
LETTER Communicated by John Platt

Improvements to Platt’s SMO Algorithm for SVM Classifier
Design

S. S. Keerthi
Department of Mechanical and Production Engineering, National University of Sing-
apore, Singapore-119260

S. K. Shevade
C. Bhattacharyya
K. R. K. Murthy
Department of Computer Science and Automation, Indian Institute of Science, Banga-
lore-560012, India

This article points out an important source of inefficiency in Platt’s se-
quential minimal optimization (SMO) algorithm that is caused by the
use of a single threshold value. Using clues from the KKT conditions
for the dual problem, two threshold parameters are employed to derive
modifications of SMO. These modified algorithms perform significantly
faster than the original SMO on all benchmark data sets tried.

1 Introduction

In the past few years, there has been a lot of excitement and interest in sup-
port vector machines (Vapnik, 1995; Burges, 1998) because they have yielded
excellent generalization performance on a wide range of problems. Recently,
fast iterative algorithms that are also easy to implement have been sug-
gested (Platt, 1998; Joachims, 1998; Mangasarian & Musicant, 1998; Friess,
1998; Keerthi, Shevade, Bhattacharyya, & Murthy, 1999a). Platt’s sequential
minimization algorithm (SMO) (Platt, 1998, 1999) is an important example.
A remarkable feature of SMO is that it is also extremely easy to implement.
Platt’s comparative testing against other algorithms has shown that SMO is
often much faster and has better scaling properties.

In this article we enhance the value of SMO even further. In particular,
we point out an important source of inefficiency caused by the way SMO
maintains and updates a single threshold value. Getting clues from optimal-
ity criteria associated with the KKT conditions for the dual, we suggest the
use of two threshold parameters and devise two modified versions of SMO
that are more efficient than the original SMO. Computational comparison
on benchmark data sets shows that the modifications perform significantly
faster than the original SMO in most situations. The ideas mentioned in this
article can also be applied to the SMO regression algorithm (Smola, 1998).

Neural Computation 13, 637–649 (2001) c© 2001 Massachusetts Institute of Technology



638 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

We report the results of that extension in Shevade, Keerthi, Bhattacharyya,
and Murthy (1999).

In section 2 we briefly discuss the SVM problem formulation, the dual
problem, and the associated KKT optimality conditions. We also point out
how these conditions lead to proper criteria for terminating algorithms for
designing SVM classifiers. Section 3 gives a short summary of Platt’s SMO
algorithm. In section 4 we point out the inefficiency associated with the way
SMO uses a single threshold value, and we describe the modified algorithms
in section 5. Computational comparison is done in section 6.

2 SVM Problem and Optimality Conditions

The basic problem addressed in this article is the two-category classification
problem. Burges (1998) gives a good overview of the solution of this problem
using SVMs. Throughout this article we will use x to denote the input vector
of the SVM and z to denote the feature space vector, which is related to x by
a transformation, z = φ(x). As in all other SVM designs, we do not assume φ
to be known; all computations will be done using only the kernel function,
k(x, x̂) = φ(x) · φ(x̂), where “·” denotes inner product in the z space. Let
{(xi, yi)} denote the training set, where xi is the ith input pattern and yi is
the corresponding target value; yi = 1 means xi is in class 1, and yi = −1
means xi is in class 2. Let zi = φ(xi). The optimization problem solved by
the SVM is:

min
1
2
‖w‖2 + C

∑
i
ξi s.t. yi(w · zi − b) ≥ 1− ξi ∀ i; ξi ≥ 0 ∀ i. (2.1)

This problem is referred to as the primal problem.
Let us define w(α) = ∑

i αiyizi. We will refer to the αi’s as Lagrange
multipliers. The αi’s are obtained by solving the following dual problem:

max W(α) =
∑

i
αi − 1

2
w(α) · w(α) s.t. 0 ≤ αi ≤ C ∀i;

∑
i
αiyi=0. (2.2)

Once the αi’s are obtained, the other primal variables, w, b, and ξ , can be
easily determined by using the KKT conditions for the primal problem. It
is possible that the solution is nonunique; for instance, when all αis take the
boundary values of 0 and C, it is possible that b is not unique.

The numerical approach in SVM design is to solve the dual (instead of
the primal) because it is a finite-dimensional optimization problem. (Note
that w(α) · w(α) =∑i

∑
j yiyjαiαjk(xi, xj).) To derive proper stopping condi-

tions for algorithms that solve the dual, it is important to write down the
optimality conditions for the dual. The Lagrangian for the dual is:

L̄ = 1
2

w(α) · w(α)−
∑

i
αi −

∑
i
δiαi +

∑
i
µi(αi − C)− β

∑
i
αiyi.



Improvements to Platt’s SMO Algorithm 639

Define

Fi = w(α) · zi − yi =
∑

j

αjyjk(xi, xj)− yi.

The KKT conditions for the dual problem are:

∂L̄
∂αi
=(Fi−β)yi−δi + µi=0, δi≥0, δiαi=0, µi≥0, µi(αi − C)=0 ∀ i.

These conditions1 can be simplified by considering three cases for each i:

Case 1. αi = 0:

δi ≥ 0, µi = 0 ⇒ (Fi − β)yi ≥ 0. (2.3a)

Case 2. 0 < αi < C:

δi = 0, µi = 0 ⇒ (Fi − β)yi = 0. (2.3b)

Case 3. αi = C:

δi = 0, µi ≥ 0 ⇒ (Fi − β)yi ≤ 0. (2.3c)

Define the following index sets at a given α: I0 = {i: 0 < αi < C}; I1 =
{i: yi = 1, αi = 0}; I2 = {i: yi = −1, αi = C}; I3 = {i: yi = 1, αi = C};
and, I4 = {i: yi = −1, αi = 0}. Note that these index sets depend on α. The
conditions in equations 2.3a through 2.3c can be rewritten as

β ≤ Fi ∀ i ∈ I0 ∪ I1 ∪ I2 ; β ≥ Fi ∀ i ∈ I0 ∪ I3 ∪ I4. (2.4)

It is easily seen that optimality conditions will hold iff there exists a β sat-
isfying equation 2.4. The following result is an immediate consequence.

Lemma 1. Define:

bup = min{Fi: i ∈ I0 ∪ I1 ∪ I2} and blow = max{Fi: i ∈ I0 ∪ I3 ∪ I4}. (2.5)

Then optimality conditions will hold at some α iff

blow ≤ bup. (2.6)

1 The KKT conditions are both necessary and sufficient for optimality. Hereafter we
will simply refer to them as optimality conditions.



640 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

It is easy to see the close relationship between the threshold parameter b
in the primal problem and the multiplier, β. In particular, at optimality, β
and b are identical. Therefore, in the rest of the article, β and b will denote
the same quantity.

We will say that an index pair (i, j) defines a violation at α if one of the
following sets of conditions holds:

i ∈ I0 ∪ I3 ∪ I4 , j ∈ I0 ∪ I1 ∪ I2 and Fi > Fj (2.7a)

i ∈ I0 ∪ I1 ∪ I2 , j ∈ I0 ∪ I3 ∪ I4 and Fi < Fj. (2.7b)

Note that optimality conditions will hold at α iff there does not exist any
index pair (i, j) that defines a violation.

Since, in numerical solution, it is usually not possible to achieve opti-
mality exactly, there is a need to define approximate optimality conditions.
Condition 2.6 can be replaced by

blow ≤ bup + 2τ, (2.8)

where τ is a positive tolerance parameter. (In the pseudocode given in Platt,
1998, this parameter is referred to as tol .) Correspondingly, the definition
of violation can be altered by replacing equations 2.7a and 2.7b by:

i ∈ I0 ∪ I3 ∪ I4 , j ∈ I0 ∪ I1 ∪ I2 and Fi > Fj + 2τ (2.9a)

i ∈ I0 ∪ I1 ∪ I2 , j ∈ I0 ∪ I3 ∪ I4 and Fi < Fj − 2τ. (2.9b)

Hereafter, when optimality is mentioned, it will mean approximate opti-
mality.

Since β can be placed halfway between blow and bup, approximate op-
timality conditions will hold iff there exists a β such that equations 2.3a
through 2.3c are satisfied with a τ -margin, that is:

(Fi − β)yi ≥ −τ if αi = 0 (2.10a)

|(Fi − β)| ≤ τ if 0 < αi < C (2.10b)

(Fi − β)yi ≤ τ if αi = C. (2.10c)

These three equations, 2.10a through 2.10c, are the approximate optimality
conditions employed by Platt (1998), Joachims (1998), and others. Note that
if equations 2.10a through 2.10c are violated for one value of β, that does
not mean that optimality conditions are violated.

It is also possible to give an alternate approximate optimality condition
based on the closeness of W(α) to the optimal value, estimated using du-
ality gap ideas. This is fine, but care is needed in choosing the tolerance
used (see Keerthi et al., 1999a, for a related discussion). This criterion has
the disadvantage that it is a single global condition involving all i. On the



Improvements to Platt’s SMO Algorithm 641

other hand, equation 2.9 consists of an individual condition for each pair of
indices, and hence it is much better suited to the methods discussed here.
In particular, when (i, j) satisfies equation 2.9, then a strict improvement in
the dual objective function can be achieved by optimizing only αi and αj.
(This is true even if τ = 0.)

3 Platt’s SMO Algorithm

We now give a brief description of the SMO algorithm. The basic step con-
sists of choosing a pair of indices, (i1, i2) and optimizing the dual objective
function by adjusting αi1 and αi2 only. Because the working set is only of
size 2 and the equality constraint in equation 2.2 can be used to eliminate
one of the two Lagrange multipliers, the optimization problem at each step
is a quadratic minimization in just one variable. It is straightforward to write
down an analytic solution for it. (Complete details are given in Platt, 1998.)
The procedure takeStep (which is a part of the pseudocode given there)
gives a clear description of the implementation. There is no need to recall
all details here. We make only one important comment on the role of the
threshold parameter, β. As in Platt (1998) define the output error on the ith
pattern as

Ei = Fi − β.
Consistent with the pseudocode of Platt (1998), let us call the indices of the
two multipliers chosen for optimization in one step as i2 and i1. A look at
the details in Platt (1998) shows that to take a step by varying αi1 and αi2 , we
only need to know Ei1 − Ei2 = Fi1 − Fi2 . Therefore, knowledge of the value
of β is not needed to take a step.

The method followed to choose i1 and i2 at each step is crucial for efficient
solution of the problem. Based on a number of experiments, Platt came up
with a good set of heuristics. He employs a two-loop approach: the outer
loop chooses i2, and for a chosen i2, the inner loop chooses i1. The outer loop
iterates over all patterns, violating the optimality conditions—first only over
those with Lagrange multipliers on neither the upper nor lower boundary
(in Platt’s pseudocode, this looping is indicated by examineAll=0 ) and,
once all of them are satisfied, over all patterns violating the optimality con-
ditions (examineAll=1 ) to ensure that the problem has indeed been solved.
For efficient implementation Platt maintains and updates a cache for Ei val-
ues for indices i corresponding to nonboundary multipliers. The remaining
Ei are computed as and when needed.

Let us now see how the SMO algorithm chooses i1. The aim is to make
a large increase in the objective function. Since it is expensive to try out
all possible choices of i1 and choose the one that gives the best increase in
objective function, the index i1 is chosen to maximize |Ei2−Ei1 |. (If we define
ρ(t) = W(α(t)) where αi1(t) = αold

i1 + yi1 t, αi2(t) = αold
i2 − yi2 t, and αi = αold

i
∀ i 6∈ {i1, i2}, then |ρ ′(0)| = |Ei1 − Ei2 |.) Since Ei is available in cache for



642 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

nonboundary multiplier indices, only such indices are initially used in the
above choice of i1. If such a choice of i1 does not yield sufficient progress,
then the following steps are taken. Starting from a randomly chosen index,
all indices corresponding to nonbound multipliers are tried, one by one, as
choices for i1. If sufficient progress still is not possible, all indices are tried,
one by one, as choices for i1, again starting from a randomly chosen index.
Thus, the choice of random seed affects the running time of SMO.

Although a value of β is not needed to take a step, it is needed if equa-
tions 2.10a through 2.10c are employed for checking optimality. In the SMO
algorithm, β is updated after each step. A value of β is chosen so as to sat-
isfy equation 2.3 for i ∈ {i1, i2}. If, after a step involving (i1, i2), one of αi1 ,
αi2 (or both) takes a nonboundary value, then equation 2.3b is exploited to
update the value of β. In the rare case that this does not happen, there exists
a whole interval, say, [βlow, βup], of admissible thresholds. In this situation
SMO simply chooses: β = (βlow + βup)/2.

4 Inefficiency of the SMO Algorithm

SMO is a carefully organized algorithm with excellent computational effi-
ciency. However, because of its way of computing and using a single thresh-
old value, it can carry some inefficiency unnecessarily. At any instant, the
SMO algorithm fixes β based on the current two indices that are being op-
timized. However, while checking whether the remaining examples violate
optimality, it is quite possible that a different, shifted choice of β may do a
better job. So in the SMO algorithm, it is quite possible that alhough α has
reached a value where optimality is satisfied (that is, equation 2.8), SMO has
not detected this because it has not identified the correct choice ofβ. It is also
quite possible that a particular index may appear to violate the optimality
conditions because equation 2.10 is employed using an “incorrect” value
of β, although this index may not be able to pair with another to define a
violation. In such a situation, the SMO algorithm does an expensive and
wasteful search looking for a second index so as to take a step. We believe
that this is an important source of inefficiency in the SMO algorithm.

There is one simple alternate way of choosing β that involves all indices.
By duality theory, the objective function value in equation 2.1 of a primal
feasible solution is greater than or equal to the objective function value
in equation 2.2 of a dual feasible solution. The difference between these
two values is referred to as the duality gap. The duality gap is zero only at
optimality. Suppose α is given and w = w(α). The ξi can be chosen optimally
(as a function of β). The result is that the duality gap is expressed as a
function of β only. One possible way of improving the SMO algorithm is
always to choose β so as to minimize the duality gap.2 This corresponds to

2 One of the reviewers suggested this idea.



Improvements to Platt’s SMO Algorithm 643

the subproblem,

min
∑

i
max{0, yi(β − Fi)}.

This is an easy problem to solve. Let p denote the number of indices in class 2,
that is, the number of i having yi = −1. In an increasing order arrangement
of {Fi}, let fp and fp+1 be the pth and (p + 1)th values. Then any β in the
interval, [ fp, fp+1] is a minimizer. The determination of fp and fp+1 can be
done efficiently using a median-finding technique. Since all Fi are typically
not available at a given stage of the algorithm, it is appropriate to apply
the above idea to that subset of indices for which Fi are available. (This set
contains I0.) We implemented this idea and tested it on some benchmark
problems. It gave a mixed performance, performing well in some situations,
poorly in some, and failing in a few cases. More detailed study is needed to
understand the cause of this. (See section 6 for details of the performance
on three examples.)

5 Modifications of the SMO Algorithm

In this section we suggest two modified versions of the SMO algorithm,
each of which overcomes the problems mentioned in the last section. As we
will see in the computational evaluation of section 6, these modifications
are almost always better than the original SMO algorithm, and in most
situations, they give quite good improvement in efficiency when tested on
several benchmark problems.

In short, the modifications avoid the use of a single threshold value β and
the use of equations 2.10a through 2.10c for checking optimality. Instead,
two threshold parameters, bup and blow, are maintained, and equation 2.8
or 2.9 is employed for checking optimality. Assuming that the reader is
familiar with Platt (1998) and the pseudocodes given there, we give only
a set of pointers that describe the changes that are made to Platt’s SMO
algorithm. Pseudocodes that fully describe these changes can be found in
Keerthi et al. (1999b).

1. Suppose, at any instant, Fi is available for all i. Let i low and i up be
indices such that

Fi low = blow = max{Fi: i ∈ I0 ∪ I3 ∪ I4} (5.1a)

Fi up = bup = min{Fi: i ∈ I0 ∪ I1 ∪ I2}. (5.1b)

Then checking a particular i for optimality is easy. For example, suppose
i ∈ I1 ∪ I2. We have to check only if Fi < Fi low − 2τ . If this condition holds,
then there is a violation, and in that case SMO’s takeStep procedure can
be applied to the index pair, (i, i low). Similar steps can be given for indices
in the other sets. Thus, in our approach, the checking of optimality of i2
and the choice of the second index i1 go hand in hand, unlike the original



644 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

SMO algorithm. As we will see below, we compute and use (i low, blow) and
(i up, bup) via an efficient updating process.

2. To be efficient, we would, as in the SMO algorithm, spend much of
the effort altering αi, i ∈ I0; cache for Fi, i ∈ I0 are maintained and updated
to do this efficiently. And when optimality holds for all i ∈ I0, only then
examine all indices for optimality.

3. Some extra steps are added to the takeStep procedure. After a suc-
cessful step using a pair of indices, (i2, i1), let Ĩ = I0 ∪ {i1, i2}. We compute,
partially, (i low, blow) and (i up, bup) using Ĩ only (that is, using only i ∈ Ĩ in
equations 5.1a and 5.1b). Note that these extra steps are inexpensive because
cache for {Fi, i ∈ I0} is available and updates of Fi1 , Fi2 are easily done. A
careful look shows that since i2 and i1 have been just involved in a successful
step, each of the two sets, Ĩ ∩ (I0 ∪ I1 ∪ I2) and Ĩ ∩ (I0 ∪ I3 ∪ I4), is nonempty;
hence the partially computed (i low, blow) and (i up, bup) will not be null
elements. Since i low and i up could take values from {i2, i1} and they are
used as choices for i1 in the subsequent step (see item 1 above), we keep the
values of Fi1 and Fi2 also in cache.

4. When working only withαi, i ∈ I0, that is, a loop with examineAll=0 ,
one should note that if equation 2.8 holds at some point, then it implies that
optimality holds as far as I0 is concerned. (This is because as mentioned in
item 3 above, the choice of blow and bup is influenced by all indices in I0.)
This gives an easy way of exiting this loop.

5. There are two ways of implementing the loop involving indices in I0
only (examineAll=0 ):

Method 1. This is in line with what is done in SMO. Loop through
all i2 ∈ I0. For each i2, check optimality and, if violated, choose i1
appropriately. For example, if Fi2 < Fi low−2τ , then there is a violation,
and in that case choose i1 = i low.

Method 2. Always work with the worst violating pair; choose i2 =
i low and i1 = i up.

Depending on which one of these methods is used, we refer to the re-
sulting overall modification of SMO as SMO–Modification 1 and SMO–
Modification 2. SMO and SMO–Modification 1 are identical except in the
way optimality is tested. SMO–Modification 2 can be thought of as a further
improvement of SMO–Modification 1, where the cache is effectively used
to choose the violating pair when examineAll=0 .

6. When optimality on I0 holds, we come back to check optimality on
all indices (examineAll=1 ). Here we loop through all indices, one by one.
Since (blow, i low) and (bup, i up)have been partially computed using I0 only,
we update these quantities as each i is examined. For a given i, Fi is computed
first, and optimality is checked using the current (blow, i low) and (bup, i up);
if there is no violation, Fi is used to update these quantities. For example,
if i ∈ I1 ∪ I2 and Fi < blow − 2τ , then there is a violation, in which case we



Improvements to Platt’s SMO Algorithm 645

Table 1: Data Set Properties.

Data Set σ 2 n m

Wisconsin Breast Cancer 4.0 9 683
Adult-7 10.0 123 16,100
Web-7 10.0 300 24,692

take a step using (i, i low). On the other hand, if there is no violation, then
(i up, bup) is modified using Fi, that is, if Fi < bup then we do: i up := i and
bup := Fi.

7. Suppose we do as described in the previous item. What happens if
there is no violation for any i in a loop having examineAll=1 ? Can we
conclude that optimality holds for all i? The answer is yes. This is easy
to see from the following argument. Suppose, by contradiction, there does
exist one (i, j) pair such that they define a violation, that is, they satisfy
equation 2.9. Let us say i < j. Then j would not have satisfied the optimality
check in the described implementation because Fi would have, earlier than j
is seen, affected either the calculation of blow or bup settings, or both. In other
words, even if i is mistakenly taken as having satisfied optimality earlier
in the loop, j will be detected as violating optimality when it is analyzed.
Only when equation 2.8 holds is it possible for all indices to satisfy the
optimality checks. Furthermore, when equation 2.8 holds and the loop over
all indices has been completed, the true values of bup and blow, as defined
in equation 2.5, would have been computed since all indices have been
encountered.

6 Computational Comparison

In this section we compare the performance of our modifications against the
original SMO algorithm and the SMO algorithm that uses duality gap ideas
for optimizing β. We implemented all these methods in Fortran and ran
them using f77 on a 200 MHz Pentium machine. The value τ = 0.001 was
used for all experiments. Although we have tested on a number of problems,
here we report the performance on only three problems: Wisconsin Breast
Cancer data (Bennett & Mangasarian, 1992), UCI Adult data (Platt, 1998),
and Web page classification data (Joachims, 1998; Platt, 1998). In the case of
the Adult and Web data sets, the inputs are represented in a special binary
format, as used by Platt in his testing of SMO. To study scaling properties
as training data grow, Platt did staged experiments on the Adult and Web
data. We have used only the data from the seventh stage. The gaussian
kernel, k(xi, xj) = exp(−0.5‖xi − xj‖2/σ 2), was used in all experiments. The
σ 2 values employed, together with n, the dimension of the input, and m, the
number of training points, are given in Table 1.



646 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

10
−1

10
0

10
1

C

C
P

U
 T

im
e(

s)

0.04 

 4

20 

0   "smo"            
x   "smo duality gap"
*    "smo mod 1"     
+   "smo mod 2"      

Figure 1: Wisconsin Breast Cancer data. CPU time (in seconds) is shown as a
function of C.

When a particular method is used for SVM design, the value of C is usu-
ally unknown. It has to be chosen by trying a number of values and using
a validation set. Therefore, good performance of a method over a range
of C values is important. So for each problem, we tested the algorithms
over an appropriate range of C values. Figures 1 through 3 give the com-
putational costs for the three problems. For the Adult data set, the SMO
algorithm based on duality gap ideas had to be terminated for extreme C
values since excessive computing times were needed. In the case of Web
data, this method failed for C = 0.2.

It is clear that the modifications outperform the original SMO algorithm.
In most situations, the improvement in efficiency is very good. Between the
two modifications, the second one fares better overall. The SMO algorithm
based on duality gap did not fare well overall. Although in some cases it
did well, in other cases it became slower than the original SMO, and it failed
in some cases.

7 Conclusion

In this article we have pointed out an important source of inefficiency in
Platt’s SMO algorithm that is caused by the operation with a single thresh-
old value. We have suggested two modifications of the SMO algorithm that
overcome the problem by efficiently maintaining and updating two thresh-



Improvements to Platt’s SMO Algorithm 647

10
−2

10
−1

10
0

10
1

10
4

10
5

C

C
P

U
 T

im
e(

s)

0   "smo"
x   "smo duality gap"
*   "smo mod 1"
+   "smo mod 2" 

Figure 2: Adult-7 data. CPU time (in seconds) shown as a function of C.

10
−1

10
0

10
1

10
2

10
4

10
5

C

C
P

U
 T

im
e(

s)

0   "smo"
x   "smo duality gap"
*   "smo mod 1"
+   "smo mod 2" 

Figure 3: Web-7 data. CPU time (in seconds) shown as a function of C.



648 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy

old parameters. Our computational experiments show that these modifica-
tions speed up the SMO algorithm considerably in many situations. Platt has
already established that the SMO algorithm is one of the fastest algorithms
for SVM design. The modified versions of SMO presented here enhance the
value of the SMO algorithm even further. It should also be mentioned that
heuristics such as shrinking and kernel caching that are effectively used in
Joachims (1998) can be employed to speed up our SMO modifications even
more. The ideas mentioned in this article for SVM classification can also be
extended to the SMO regression algorithm (Smola, 1998). We have reported
those results in Shevade et al. (1999).

References

Bennett, R., & Mangasarian, O. L. (1992). Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software, 1,
23–34.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 3(2).

Friess, T. T. (1998). Support vector networks: The kernel Adatron with bias and soft-
margin (Tech. Rep.). Sheffield, England: University of Sheffield, Department
of Automatic Control and Systems Engineering.

Joachims, T. (1998). Making large-scale support vector machine learning practi-
cal. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods:
Support vector machines. Cambridge, MA: MIT Press.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (1999a). A
fast iterative nearest point algorithm for support vector machine classifier design
(Tech. Rep. No. TR-ISL-99-03). Bangalore, India: Intelligent Systems Lab, De-
partment of Computer Science and Automation, Indian Institute of Science.
Available online at: http://guppy.mpe.nus.edu.sg/∼mpessk.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (1999b).
Improvements to Platt’s SMO algorithm for SVM classifier design (Tech. Rep.
No. CD-99-14). Singapore: Control Division, Department of Mechanical and
Production Engineering, National University of Singapore. Available online
at: http://guppy.mpe.nus.edu.sg/∼mpessk.

Mangasarian, O. L., & Musicant, D. R. (1998). Successive overrelaxation for support
vector machines (Tech. Rep.). Madison, WI: Computer Sciences Department,
University of Wisconsin.

Platt, J. C. (1998). Fast training of support vector machines using sequential
minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances
in kernel methods: Support vector machines. Cambridge, MA: MIT Press.

Platt, J. C. (1999). Using sparseness and analytic QP to speed training of support
vector machines. In M. S. Kearns, S. A. Solla and D. A. Cohn (Eds.), Advances
in neural information processing systems, 11. Cambridge, MA: MIT Press.

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (1999).
Improvements to the SMO algorithm for SVM regression (Tech. Rep. No. CD-
99-16). Singapore: Control Division, Department of Mechanical and Pro-



Improvements to Platt’s SMO Algorithm 649

duction Engineering, National University of Singapore. Available online at:
http://guppy.mpe.nus.edu.sg/∼mpessk.

Smola, A. J. (1998). Learning with kernels. Unpublished doctoral dissertation,
Technische Universität Berlin.

Vapnik, V. (1995). The nature of statistical learning theory. Berlin: Springer-Verlag.

Received August 19, 1999; accepted May 17, 2000.


