribute evolution modules (SEMs) are used to separately evolve
a single attribute, and the resultant group chromosomes are used as new elements
for the new attribute in IGA (cf. Figures 1 and 3b). Considering that it is relatively
easy to evolve a single attribute, we choose the parameters for SEMs as half of the
values used in the normal iteration to reduce the time cost. This means generation-
Limit, ruleNumber, and popSize are set as half of the normal iteration values.

Figure 3. (a) Illustration for forming a new population under IGA. (b) Pseudocode for inte-
grating old chromosomes with new elements.
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Following the notations presented above, we denote each stage of OIGAs as

fi : ~ fi�1, Xi !r C i � 1,2, . . . , n (3)

where fi is a solution for the problem with i attributes, and f0 is a special case—nil
solution. Xi is the vector of training patterns with i attributes, and C is the set of
output classes. In each stage i, Xi�1 is expanded into Xi by introducing the new ith
attribute, and the old solution fi�1 is also used to help evolve a new solution fi .
Therefore, ~ f0, f1, . . . , fn ! provides the corresponding solutions with the incremen-
tal introduction of new attributes, and fn is the final solution accommodating the
whole set of attributes.

Figure 5 shows the algorithms for OIGAs. Note that the function of SEMs is
fulfilled in step 5. In step 6, the new elements obtained from step 5 will be inte-
grated with the old chromosomes, as presented in Section 2.5. Step 1 and step 2 in
OIGAs are used to select the order of attributes for incremental training. Each
attribute will be evaluated, and its individual discriminating ability is measured by
the training and test classification rates achieved. Both rates can be used as the
metric. In this article, the average of these two rates is used as the metric. We have
some further discussions on this issue in Section 5. With the individual discrimi-
nating ability of each attribute computed, there are a number of options for the
order of attributes available for incremental training, considering the different
sequence combinations of attributes. In this article, four choices are selected for
experiments, namely, descending order, ascending order, original order, and ran-
dom order. As indicated by their names, each approach arranges attributes in a

Figure 4. Illustrations of normal GAs and OIGAs: (a) normal GA-based solution and (b) illus-
tration of OIGAs.
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specific order. Descending order means attributes are arranged in a descending
manner according to their discriminating ability, whereas in ascending order,
attributes are arranged in reverse order. Original order maintains the same order as
those in the original data set, whereas random order arranges attributes randomly.
After the order of attributes is selected, attributes will be presented for incremen-
tal training in the prescribed sequence.

4. EXPERIMENTS AND ANALYSIS

We have implemented several classifiers running on four benchmark data sets,
which are the yeast data, glass data, wine data, and cancer data. They all are real-
world problems, and are available in the UCI machine learning repository.16 Each
data set is equally partitioned into two parts. One half is for training and the other
half is for testing.

All experiments are completed on Pentium III 650-MHz PCs with 128 MB
memory. The results reported are all averaged over 10 independent runs. The

Figure 5. Algorithms for OIGAs.
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parameters, such as mutation rate, crossover rate, generation limit, stagnation limit,
and so on, are given under the results. We record the evolution process by noting
down some indicative results, which include initial classification rate (CR), gen-
eration cost, training time, training CR, and test CR. (Their exact meanings can be
found in the notes under Table I.) Only one attribute is introduced during each
iteration in OIGAs, and the sequence of introducing attributes is determined by
the order selected.

The yeast problem predicts the protein localization sites in cells. It has 8
attributes, 9 classes, and 1484 instances. Table I shows the individual discriminat-
ing ability of each attribute of the yeast data. Each column records an independent
evolution process for each attribute. It has an initial CR that is the initial classifi-
cation rate achieved on the training data with the randomly generated population.
After some generations (training time), the classifier achieves an ending CR on
the training data and a test CR on the test data. As explained earlier, the attributes
are ranked according to the averaged values of training and test CRs. Using this
rank, the attribute sequence for the four approaches of OIGAs can be determined
accordingly.

The classifier performance on the yeast data with the four approaches is shown
in Table II. For each approach, the whole learning process is recorded. It consists
of several columns, each of which corresponds to one iteration in the algorithm for
OIGAs (cf. Figure 5). The bottom part of Table II provides a summary for all
OIGAs. The generations and training time consumed in all stages are summed up.
The initial CR in the summary table is actually the initial CR with the first attribute,
which is different from the initial CR for a normal GA (with the whole set of
attributes). The ending CR and test CR are the final training and test CRs with the
whole attribute set introduced. They are also compared to normal GA with the
improvement percentage computed.

Table I. Individual discriminating ability of each attribute of the yeast data.

Att. 1 Att. 2 Att. 3 Att. 4 Att. 5 Att. 6 Att. 7 Att. 8

Initial CR 0.2595 0.2723 0.2903 0.2636 0.2898 0.2579 0.2817 0.2656
Generations 55.5 55 52.2 55.3 33.2 39.4 38.1 43.2
T. time (s) 139.1 138.2 130.8 135.4 90.9 89.2 96.3 105.5
Ending CR 0.3089 0.3078 0.3724 0.3625 0.2906 0.3005 0.2896 0.3023
Test CR 0.3065 0.2972 0.368 0.3452 0.2893 0.2925 0.2879 0.2929

Ave. CR 0.3077 0.3025 0.3702 0.3539 0.29 0.2965 0.2888 0.2976

Rank 3 4 1 2 7 6 8 5

mutationRate � 0.01, crossoverRate � 1, survivorsPercent � 50%, ruleNumber � 30,
popSize � 100, stagnationLimit � 30, generationLimit � 60.
Initial CR: the best classification rate achieved by the initial population; Generations: the gen-
eration needed to reach the stopping criteria; T. time (s): the training time cost, and its unit is
second; Ending CR: the best classification rate achieved by the resulting population on the train-
ing data; Test CR: the classification rate achieved on the test data.
The other tables follow the same notations as this table.
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Figure 6 shows the performance comparison among OIGAs and a normal GA
on the yeast data in terms of training and test CRs. As a normal GA uses the whole
set of attributes in batch, there are only two points in the figure. Conversely, OIGAs
each have a curve to show their incremental training process. From Table II and
Figure 6, it is found that the training and test CRs rise gradually with the introduc-
tion of attributes for all OIGAs. We also find that all OIGAs outperform a normal
GA in terms of training CR and test CR, with a significant improvement around
10%–30%. Among the four approaches with different attribute orders, OIGA-
Desc achieves the best performance, OIGA-Asce achieves the worst, and OIGA-
Orig and OIGA-Rand lie in the middle.

Table II. Performance comparison on the yeast data—OIGAs and normal GA.

OIGA_Desc Add Att. 3 Add Att. 4 Add Att. 1 Add Att. 2 Add Att. 8 Add Att. 6 Add Att. 5 Add Att. 7

Initial CR 0.2714 0.3691 0.4024 0.4061 0.4198 0.4259 0.4477 0.4415
Generations 55.2 53.5 51.9 52.9 55.7 58.7 46.8 50.7
T. time (s) 147.8 217.3 238.2 273.5 311.5 347.7 303.2 324.5
Ending CR 0.3721 0.4096 0.4181 0.4255 0.4416 0.4508 0.4559 0.4573
Test CR 0.365 0.3918 0.3961 0.3989 0.407 0.4128 0.4131 0.4135

OIGA_Asce Add Att. 7 Add Att. 5 Add Att. 6 Add Att. 8 Add Att. 2 Add Att. 1 Add Att. 4 Add Att. 3

Initial CR 0.2644 0.2898 0.2943 0.2996 0.3009 0.3086 0.3237 0.3636
Generations 34.7 33.4 45.8 39.5 50.8 53.8 54.4 57.3
T. time (s) 94.3 161.5 234.2 228.5 311.2 343.9 373.9 399.5
Ending CR 0.2892 0.2902 0.2999 0.3009 0.3125 0.3233 0.3574 0.3919
Test CR 0.2881 0.2885 0.2923 0.2923 0.2965 0.3074 0.3363 0.3609

OIGA_Orig Add Att. 1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att. 7 Add Att. 8

Initial CR 0.2612 0.3061 0.3333 0.3763 0.4111 0.4046 0.4221 0.4129
Generations 58.2 50.1 57.7 53.9 50.3 56.1 50.8 52.4
T. time (s) 175.5 245 319.5 338.8 353.9 410.5 401.4 410.9
Ending CR 0.309 0.3171 0.385 0.4144 0.422 0.427 0.4286 0.4326
Test CR 0.3073 0.3108 0.3677 0.39 0.3911 0.3935 0.3943 0.396

OIGA_Rand Add Att. 2 Add Att. 1 Add Att. 4 Add Att. 3 Add Att. 7 Add Att. 5 Add Att. 6 Add Att. 8

Initial CR 0.254 0.3075 0.3349 0.3728 0.3992 0.4228 0.4182 0.4186
Generations 52.9 56 58.3 58.3 56.1 57.3 54.6 53.1
T. time (s) 139.9 236.5 282.1 320.1 336 373.6 375.4 373.8
Ending CR 0.3098 0.3228 0.3755 0.4174 0.424 0.4341 0.4345 0.435
Test CR 0.2995 0.31 0.353 0.385 0.3883 0.391 0.392 0.3953

Summary Normal GA OIGA_Desc OIGA_Asce OIGA_Orig OIGA_Rand

Initial CR 0.2127 0.2714 0.2644 0.2612 0.254
Generations 111.7 425.4 369.7 429.5 446.6
T. time (s) 628.2 2163.7 2147 2655.5 2437.4
Ending CR 0.3414 0.4573 (33.9%) 0.3919 (14.8%) 0.4326 (26.7%) 0.435 (27.4%)
Test CR 0.3284 0.4135 (25.9%) 0.3609 (9.9%) 0.396 (20.6%) 0.3953 (20.4%)

mutationRate � 0.01, crossoverRate � 1, survivorsPercent � 50%, ruleNumber � 30, popSize � 100,
stagnationLimit � 30.
For each stage of OIGAs, generationLimit � 60; for normal GA, generationLimit � 480. (To be fair, the
generationLimit for normal GA is equal to the sum of those for each stage. The other experiments in this
article follow the same mechanism.)
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The glass data set contains data of different glass types. The results of chem-
ical analysis of glass splinters (the percentage of eight different constituent ele-
ments) plus the refractive index are used to classify a sample to be either float
processed or nonfloat processed building windows, vehicle windows, containers,
tableware, or head lamps. This data set consists of 214 instances with 9 continuous
attributes from 6 classes.

Using the same method as the yeast data, Table III reports the individual dis-
criminating ability of each attribute of the glass data. With the resultant rank, the
four approaches of OIGAs can be formulated. Using different sequences of attributes
presented for incremental training, the classifier is trained in different courses. The

Figure 6. Comparison of OIGAs and normal GA on the yeast data.
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performance comparison in Table IV illustrates the whole training process and pro-
vides a summary of comparison. Figure 7 shows the performance comparison among
OIGAs and a normal GA in terms of training and test CRs visually. It is found that,
for the glass data, OIGAs outperform a normal GA in terms of training and test CRs.
Among the four OIGA approaches, OIGA-Desc still outperforms the other OIGAs.

More experiments are conducted with OIGAs on the wine and cancer data.
The wine data contains the chemical analysis of 178 wines from three different
cultivars in the same region in Italy. The analysis determines the quantities of 13
constituents found in each of the three types of wines. In other words, it has 13
continuous attributes, 3 classes, 178 instances. The cancer problem diagnoses
whether a breast cancer is benign or malignant. It has 9 attributes, 2 classes, and
699 instances. Due to the limited space, only the summary of performance com-
parison for the two data sets is listed, and the individual discriminating ability and
detailed information of each stage of OIGAs are omitted.

Table V and Figure 8 show the performance comparison on the wine data,
using OIGAs and a normal GA. The sequence of attributes for each OIGA approach
is shown in the legend of Figure 8. It is found again that OIGAs generally outper-
form a normal GA in terms of training CR and test CR, although the improvement
is small, especially for the training CR. Furthermore, OIGA-Desc outperforms the
other approaches in terms of both training and test CRs. This result conforms to
those obtained from the experiments for the above data sets.

Table VI and Figure 9 compare the performance of four types of OIGAs on
the cancer data in two aspects, training CR and test CR. With a comparison among
OIGAs and normal GA, we find that the training and test CRs for these approaches
are similar, with not much improvement or deterioration. Figure 9 also shows visu-
ally that their performance is very close, and the OIGA-Desc performs the best
again with its curve lying above the other curves.

5. DISCUSSION

From the experiments on the four benchmark data sets, we have an overall
picture on OIGAs. First, with OIGAs, classifiers are equipped with a capability

Table III. Individual discriminating ability of each attribute of the glass data.

Att. 1 Att. 2 Att. 3 Att. 4 Att. 5 Att. 6 Att. 7 Att. 8 Att. 9

Initial CR 0.3678 0.3505 0.3502 0.3624 0.3479 0.3537 0.3544 0.3341 0.3467
Generations 59.2 53.8 57.6 57.5 49.4 52.7 58.1 49.3 47.3
T. time (s) 58.9 53.5 58.1 57 49.3 50.1 57.3 46.7 45.2
Ending CR 0.5558 0.4311 0.5266 0.5306 0.3902 0.4089 0.4801 0.4736 0.3939
Test CR 0.3722 0.4484 0.3764 0.4619 0.3301 0.372 0.31 0.4682 0.3467

Ave. CR 0.464 0.4398 0.4515 0.4963 0.3602 0.3905 0.3951 0.4709 0.3703

Rank 3 5 4 1 9 7 6 2 8

mutationRate � 0.01, crossoverRate � 1, survivorsPercent � 50%, ruleNumber � 30,
popSize � 200, stagnationLimit � 30, generationLimit � 60.
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for incremental training. Therefore, classifiers can evolve their solutions incremen-
tally in any situation where the introduction of new attributes may be frequent.
When the available attributes are known, the individual discriminating ability of
these attributes can be determined, and the order of attributes for incremental train-
ing can be selected accordingly. With the evaluation of classifier performance on
four benchmark data sets and comparison to normal GAs, we find the use of OIGAs
(especially an OIGA in descending order) can improve the performance of classi-
fiers in terms of both training and test CRs. If we regard the whole incremental
learning process as a complete training process, it also means continuous incre-
mental training is a better way of training than batch-mode training.

The experimental results show that OIGA-Desc generally outperforms the
other approaches in both training CR and test CR. This tells us that the order of

Table IV. Performance comparison on the glass data—OIGAs and normal GA.

OIGA_Desc Add Att. 4 Add Att. 8 Add Att. 1 Add Att. 3 Add Att. 2 Add Att. 7 Add Att. 6 Add Att. 9 Add Att. 5

Initial CR 0.3579 0.5888 0.6243 0.6682 0.7168 0.715 0.743 0.7374 0.7636
Generations 60 45.5 46.1 57.4 44.7 51.5 45.4 46.7 40.6
T. time (s) 48.1 58 69.1 95.1 84.9 103.3 96.6 104.4 94.7
Ending CR 0.5822 0.6477 0.6766 0.7308 0.7383 0.7589 0.7664 0.7729 0.7785
Test CR 0.4804 0.5542 0.5495 0.5028 0.5215 0.4897 0.4776 0.486 0.472

OIGA_Asce Add Att. 5 Add Att. 9 Add Att. 6 Add Att. 7 Add Att. 2 Add Att. 3 Add Att. 1 Add Att. 8 Add Att. 4

Initial CR 0.3533 0.3981 0.4308 0.4402 0.5112 0.5383 0.6215 0.6682 0.7112
Generations 49.5 49.2 46.9 53.3 49.3 59.5 57.6 55.4 46.2
T. time (s) 40.2 64.1 70.7 90.8 92.9 118.3 126.7 132.6 119
Ending CR 0.3963 0.428 0.4607 0.5243 0.5533 0.629 0.7065 0.7355 0.7607
Test CR 0.3252 0.3411 0.3458 0.3505 0.3579 0.3963 0.4 0.4215 0.4299

OIGA_Orig Add Att. 1 Add Att. 2 Add Att. 3 Add Att. 4 Add Att. 5 Add Att. 6 Add Att. 7 Add Att. 8 Add Att. 9

Initial CR 0.3467 0.5374 0.571 0.6607 0.7103 0.6991 0.7449 0.7056 0.7308
Generations 57.7 59.2 59.8 55 57.6 56.9 47.8 52.9 49.4
T. time (s) 47.5 74.8 91.3 95.5 108.2 113.1 105.8 121.9 116.5
Ending CR 0.5477 0.5981 0.6869 0.7299 0.7467 0.7645 0.7692 0.7804 0.7879
Test CR 0.371 0.4196 0.4439 0.4598 0.4579 0.4505 0.4598 0.4458 0.4458

OIGA_Rand Add Att. 8 Add Att. 3 Add Att. 5 Add Att. 7 Add Att. 4 Add Att. 2 Add Att. 6 Add Att. 9 Add Att. 1

Initial CR 0.3196 0.5243 0.5757 0.6121 0.6364 0.6766 0.6748 0.6729 0.6972
Generations 48.6 54.6 46.2 45.2 47.7 42.2 43.2 43.7 46.8
T. time (s) 35.9 65.5 64.6 70.6 81 76.9 83 89.9 102.9
Ending CR 0.472 0.5953 0.6159 0.6477 0.6879 0.6935 0.7028 0.7093 0.7449
Test CR 0.4654 0.4449 0.415 0.3944 0.4262 0.4346 0.4243 0.4215 0.4355

Summary Normal GA OIGA_Desc OIGA_Asce OIGA_Orig OIGA_Rand

Initial CR 0.3308 0.3579 0.3533 0.3467 0.3196
Generations 167.3 437.9 466.9 496.3 418.2
T. time (s) 354.6 754.2 855.3 874.6 670.3
Ending CR 0.5897 0.7785 (31.6%) 0.7607 (29.0%) 0.7879 (33.6%) 0.7449 (26.3%)
Test CR 0.3953 0.472 (19.4%) 0.4299 (8.8%) 0.4458 (12.8%) 0.4355 (10.2%)

mutationRate � 0.01, crossoverRate � 1, survivorsPercent � 50%, ruleNumber � 30, popSize � 200,
stagnationLimit � 30.
For each stage of OIGAs, generationLimit � 60; for normal GA, generationLimit � 540.
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attributes presented for incremental training does affect the classifier perfor-
mance. Introducing an attribute with higher discriminating ability in an earlier
stage will improve the final performance. As a GA is a global searching algorithm
that gradually improves its solutions, an early introduction of more contributing
attributes will direct the candidate solutions to the potential final solution sooner
and thus is more likely to converge to a better solution.

For some problems such as the yeast and glass data, the improvement versus
a normal GA is significant. For problems such as the wine and cancer data, the
improvement is relatively smaller. The results may be explained by the final accu-
racy achieved with these data, as we find the final accuracy for the wine and cancer

Figure 7. Comparison of OIGAs and normal GA on the glass data.
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Table V. Performance comparison on the wine data—OIGAs and normal GA.

Summary Normal GA OIGA_Desc OIGA_Asce OIGA_Orig OIGA_Rand

Initial CR 0.4034 0.5652 0.4517 0.5843 0.4416
Generations 144.7 289.3 429.6 446.7 412.1
T. time (s) 356.7 478.7 786.6 787.6 716.4
Ending CR 0.9876 0.9989 (1.1%) 0.9978 (1.0%) 0.9955 (0.8%) 0.9978 (1.0%)
Test CR 0.8303 0.9202 (10.8%) 0.8213 (�1.1%) 0.8607 (3.7%) 0.8281 (�0.3%)

mutationRate � 0.01, crossoverRate � 1, survivorsPercent � 50%, ruleNumber � 30, pop-
Size � 200, stagnationLimit � 30.
For each stage of OIGAs, generationLimit � 40; for normal GA, generationLimit � 520.

Figure 8. Comparison of OIGAs normal GA on the wine data.
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Table VI. Performance comparison on the cancer data—OIGAs and normal GA.

Summary Normal GA OIGA_Desc OIGA_Asce OIGA_Orig OIGA_Rand

Initial CR 0.7324 0.8997 0.7943 0.8324 0.835
Generations 136.6 505.8 520.6 403.7 524.6
T. time (s) 381.2 1177.3 1193.9 1007.8 1317.4
Ending CR 0.967 0.9673 (0.03%) 0.9713 (0.4%) 0.9696 (0.3%) 0.9708 (0.4%)
Test CR 0.9619 0.9668 (0.5%) 0.9479 (�1.5%) 0.9699 (0.8%) 0.9633 (1.5%)

mutationRate � 0.01, crossoverRate � 1, survivorsPercent � 50%, ruleNumber � 30, pop-
Size � 100, stagnationLimit � 30.
For each stage of OIGAs, generationLimit � 60; for normal GA, generationLimit � 540.

Figure 9. Comparison of OIGAs and normal GA on the cancer data.
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data is relatively higher. That means these data are easier to classify, and therefore
OIGAs may not demonstrate their advantage against the normal GA on these data.

There are some trade-offs and possible improvement for our design and exper-
iments. First, as mentioned earlier, we have used the average of training and test
CRs as the metric for measuring the individual discriminating ability of each
attribute. There can be other options under different circumstances. For example, if
a classifier is used for purely learning instances or the generalization of classifier is
the only objective, the individual training CR or test CR may be used as the metric,
respectively. Second, the incremental training method also provides another chance
for attribute selection. It is found from the experimental results that the training and
test CRs will be affected after the classifier learns a new attribute. They may drop a
little as the new attribute is harmful to classification or increase as it facilitates clas-
sification. As a result, the training and test CRs are fluctuating during the whole
training process. This fluctuation provides an opportunity to decide whether the new
incoming attribute is selected into the final attribute set. For example, if the drop on
the test CR exceeds a threshold after integrating a new attribute, it may signal that
the introduction of this attribute will be harmful and thus it can be discarded.

6. CONCLUSIONS

This article proposes ordered incremental genetic algorithms (OIGAs) to
address the continuous incremental training tasks of GA-based classifiers. Rather
than learning input attributes in batch as done by normal GAs, OIGAs learn input
attributes one after another. The classification rule sets are also expanded and
evolved incrementally to accommodate the new attributes. As a preparatory step,
attributes are arranged in different sequences by evaluating their individual dis-
criminating ability, before they are presented in the training process.

By experimenting with different attribute orders, different approaches of
OIGAs were evaluated on four benchmark data sets. The performance of each
approach was compared with the others, and also with normal GAs. The simula-
tion results showed that OIGAs can be successfully used for incremental training
of classifiers and can achieve generally better performance than normal GAs. The
order of attributes does have an effect on the final classifier performance, and
OIGA training with a descending order of attributes has the best performance.

This article explores incremental training in a single classifier. Classifiers
could also be implemented in a multi-agent environment, where classifier agents
could exchange information on new attributes and classes. If available, they could
also exchange evolved rule sets. They could help provide new training/test data,
or even challenge each other with unsolved instances.
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