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We compare eleven methods for finding prototypes upon which to base the nearest
Žprototype classifier. Four methods for prototype selection are discussed: Wilson � Hart a

.condensation � error-editing method , and three types of combinatorial search�random
search, genetic algorithm, and tabu search. Seven methods for prototype extraction are
discussed: unsupervised vector quantization, supervised learning vector quantization
Ž .with and without training counters , decision surface mapping, a fuzzy version of vector
quantization, c-means clustering, and bootstrap editing. These eleven methods can be
usefully divided two other ways: by whether they employ pre- or postsupervision; and by
whether the number of prototypes found is user-defined or ‘‘automatic.’’ Generalization
error rates of the 11 methods are estimated on two synthetic and two real data sets.
Offering the usual disclaimer that these are just a limited set of experiments, we feel
confident in asserting that presupervised, extraction methods offer a better chance for
success to the casual user than postsupervised, selection schemes. Finally, our calcula-
tions do not suggest that methods which find the ‘‘best’’ number of prototypes ‘‘automati-
cally’’ are superior to methods for which the user simply specifies the number of
prototypes. � 2001 John Wiley & Sons, Inc.

I. INTRODUCTION

All of the methods discussed here begin with a crisply labeled set of training
� 4 p Ž .data X � x , . . . , x � � the training data . Our presumption is that X1 n

contains at least one point with class label i, 1 � i � c. The number of proto-
� �types we are looking for, V � n , depends on the method used, and may be lessp

than, equal to, or greater than c, the number of classes represented in X.
Let x be an unlabeled object that we wish to label as belonging to one of c

Ž .classes. The standard nearest prototype 1-np classification rule assigns x to the
Žclass of the ‘‘most similar’’ prototype in a set of labeled prototypes or reference
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. � 4 Ž .set , say V � v , . . . , v . Hereafter, E X ; V denotes the resubstitution1 np np tr
Ž .training error committed by the 1-np rule that uses V when applied to the

Ž . Ž .training data; E X ; V stands for the generalization testing error of thenp test
same classifier. Why use a nearest prototype classifier? Because it is intuitive,
simple, and often, pretty accurate.1 Human pattern recognition is almost always
based on comparison of the presented input to a catalog of stored examples,
both typical and atypical, and this fact is reflected in many case- or instance-based
paradigms used in machine learning.2

Good prototypes have two desirable properties: minimal cardinality and
� Ž .�maximum classification accuracy or equivalently, minimum E X ; V . Innp test

Žother words, we seek the smallest possible V with the highest possible generali-
.zation accuracy of the 1-np rule that uses V. You expect these two goals to

naturally conflict, and our experiments show that they do. Increasing the
Žnumber of prototypes to some experimentally determined upper limit usually

.with n � c almost always results in a decreasing trend in the test error ratep
Ž .E X ; V , and conversely. One goal of our research is to study thisnp test

conflict�how to find the smallest set of prototypes that provides an acceptable
generalization error for the data at hand.

Various classifiers assign different kinds of labels to unlabeled objects.
There are four types of class labels�crisp, fuzzy, probabilistic, and possibilistic.
Let n be the number of objects and integer c denote the number of classes,
1 � c � n. We define three sets of label vectors in � c as follows:

cc � � � � � 4N � y � � : y � 0, 1 � i , y � 0 � i � 0, 1 � 0 1� 4 Ž .pc i i

c

N � y � N : y � 1 2Ž .Ýfc pc i½ 5
i�1

� 4 � 4N � y � N : y � 0, 1 � i � e , e , . . . , e 3� 4 Ž .hc fc i 1 2 c

Ž . c Ž .In Eq. 1 0 is the zero 	ector in � . N is the canonical unit vector basishc
of Euclidean c-space, so the crisp label for class i, 1 � i � c, is

T
e � 0, 0, . . . , 1 , . . . , 0 ,ž /i ���

i

the ith vertex of N . The set N , a piece of a hyperplane, is the convex hull ofhc fc
Ž .TN . The vector y � 0.1, 0.6, 0.3 is a constrained label vector; its entries liehc

between 0 and 1, and sum to 1. The centroid of N is the equimembershipfc
Ž .T pvector 1
c � 1
c, . . . , 1
c . If y is a label vector for some x � � generated

by, say, the fuzzy c-means clustering method, we call y a fuzzy label for x. If y
came from a method such as maximum likelihood estimation in mixture decom-
position, y would be a probabilistic label. In this case, 1
c is the unique point of
equal probabilities for all c classes.

� �c � 4 cN � 0, 1 - 0 is the unit hypercube in � , excluding the origin. Vectors,pc
Ž .Tsuch as z � 0.7, 0.2, 0.7 with each entry between 0 and 1 that are otherwise
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unrestricted, are possibilistic labels in N . We interpret possibilistic label valuesp3
as indicants of the extent to which z is typical of each of the c classes.
Possibilistic labels are produced by possibilistic clustering algorithms3 and by
computational neural networks that have unipolar sigmoidal transfer functions
at each of c output nodes.4 For convenience we call all noncrisp labels soft
labels. Note that N � N � N .hc fc pc

In Section II we discuss prototype extraction and the generalized nearest
Ž . 5,6prototype classifier GNPC . Section III contains a concise description of the

four selection methods surveyed in this article, and Section IV describes the
seven replacement methods we chose to compare to the four selection methods.
The four data sets used and our results�comparisons between, and similarities
of, the eleven methods�are discussed in Section V. Section VI offers the
conclusions we draw from these experiments, and itemizes some interesting
topics for further research.

II. PROTOTYPE EXTRACTION AND THE GNPC

When the prototypes used in the GNPC have soft labels, each prototype
may ‘‘vote’’ with varying assurance for all c classes. For example, if v has thei

� �soft label 0.2, 0.4, 0.7 , this prototype is a fairly typical example of class 3 but is
Ž .also related less strongly to classes 1 and 2. A real-life example of soft labeling

is diagnosing ischemic heart disease, where the occlusion of the three main
coronary arteries can be expressed by such a label, each entry being the degree
of occlusion of a particular vessel.

If x and the v s are represented by feature vectors in � p, prototypicali
similarity is almost always based on some function of pairwise distances between
x and the v s. Specifically, let x � � p be an input vector. The GNPC is definedi
by the 5-tuple:

Ž . � 4 p Ž .1 The set of prototypes V � v , . . . , v � � . GNPC11 n p

Ž . Ž . � Ž . Ž .� c np2 The c � n prototype label matrix L V � ll v , . . . , ll v � � � � .p 1 n p Ž .GNPC2
Ž . Ž . Ž� �. � �3 A similarity function S x , v � � x � v valued in 0, 1 that assesses thek i k i

Žsimilarity between inputs and prototypes the higher the value, the more similar
. Ž .the input to the prototype . GNPC3

Ž . Ž .4 A T-norm in the fuzzy sets sense to fuse each prototype label and the
Ž .similarity between that prototype and x. GNPC4

Ž .5 An aggregation operator which uses the p fused components to produce an
Ž .overall soft label for x. GNPC5

Ž .When the output of GNPC5 is a soft label, a crisp class label can always
be assigned to x by taking the class with the highest ‘‘support’’ in a soft label
vector. This operation is a specific form of the general operation of hardening
soft labels. A great number of classifier models can be described by different

Ž .choices of the parameters in GNPC1�GNPC5 , and an even greater set can be
designed by varying those parameters. References 5 and 6 contain detailed
descriptions and many examples of models that fall into the GNPC framework.
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Figure 1 shows three of the many groups of classifiers that belong to the
Ž .GNPC family. Abbreviations appearing in Figure 1 are: hard c-means HCM ,

Ž . Ž .nearest neighbor 1-nn , learning 	ector quantization LVQ , and radial basis
Ž .function RBF . Many of the classifiers in Figure 1 are simple 1-np classifiers;

the major distinction between them is in the way their prototypes are obtained.
This paper discusses some cases of the models shown in the module highlighted
by a heavy border at the bottom left in Figure 1. Three basic characteristics of

Ž . Ž . Ž .prototype extraction methods, itemized here as C1 , C2 , and C3 , are dis-
cussed next.

Ž . Ž . Ž .C1 Selection V � X versus replacement V � X . When talking abouts r
prototypes in general, we use the symbol V; when emphasis on selection or

Ž .replacement is needed, we use subscripts V for selection, V for replacement .s r
Replacement seeks n points in � p, so the search space is infinite. Selection isp
limited to searching within X � � p, so solutions in this case can be sought by
combinatorial optimization. Selection is, of course, a special case of prototype
replacement. Figure 2 illustrates the two styles of prototype extraction.

Ž . 7C2 Presuper	ised versus postsuper	ised designs. Presupervised methods
use the data and the class labels to locate the prototypes. Postsupervised
methods first find prototypes without regard to the training data labels, and then

Ž .assign a class label relabel to each prototype. Selection methods are naturally
presupervised because each prototype is a data point and already has its
Ž .presumably true label.

Figure 1. A few models that are generalized nearest prototype classifiers.
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Figure 2. Prototype extraction: selection vs. replacement.

Ž .C3 User-defined n versus algorithmically defined n . Most methods forp p

prototype generation require n to be specified in advance as an explicitp
Žparameter of the algorithm e.g., classical clustering and competitive learning

.methods . Some models have ‘‘adaptive’’ variants where the initially specified
value of n can increase or decrease, i.e., prototypes are added or deletedp

during training under the guidance of some mathematical criterion of prototype
‘‘quality.’’ A third group of methods do not specify n at all, instead obtaining itp

as an output at the termination of training. For example, condensation methods
which search for a minimal possible consistent set belong to this category.
Genetic algorithms and tabu search methods have a trade-off parameter which
pits the weight of a misclassification against an increase in the cardinality of V
by 1. Thus, methods based on these types of search deliver the number of
prototypes at termination of training. A method that finds n during trainingp

will be called an auto-n method; otherwise, the method is user-n .p p
Ž .Issue C3 is an often misunderstood aspect of prototype generation for

classifier design. The ‘‘user-friendliness’’ of a nearest prototype classifier design
is greatly increased by any algorithm that ‘‘automatically’’ finds the best number
of prototypes, thereby relieving the designer of making a tradeoff study to select
n . Do auto-n methods really find ‘‘better’’ prototypes than user-n methods?p p p

Of course not, but there is one less parameter for the user to pick, so auto-np
Ž .methods enjoy popularity on this account and, we can call them ‘‘adaptive’’! .
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Figure 3. Methods for finding prototypes.

An expanded view of the highlighted module in the lower left corner of
Figure 1 is shown in Figure 3. New abbreviations appearing in Figure 1 are:

Ž . Ž .fuzzy c-means FCM , possibilistic c-means PCM , condensed nearest neighbor
Ž . Ž . Ž .C-nn , self organizing map SOM , decision surface mapping DSM , minimal

Ž . Ž . Ž .consistent subset MCS , LVQ with Training Counters LVQTC , and genetic
Ž .algorithm GA . The left half of Figure 3 shows prototype selection divided into

Ž . Žtwo main groups: Condensing or condensation and Error-editing or simply
.‘‘editing’’ .

Prototype replacement is also divided into two main groups in Figure 3:
presuper	ised and postsuper	ised methods. The framework provided by the
GNPC model gives us a common platform from which to view many of these
methods from the same perspective. For example, we see here both VQ and
LVQ, along with some of the many modifications thereof.8 � 12 DSM was intro-
duced by Geva and Sitte.13 Akin to the VQ family is the clustering-and-relabel-
ing approach which itself has many variations, the most popular of which are
perhaps the c-means families shown in Figure 3.1 Cluster centroids are used as
the replacement prototypes V , so any clustering method that produces centroidsr

can be used for this purpose. Having overviewed a piece of the GNPC forest, we
turn to a closer look at a few of its trees.

III. PROTOTYPE SELECTION

In this section we give brief overviews and the computational protocols for
the four selection methods used in our numerical experiments. Following the
architecture of Figure 3, we have subsections for condensation, error-edition,
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and search methods. For convenience in Sections III and IV, we drop the
subscript of X , and refer to the training data more simply as X.tr

A. Selection by Condensation

The objective of condensation is to find a consistent reference set; i.e., a set
Ž .V � X, such that E X ; V � 0, i.e., the resubstitution error rate of the 1-nps np tr s

classifier is zero. If there are no identical points with different class labels in X,
then at worst X is a consistent set of n prototypes for itself. Condensation aims
to find V with the minimal possible cardinality, ideally with n � n. This leadss p
to retaining in V points from X that are close to classification boundaries.s
Thus, boundaries, together with all the noise that the boundary data points
might involve, are modeled as precisely as possible.

Condensation only guarantees zero resubstitution error. The amount of
reduction of the reference set and the generalization capability of the nearest
prototype classifier built with the selected V are not explicitly involved ins
condensation selection strategies. However, the general goal of most methods
for finding prototypes is to be able to use V with some form of the GNPC tos
label unknown objects. Then generalization error becomes an important issue. A
severe drawback of all condensation methods is that the zero resubstitution
error requirement is always enforced, so no tradeoff between error rate and the
cardinality of V is possible.s

Hart’s C-nn: The original condensation method is the condensed nearest
Ž . 14neighbor C-nn method of Hart. Hart’s C-nn operates with two sets: STORE

and GRABBAG. Initially STORE is empty and all elements of X are placed in
GRABBAG. The first element of X is moved from GRABBAG into STORE.
The next element is classified using the nearest prototype classifier and the
current content of STORE. If misclassified, that element is moved from GRAB-
BAG to STORE. When all elements of GRABBAG have been checked, a new
iteration starts at the beginning of GRABBAG, using the current content of
STORE. The procedure stops when a pass through GRABBAG has not added

Ž .any element to STORE or when GRABBAG is empty, and STORE is X . The
final content of STORE is taken as V . Many modifications of, and algorithmss
similar to, Hart’s C-nn are known.15

The output of Hart’s C-nn depends on the order of presentation of the
elements in X. Different permutations of X can lead to different V s. Cerverons
and Ferri16 suggest running the C-nn multiple times, beginning with different
permutations of X. Since C-nn builds STORE gradually, as soon as STORE in
the current run reaches the cardinality of the smallest V found so far, the run iss
terminated and a new run is started from a different permutation of X. This
speeds the algorithm towards its destination and seems to produce good sets of

Ž .consistent prototypes. A minimal consistent set algorithm MCS for condensa-
tion was proposed by Dasarathy.17 Dasarathy’s MCS decides which elements to
retain after a pass through all of X, so unlike C-nn, MCS does not depend on
the order in which the elements of X are processed. MCS, however, does not
necessarily find V with the true minimal cardinality.6s
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B. Selection by Editing

Wilson’s Method: Error-editing assumes that points from different classes
Žthat are close to apparent boundaries between them contain ‘‘noise’’ i.e., points

that ‘‘cross’’ the apparent boundaries between classes, making the labeled
.clusters seem mixed , and should therefore be discarded. This group of methods

include Wilson’s method18 and Multiedit.19,20 Both schemes are based on ruling
Žout misclassified objects. In Wilson’s method, the k-nn algorithm Wilson

.recommends k � 3 is run once on X. All misclassified objects are marked for
deletion during the run, and are deleted from X after the run to produce the
prototype set V .s

Multiedit, a theoretically justified version of Wilson’s method, is asymptoti-
cally Bayes optimal. That is, when the numbers of samples and iterations tends
to infinity, the 1-np classifier on the resultant V is equivalent to the Bayess
classifier. Multiedit, however, is not suitable for small data sets with overlapping
clusters, whereas Wilson’s method works well in these cases. Moreover, Wilson’s
method is appealingly simple.

Error-editing methods have no explicit connection to either the resubstitu-
tion or generalization error rate performance of the 1-np classifier based on the
resultant V . Asymptotic properties do not guarantee good performance when Vs s
has to be selected from a finite X. The cardinality of V is not explicitly takens
into account. Many early techniques for editing 1-nn training data are summa-
rized in Dasarathy.15 Our preliminary experiments indicated that the methods of
Hart, Wilson, and Randomized Hart were not very effective in terms of either
accuracy or data set reduction. In the finalized experiments reported in Section

Ž .V we used Wilson’s method followed by Hart’s C-nn called Wilson � Hart .
Hybrids of condensation and error-editing are also known. Editing tech-

niques are often followed by condensing techniques. Editing ‘‘cleans up’’ the
input data, yielding a V that supposedly contains only ‘‘easy’’ points in it.s, initial
Then a condensation method reduces V to a possibly smaller number ofs, initial
relevant final prototypes, say V . Ferri21 proposes a third step: Multiedit iss, final
used for phase 1 ‘‘clean up’’; Hart’s C-nn for phase 2 condensation; V iss, final
then used to reclassify all the original points in X, and the newly labeled data
set, say X �, is used with the DSM method to further refine the classification
boundary.

Interestingly, condensation and error-editing rely on different ideas and
Ž .implement different strategies retain or discard boundary objects aimed at the

same general goal: finding the smallest possible V with the highest possible 1-nps
accuracy. There is a third group of methods for prototype selection that attempt
to achieve the same goal through criterion-driven combinatorial optimization.
We call this group of methods ‘‘boundary indifferent,’’ because only the mathe-
matical goal is specified, so an algorithm ‘‘decides’’ whether or not to retain
boundary prototypes. An instant benefit from this third approach is that the
cardinality of V and the classification accuracy can be balanced through thes
criterion used. The basic combinatorial optimization problem to be solved by

Žthis approach and the one used by our genetic algorithm search method in the
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.numerical experiments of Section V is

� �Vs
max J V � max 1 � E X ; V � � 4� 4Ž . Ž . Ž .Ž .s np s½ 5��� ��� � �X

Ž . Ž .V � P X V � P Xs s

Ž . Ž Ž ..where P X is the power set of X, 1 � E X ; V is the resubstitutionnp s
classification accuracy achieved by the 1-np design based on V , and � is as
positive coefficient which essentially determines the tradeoff between accuracy

Ž .and cardinality. The function J in 4 is a typical fitness function for data
editing; see Refs. 6 and 16 for other useful functional forms. Next, we briefly

Ž .review three methods from this third group that all make use of 4 to evaluate
potential solutions to the selection problem: random selection, GA-based search,
and Tabu search.

( )Random selection RS : The desired cardinality n of V and the numberp s
of trials T are specified in advance. Then T random subsets of X of cardinality
n are generated, and the one with the smallest error rate is retained as V .p s
Skalak calls this method a Monte Carlo simulation.22 In both Refs. 6 and 22,
random search is reported to work unexpectedly well.

( )Genetic algorithms GAs : Editing the training data with GAs has been
discussed by Chang and Lippmann,23 Kuncheva,24,25 and Kuncheva and Bezdek.6

ŽSelection of a subset can be naturally encoded in terms of GAs and more
.generally, the evolutionary search paradigm . A binary-valued chromosome C

represents a subset S of the labeled data set X. The ith bit in C corresponds to
x from X and has value one if x is included in S, and 0, otherwise. An examplei i
of this type of encoding is shown in Figure 4.

Our GA approach for the numerical experiments of the next section
assesses a population of chromosomes in each generation. An initial population
of n subsets of X like S in Figure 4 is randomly generated. For each S, eachpop
bit is 0 or 1 with probability P , which regulates the cardinality of the initialini
population. Various members of the initial population can have different cardi-

Ž .nalities. Each chromosome is evaluated by the fitness function J in 4 . The
whole population set is used to choose n 
2 parent couples and each couplepop
produces two children by uniform crossover; i.e., each pair of corresponding bits
of the parent chromosomes are swapped with probability P � 0.5. Higher orc
lower values for P will increase the resemblance between the children and theirc
parents. The set of offspring is then mutated, i.e., each bit of each offspring

Ž . Žchromosome is altered with a small predefined probability P this probabilitym
.was fixed at P � 0.1 . New chromosomes are assessed by the fitness function J,m

pooled with the parent population, and the n chromosomes from the poolpop
Ž .with the highest J values survive as the next generation elitist strategy . The

Figure 4. Binary encoding of a subset of X.
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Žalgorithm terminates after T generations, where T is picked in advance T � 100
. Žin our experiments . The best chromosome from the last generation the

.chromosome with the highest J defines the prototype set V , and the number ofs
prototypes is thus determined ‘‘automatically,’’ in the auto-n sense as usedp
here. You should realize, however, that there are other parameters the user

� �does have to choose with a method such as this one, and V � n implicitlys p
depends on your choices for these other parameters.

Our GA model with the selected parameter values is close to random
Ž .selection. The reason for these parameter choices was threefold: 1 RS works

Ž .reasonably well; 2 our GA model is simpler than ‘‘classical’’ ones which use
Ž .more sophisticated selection schemes, e.g., the roulette wheel strategy; and 3

due to the enhanced random component, our GA is less likely to depend heavily
on the initialization than classical schemes. But the price we pay for this is that
our GA is also less likely to terminate quickly at local extrema of J. Our
computational experience is that a few runs of this simpler scheme can lead to a
reasonably good solution.

An even simpler evolutionary algorithm for data editing called ‘‘random
mutation hill climbing’’ was proposed by Skalak.22 Instead of evolving a popula-

Žtion of chromosomes simultaneously, only one chromosome evolves should we
.call it sur	i	al of the only? , and only the mutation operation is performed on it.

The best set in T mutations is returned as V . The evolutionary schemes given ins
Refs. 6 and 22 are both heuristic; it is debatable which is the better of the two.
GA conducts a larger search by keeping different subsets of candidates in its
early stages. On the other hand, the random mutation method is really simple,
and, like the GA discussed in Ref. 6, is shown in Ref. 22 to outperform RS.

( )Tabu search TS : Tabu search is an interesting alternative to the heavily
randomized methods in the boundary-indifferent group.16 In this scheme the
number of iterations T is fixed but the cardinality n is not. Similar to randomp
mutation hill climbing, TS operates on one subset only, called the current

� �solution S, which is represented as in Figure 4. A tabu vector of length X is set
up with all of its entries initially set to zero. An entry of 0 in the kth place in the
Tabu vector indicates that x can be added or deleted from S, while an entryk
that is greater than 0 prohibits a change in the status of x . A parameter calledk

Ž .tabu tenure T is specified, defining the number of iterations before a change oft
any previously altered bit is allowed. An initial subset is picked as S, stored as

Ž .the initial approximation of V , and evaluated by J V . The TS algorithms s
operates as follows.

First, all neighboring subsets to S are evaluated by the criterion function J.
A neighbor to S in the subset selection problem is any subset of X that differs
from S by just one element. For example, the eight neighbor solutions to S in
Figure 4 are obtained by altering one bit of the chromosome at a time:
� 4 � 4 � 4 � 4 � 4 � 4x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x ,1 2 3 6 3 6 2 6 2 2 4 6 2 3 5 6 2 3

ˆ� 4 � 4x , x , x , x , and x , x , x , x . The neighbor subset S that yields the highest2 3 6 7 2 3 6 7
ˆŽ . Ž .value of J is called the winning neighbor. If J V � J V , S replaces S,s sˆ

Ž . Ž . Ž .regardless of the tabu vector, and V and J V are updated. If J V � J V , thes s s sˆ
ˆ Žtabu vector is checked. If the move from S to S is allowed the tabu value
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.T � 0 , the move is made anyway, and the corresponding slot of the tabu vectort
is set to T . Thus, tabu search does not necessarily have the ascent property. Allt
other nonzero values in the tabu vector are then decreased by one. Different
criteria can be applied for terminating the algorithm. Four methods for picking
the initial solution are proposed in Ref. 16.

Ž .1 Maximal. The initial set is all of X.
Ž .2 Minimal. One prototype from each class is randomly picked from X.
Ž .3 Condensed. Hart’s C-nn is run on X, and the resultant consistent set V is useds

as the initial solution.
Ž . Ž .4 Constructi	e. Starting from a minimal solution second option , deletion of

elements is banned until a consistent set is obtained. Then normal tabu search
is resumed.

The authors’ of Ref. 16 favor the constructi	e initialization. In the experiments
of Section V we used their constructive initialization but did not wait until a
consistent set was obtained. The initial incremental phase was terminated after

Ž .a prespecified number of iterations 20 in all of our experiments .

IV. PROTOTYPE REPLACEMENT

This section contains brief overviews of the seven methods used in our
numerical experiments. Following the architecture of Figure 3, we have subsec-
tions for presupervised and postsupervised methods.

A. Presupervised Designs

( )Learning vector quantization LVQ : The LVQ family comprises a large
spectrum of competitive learning schemes.9 One of the basic designs that can be
used for prototype generation is the LVQ1 algorithm. An initial set of labeled
prototypes is picked by first specifying n � c. Then n elements are randomlyp p
selected from X to be the initial prototypes, so each class is represented by at
least one prototype. LVQ1 has three additional parameters specified by the

Ž . Ž .user: the learning rate � � 0, 1 , a constant � � 0, 1 , and the terminal numberk
of iterations T. The standard competitive learning update equation is then used
to alter the prototype set. If the closed prototype for input x is the vector v ,k i, old
the LVQ1 update strategy is

v � v � � x � v when ll v � ll x 5aŽ . Ž . Ž . Ž .i , new i , old k k i , old i , old k

or

v � v � � x � v when ll v � ll x 5bŽ . Ž . Ž . Ž .i , new i , old k k i , old i , old k

Ž .Equation 5a rewards the winning prototype for getting the correct label by
Ž .letting it migrate towards the input vector, while Eq. 5b punishes the winning

prototype for not labeling the current input correctly by repelling it away from
the input vector. In our experiments, the learning rate was updated after each
presentation of a new vector using the formula � � �� , k � 1, . . . , n � 1;k�1 k
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and was restored to the initial, user specified value of � at the end of each pass1
through X. Before each new pass through LVQ1, X is randomly permuted to
avoid dependence of the extracted prototypes on the order of inputs. LVQ1

Ž .terminates when either i there are no misclassifications in a whole pass
Ž .through X and hence, the extracted prototypes are a consistent reference set ;

Ž .or ii the prespecified terminal number of iterations is reached. The set of
prototypes at termination of LVQ1 is V .r

( ) 13Decision surface mapping DSM : Geva and Sitte’s DSM is a variant of
LVQ which they assert better approximates classification boundaries of the
training data than LVQ does. These authors say the price for better classifica-
tion rates is that the DSM is somewhat less stable than standard LVQs. The
only difference between LVQ1 and DSM is that a punishment�reward step is
taken only in case of misclassification of the current element of X. In LVQ1 the
winning prototype is either punished or rewarded, depending on the outcome of

Ž .the 1-np label match to the input. But in DSM, Eqs. 5 are both implemented
only if misclassification occurs. Thus, when the 1-np rule produces the correct

Ž . Ž .label, no update is made, but when misclassification occurs, both 5a and 5b
Ž .are implemented. In this case the winner from the wrong class is punished by

Ž .5b and the nearest prototype from the same class as the current input is
Ž .identified and rewarded by 5a .

Both LVQ1 and DSM operate with a fixed number of prototypes chosen by
the user, so are user-n methods. An auto-n modification of LVQ that canp p
prune and relabel prototypes was proposed by Odorico,12 who called it LVQTC.

( )LVQ with training counters LVQTC : Odorico’s LVQTC algorithm oper-
ates similarly to LVQ1. The amount that the winning prototype v is updatedi, old
depends on the distance to input x and the history of the prototype. Ak
prototype’s historical importance is determined by the number of times it has
been the winner. The procedure is initialized as is LVQ1, with the added twist

Ž .that an empty training counter with c slots one for each class is attached to
each prototype. When x is from class i, the ith entry of the training counter ofk
the nearest prototype will be incremented, regardless of the true label of that

Žprototype. If the winning prototype is from class i shares the same label as the
. Ž .input vector , then a slight variation of the reward equation 5a is applied to the

winning prototype v :i, old

�k
v � v � x � v when ll v � ll x 6Ž . Ž . Ž . Ž .i , new i , old k i , old i , old kqi

Žwhere q is the total number of times that v has won the competition i.e., thei i
. Ž . Ž .sum of all entries in its training counter vector . In 6 � is updated as in 5 ,k

but is not restored to its initial value at the end of each pass through X. The
rationale for this treatment of the learning rate is that prototypes which have
been modified many times have already found a good place in the feature space
and should be less affected by subsequent inputs. This strategy can be thought
of as a ‘‘decreasing reward’’�not as strong as punishing the prototype for being

Ž .wrong as in 5b by sending it away�but more like making it less welcome the
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Ž .more times it shows up at your doorstep. Equation 6 is the same as the update
equation for one of the earliest competitive learning models, viz., sequential hard
c-means,26 for the particular choice � � 1. Odorico may or may not havek
recognized this, but in any case added some novel heuristics to the original
algorithm which seem both justifiable and useful.

� 4At the end of each pass through X the prototype counters q arei
Žcompared to a user-specified retention threshold Q. If q � Q indicating that vi i
.has not won the competition ‘‘often enough’’ to merit retention , v is removedi

from V. The prototypes which survive the retention test are checked to see if
relabeling is needed. If the number of ‘‘calls’’ to a prototype from a wrong class
exceeds Q, the prototype is relabeled to that class, and is placed at the centroid
of all the vectors from that class which called it. Although this algorithm has
many heuristics and depends critically on the choice of Q, it has the advantage
that the final prototypes V provide soft class labels that are easily defined by ther
training counters. These soft labels can be used to guide classification decisions.

Bootstrap editing. Four simple and intuitive bootstrap editing methods are
proposed in Hamamoto et al.,27 all of which are presupervised, R-prototype

�extraction models. For the one that we use in Section V which we will identify
Ž .�as BTS 3 , three parameters are user-specified: the number of nearest neigh-

bors k, the desired number of prototypes n , and the number of random trialsp
T. A random sample of size n is then drawn from X. Each data point isp
replaced by the mean of its k-nearest neighbors from X with the same class
label. The 1-np classifier is run on X using the new set of labeled prototypes.
The best set from T runs is returned as the final V . In our experience,r
Hamamoto et al.’s method gives pretty nice results. This bootstrapping scheme
is a simple, fast, and unashamedly random way to get presupervised R-proto-
types that seem to provide a low resubstitution error rate.

B. Postsupervised Designs

Methods in this category disregard the class labels during training, and use
X as if it were unlabeled to find a set V of algorithmically labeled prototypes.r
The prototypes are then relabeled using the training data labels. Methods in this
group can be implemented in the presupervised mode by using the data from
one class at a time, since this obviates the necessity for the relabeling step.
When working with the data class by class, the prototypes that are found for
each labeled class already have the assigned physical labels. The c subsets of
prototypes are then pooled to form V . We focus here on postsupervised designs.r

ŽYour intuition probably tells you that presupervised prototype extraction V ass
.opposed to V will usually produce better 1-np classifiers than postsupervisedr

models. We will keep an eye on this supposition as we conduct numerical
Ž 6 8experiments in the next section cf. Kuncheva and Bezdek, Kohonen, and

10 .Diamantini and Spalvieri .
( )Vector Quantization VQ : Vector quantization has been used to find

28 Žprototypes for many years. For example, Xie et al. used it in the presuper-
.vised model to support a version of k-nearest neighbor and Parzen classifier
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designs. In this study we adhere to the basic algorithm and apply it to the whole
data set in the postsupervised mode. VQ starts with the user specifying n , andp
randomly selecting an initial set of n unlabeled prototypes from X. The closestp
prototype is always rewarded according to the update equation

v � v � � x � v 7Ž . Ž .i , new i , old t k i , old

Ž .The learning rate in 7 is indexed on t instead of k, t being the iteration
Ž .counter one iteration is one pass through X . The update rule we used is

Ž Ž ..� � 1 � t
T � , t � 1, . . . , T , where T is a prespecified maximum numbert�1 t
of passes through X. Termination is achieved by reaching T or by satisfying a
measure of closeness of successive iterates to a user-defined termination thresh-

� �old, i.e., V � V � 	 . To assign physical labels to the prototypes, the 1-npk�1 k
rule is applied to X using the extracted prototypes. The number of winners for
each prototype from all c classes are counted. Finally, the most represented
class label is assigned to each prototype. Let n be the number of elementsi j
from class j associated with prototype v via the 1-np rule. Class label k isi
assigned to prototype v when it holds the majority of votes:i

� 4n � max n � ll v � e 8Ž . Ž .i k i j i k���
1 � j � c

Ž .Ties in 8 are broken randomly. It is not difficult to show that this relabeling
strategy guarantees the smallest number of misclassifications of the resultant
1-np classifier on X. This relabeling scheme is used in all of our other
postsupervised designs.

Generalized Learning Vector Quantization—Fuzzy GLVQ-F: GLVQ-F is
an unsupervised method for finding prototypes which is similar to VQ but at
each step all prototypes are updated. The update formula for the special case of
weighting exponent m � 2 as given in Ref. 29 is

v � v � u � x � v 9aŽ . Ž .i , new i , old i t k i , old

where

c 2� �x � vi
u � 1 � i � c 9bŽ .Ýi 2ž /� �x � vj�1 j

The rest of the GLVQ-F algorithm is the same as our specification of VQ. See
Ref. 29 for limit analysis of GLVQ-F, which reduces to VQ under certain
conditions.

Clustering and relabeling: Instead of finding prototypes by sequential
competitive learning, we can cluster X with any batch clustering algorithm that
generates cluster centers, and take the centroids as V . This approach can ber

Žuseful if the centroids are ‘‘good’’ representatives of the clusters in the data of
course, we will not be able to ascertain this for data that have more than p � 3

. 1,30features . Good candidates include the c-means methods. X is clustered
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Ž .Table I. Eleven of zillions! methods for finding prototypes.

� Acronym S or R Pre
Post np

S Ac1 W � H P ""
S Ac2 GA P ""

USc3 RND P" "
S Ac4 Tabu P ""

URc5 LVQI P" "
URc6 DSM P" "

R Ac7 LVQTC P �""
URŽ .c8 BTS 3 P" "
UR Ž .c9 VQ p" "
UR Ž .c10 GLVQ-F p" "

R AŽ .c11 HCM p �""

disregarding the class labels. The centroids are taken as V . The relabeling stepr
Ž .assigns a class label to each cluster according to 8 . Our experiments use only

classical hard c-means.1

Summarizing, the 11 classifier methods we chose for prototype extraction
are listed in Table I. The notation in the last three columns in Table I is used in

RSFigures 9 through 12: selection � , replacement � , presupervised � P ," "
UA AŽ .postsupervised � p , auto-n � and user-n � . The notation � in" ""p p

Table I means that the algorithm can only decrease the initially specified
number of prototypes. LVQTC prunes prototypes after each pass through X,

Ž 31.and the HCM implementation Duin can return a number of clusters that is
smaller than the number of classes in the labeled data.

Ž .Why these 11 methods? Our choice was guided by two criteria: i the
methods should be simple and effective, with a relatively small number of

Ž .parameters to specify; and ii , as much of the methodological spectrum shown
in Figure 3 as possible should be represented.

V. THE DATA SETS AND NUMERICAL EXPERIMENTS

We use two small, artificially generated data sets, and two data sets from
real application domains. Characteristics of the four data sets are shown in
Table II.

( )A Cone-torus data. This is a c � 3 class dataset with n � 400 training
Ž . 2points X in � generated from three differently shaped distributions: a conetr

Ž . Ž . Ž92 training data , half a torus 99 training data , and a normal distribution 209
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Table II. Characteristics of the four data sets used in our computational experiments.

p c
� of � of

� � � �Name Features Classes X X Electronic Accesstr test

Cone-Torus 2 3 400 400 http:

www.bangor.ac.uk

� mas00a
Z.txt

Normal 2 2 250 1000 http:

www.stats.ox.ac.uk

mixture � ripley
PRNN


Phoneme 5 2 500 4904 ftp.dice.ucl.ac.be, directorypub

neural-nets
ELENA


Satimage 36 6 500 5935 ftp.dice.ucl.ac.be, directorypub

Ž .4 used neural-nets
ELENA


.training data with prior probabilities for the corresponding classes of 0.25, 0.25,
Ž .and 0.5. A separate test data set X with 400 more points generated from thetest

same distributions is also provided.
( ) 32B Normal mixtures data. This data set is used by Ripley to illustrate

various classification techniques. The training data consist of 125 two-dimen-
sional samples drawn from a mixture of two 2-variate normal distributions with
the same covariance matrix. A labeled test set containing 1000 more points
drawn from the same mixture distribution is also provided. Ripley asserts that
the class distributions have been chosen so that the best possible error rate on
the test data is about 8%.

( )C Phoneme data. The Phoneme data set consists of 5404 five-dimen-
Ž .sional vectors characterizing two classes of phonemes: nasals 70.65% and orals

Ž .29.35% . A series of classification results based on the Phoneme data are
presented in Holmstrom et al.,33 who report classification accuracy that varies
between 11�25%, with the first half of the data set used for training and the
second half for testing. In our experiments we used the first 500 data points for
training and the remaining 4904 for testing.

( )D Satimage data. This data set, generated from the Landsat Multi-Spec-
tral Scanner image data, consists of 6435 pixels, each of which has 36 intensities
attached to it. The 36 features comprise 4 spectral bands, and each center pixel
provides 9 intensities from its 3 � 3 neighborhood. Pixels are crisply labeled into
one of c � 6 classes, and are presented in random order in the database. The

Ž . Ž . Ž .classes are: red soil 23.82% , cotton crop 10.92% , grey soil 21.10% , damp
Ž . Ž .grey soil 9.73% , soil with vegetation stubble 10.99% , and very damp grey soil

Ž .23.43% . Our experiments are based on using the 4 features 17, 18, 19, and 20,
which are the features recommended by the designers of the database. The first
500 points in this feature subset of the Satimage data were used for training, and
the remaining 5935 points in these four features were used for testing.

Our experiments were not configured to find the best classification accuracy
that might be possible for a given data set. Rather, our objective here is to use
the four data sets as a means for comparing various aspects of the 11 prototype
extraction methods when the prototypes are used as the basis of the 1-np



NEAREST PROTOTYPE CLASSIFIER DESIGNS 1461

classifier. Various combinations of initialization parameters were tried in prelim-
inary experiments and the most successful ones were picked for the reported
comparisons. You can undoubtedly find better combinations of parameters for
the various methods if time is not an obstacle. HCM was implemented using the
version available in the PRTOOLS toolbox of Duin.31 The number of clusters
returned by Duin’s HCM can be smaller than the initial number n becausep, ini

Ž .some of the clusters may turn out to be degenerate i.e., empty . Table III shows
the experimental protocols that we used for each of the 11 methods.

The training and testing errors and the terminal number of prototypes
� �V � n for the eleven 1-np classifier methods and four data sets are shown inp

Table IV. For GA, Tabu search, LVQ1, DSM, LVQTC, VQ, GLVQ-F, and
HCM, the best of five independent runs is reported. Wherever the best training
error over different runs was tied, the average of the test errors over the tied
runs is given. The best results among the 11 competing schemes for training
error, testing error, and number of prototypes are highlighted by bold font in
Table IV.

� �The last column in Table IV shows the % reduction in X on replacementtr

of X by V or V . For example, classifier c1 in Table IV selects 36 of the 400tr s r

training points in the cone-torus data as prototypes, so the percent reduction �
Ž . � �100* 400 � 36 
400 � 91%. Observe that V � c for all 11 methods. That is, all

of these classifiers are multiple prototype classifiers, in the sense that there is at
least one class in the training data which is represented by more than one

Žprototype. This is consistent with both our intuition and earlier studies cf.
.Ref. 30 .

Ž .Figures 5 through 8 plot the test error rate column 5 in Table IV
Ž . � � ŽE � E X ; V versus the number of terminal prototypes V � n pre-˙np np test p

.specified or found, column 6 in Table IV for the 11 methods and four data sets.
Each method produces a point in the two-dimensional space whose coordinate

Ž .axes are n , E . The closer a point is to the origin, the better the 1-npp np

Table III. Experimental protocols.

� Method Initialization Parameters

c1 W � H k � 3
c2 GA ps � 10 T � 100 P � 0.1 P � 0.1 � � 0.5m ini

� 4c3 RS T � 500 n � 10, 20p
Ž .c4 Tabu T � 100 �20 preliminary iterations

Ž .T tabu tenure � 3% of the chromosome length, � � 0.05t
c5 LVQ1 � � 0.3 � � 0.8 T � 100 n � 20ini p
c6 DSM � � 0.3 � � 0.8 T � 100 n � 20ini p
c7 LVQTC � � 0.3 � � 0.8 T � 100 Q � 20 n � 20ini p, ini

Ž .c8 BTS 3 k � 3 T � 100
c9 VQ � � 0.3 T � 100 n � 20ini p

c10 GLVQ-F � � 0.3 T � 100 n � 20ini p
c11 HCM n � 20p, ini
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Ž .Table IV. Experimental results best case for the four data sets.

Training Testing %
� � � �� Method Error % Error % n Reductionp

Ž .Cone-Torus Data: cols. 4 and 5 plotted in Fig. 5
c1 W � H 10.75 13.00 36 91
c2 GA 10.00 14.50 77 80.75
c3 RND 15.75 14.50 20 95
c4 Tabu 9.5 14.75 21 94.75
c5 LVQ1 15.50 14.50 20 95
c6 DSM 22.25 20.75 20 95
c7 LVQTC 17.00 16.00 13 96.75

Ž .c8 BTS 3 16.00 12.25 20 95
c9 VQ 14.75 15.75 20 95

c10 GLVQ-F 17.00 18.25 20 95
c11 HCM 14.25 16.00 19 95.25

Ž .Normal Mixture Data: cols. 4 and 5 plotted in Fig. 6
c1 W � H 10.4 14.9 23 90.8
c2 GA 8.8 11.3 42 83.2
c3 RND 10.8 10.65 10 96
c4 Tabu 8.4 12.9 10 96
c5 LVQ1 10.0 8.6 20 94
c6 DSM 12.4 9.0 20 92
c7 LVQTC 10.0 10.5 15 94

Ž .c8 BTS 3 10.4 10.2 20 92
c9 VQ 12.0 11.80 20 92

c10 GLVQ-F 12.0 9.2 20 92
c11 HCM 11.2 9.5 19 92.4

Ž .Phoeneme Data: cols. 4 and 5 plotted in Fig. 7
c1 W � H 10.80 20.00 47 90.6
c2 GA 11.80 20.84 98 80.4
c3 RND 18.40 22.14 20 96
c4 Tabu 9.80 18.80 20 96
c5 LVQ1 15.4 21.53 20 96
c6 DSM 23.2 27.55 20 96
c7 LVQTC 17.6 21.02 10 98

Ž .c8 BTS 3 17.00 22.29 20 96
c9 VQ 19.6 24.04 20 96

c10 GLVQ-F 19.40 23.45 20 96
c11 HCM 18.2 20.84 19 96.2

.Satimage Data: cols. 4 and 5 plotted in Fig. 8
c1 W � H 11.4 16.16 32 93.6
c2 GA 11.0 17.83 115 77
c3 RND 17.4 19.51 20 96
c4 Tabu 10.4 16.41 24 95.2
c5 LVQ1 15.2 16.68 20 96
c6 DSM 19.6 20.35 20 96
c7 LVQTC 16.0 17.51 16 96.8

Ž .c8 BTS 3 16.6 17.17 20 96
c9 VQ 15.2 15.86 20 96

c10 GLVQ-F 15.6 16.34 20 96
c11 HCM 14.4 17.07 16 96.8
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� � Ž .Figure 5. n � V vs. E X ; V for the cone-torus data.p np test

classifier, because such a classifier will have a small number of prototypes and
also a small test error rate.

Figure 5 has coordinates for 10 of the 11 methods. The GA approach
resulted in 77 prototypes for the cone-torus data, so we decided not to plot this
point, to keep the scale in Figure 5 to a size where the other 10 methods can be
seen more clearly. The same thing occurs with the other three data sets; the
number of prototypes chosen by GA is much larger than those found by the
other 10 methods, so we again left the GA coordinates off-scale. This also

Ž .occurs for the W � H classifier in Figures 7 and 8.
Figure 6 plots the same 10 methods as Figure 5 for training and testing with

the normal mixture. The best classifiers in Figure 6 are RND and DSM, neither
of which ‘‘wins’’ the best classifier contest depicted by Figure 5. This illustrates
emphatically just how data dependent classifier design can be, and how ludicrous
it is to look for a ‘‘best all-around’’ classifier design that generalizes well across a
variety of different data regimes.

For the Phoneme data, the LVQTC and Tabu based 1-np designs produce
the best results. Comparing Figure 7 to Figures 5 and 6 shows that over the first
three data sets used for training and testing, our first repeat winner is the
LVQTC based 1-np design. LVQTC occupies a place of distinction in both cases
because it uses the minimum number of prototypes, but notice that this is
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� � Ž .Figure 6. n � V vs. E X ; V for the normal mixtures data.p np test

achieved, for example, by sacrificing its testing error, which is worse for LVQTC
in Figure 5 than for all but two of the competing 1-np designs.

Yet another pair of classifiers emerge as winners for the Satimage data,
represented in Figure 8, where HCM and VQ based 1-np designs perform better
in one coordinate or the other than the other nine classifier designs.

In some sense the best 1-np classifier o	erall will be the one closest to the
� � � 2origin in Figures 5 through 8, since this design will have the minimum V �

2 �E ; the most efficient representation of the training data is perhaps the designnp
� �that minimums n � V ; and the best design in terms of generalization error ratep

minimizes E alone. The tradeoff between minimal representation and maxi-np
mal classification accuracy is evident from the fact that none of the classifiers
studied have the smallest coordinates in both dimensions in Figures 5 through 8.
Winning designs for each of the four data sets are connected by lines in Figures
5 through 8 and summarized in Table V.

The two ties in Table IV, n � 10 with RND and Tabu, and n � 16 withp p
LVQTC and HCM, were resolved by choosing the classifier for Tables V and VI
that was closer to the origin in Figures 6 and 8, respectively. While this gives us
a way to declare a ‘‘winner’’ for these two data sets, please notice that there is
hardly any difference between these two designs and the two that do not appear
in Table V because of our tie-breaking strategy.
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� � Ž .Figure 7. n � V vs. E X ; V for the Phoneme data.p np test

Now we return to the three characteristics of 1-np designs listed in Section
RSŽ . Ž . Ž . Ž .I: C1 Selection V � X versus replacement V � X ; C2 Presuper-" "s r

UŽ . Ž . Ž .	ised P versus postsuper	ised p designs; and C3 User-defined n user-n"p p

A Ž .versus algorithmically defined n auto-n . One way to evaluate the overall"p p
Ž . Ž . Ž .effect of C1 , C2 , and C3 on the classifiers is to combine the information in

Tables I and V. Towards this end, column 1 of Table VI shows the winning 1-np
classifier designs from Table V, while each row in Table VI has a set of three

Ž .check 	 marks corresponding to the three characteristics of the method from
Table I.

The last row in Table VI shows the number of checks in each column, and
Ž . Ž .the paired ‘‘scores’’ for each of C1 � C3 give a very crude indication of relative

efficacy of each coordinate in the pair. Since there are eight optimal points in
Ž . Ž .Figures 5 through 8, each pair of coordinates sums to 8: e.g. S, R � 2, 6 in

the last row of Table VI, so replacement methods achieved results at least as
good or better than selection algorithms in six of the eight of the trials
represented for the four data sets. As you think about this statement, bear in

Ž .mind that the coordinate pairs on which it is based are in n , E space, andp np
only one pair of coordinates per method appears in each of Figures 5 through 8.
It is incorrect to infer from columns 3 and 4 of Table VI, for example, that R
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� � Ž .Figure 8. n � V vs. E X ; V for the Satimage data.p np test

methods achieve lower test error rates than S methods in 75% of the trials. For
instance, HCM posts a ‘‘win’’ in Figure 8, but there are five other classifiers that
yield a lower testing error than HCM on the Satimage data. HCM appears in
Table VI because none of its competitors can do better with as few prototypes.
A better interpretation of the information in Tables V and VI bears in mind

Ž .that Figures 5 through 8 all have an underlying implicit, but very real tradeoff
going on between n and E .p np

Ž . Ž .Figures 9 through 11 try to address the relevance of C1 � C3 to 1-np
classifier design in a slightly different way. In these three figures the horizontal
axis is the ratio of n , the number of prototypes found or used, to the cardinalityp
of the training set X , averaged over the four data sets A, B, C, D, say n �tr p

Table V. Winning classifiers for the four data sets.

min min min
2 2� � � � � � � �Data Set X X p c n � V E V � Etr test p np np

Ž .Cone-torus 400 400 2 3 13 : LVQTC BTS 3 LVQTC
Normal mixture 250 1000 2 2 10 : RND LVQ1 RND
Phoneme 500 4904 5 2 10 : LVQTC Tabu LVQTC
Satimage 500 5935 4 6 16 : HCM VQ HCM
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Table VI. A summary of the winning designs for the four data sets.

URS AŽ .Method Wins In P p "" " "
LVQTC Fig. 5 	 	 	

Ž .BTS 3 Fig. 5 	 	 	
LVQ1 Fig. 6 	 	 	
RND Fig. 6 	 	 	
Tabu Fig. 7 	 	 	
LVQTC Fig. 7 	 	 	
HCM Fig. 8 	 	 	
VQ Fig. 8 	 	 	

Ž .
 	 2 6 6 2 4 4

4 Ž � � � �.Ý V 
4 � X , where index i runs over the four data sets in question. Thei�1 i tr, i
vertical axis in Figures 9 through 11 is the training error rate averaged over the

4 Ž .four data sets, i.e., E �Ý E X ; V 
4. The GA based 1-np classifiernp i�1 np tr, i i
does not appear in these three figures because its horizontal coordinate is much
larger than any of the other classifiers, and we wanted to again show the
comparisons at a scale which enables you to see differences among the classi-
fiers close to the origin. The ten points in Figures 9 through 11 have the same
coordinates in all three figures�what changes from Figure 9 to Figure 10 to
Figure 11 is the label attached to each of the points. In Figure 9, we compare
selection to replacement; in Figure 10 presupervised designs are compared to
postsupervised designs; and in Figure 11, you can see how user-n methods stackp
up to auto-n methods. Classifiers which are closer to the origin in Figures 9p
through 11 are again better than ones which are farther away from it.

Figure 9 compares 1-np designs based on prototypes in the training data
SŽ .selection, to those based on prototypes built from the training data"

RŽ . Ž .replacement, . A replacement method LVQTC assumes the minimum for"
� � � � � Ž .�the average ratio of V 
 X , while a selection method BTS 3 yields, albeiti tr, i

Žslightly, the smallest average test error rate. The ‘‘cluster of 6’’ methods shown
.within the dashed boundary closest to the origin in Figure 9 contains three

from each category, implying that it is equally likely that you can find a decent
set of prototypes for 1-np classifier design using either strategy.

Figure 10 compares pre- to postsupervision. The ‘‘cluster of 6’’ in Figure 10
Ž .contains five P s and only one p : this seems to confirm what your intuition

suspects, that using the labels to derive V is usually more effective than using
them to label V after finding it. On the other hand, the two presupervised

Ž .‘‘outlier’’ designs in Figure 10 W � H, GA are all much worse than the three
Ž .postsupervised methods HCM, VQ, GLVQ-F , so it is not the case that

presupervision is always better than postsupervision. Do not forget that Figure
10 is based on computations with four pretty small data sets, and we would not
be too shocked if you found four other data sets where the conclusions
suggested by your calculations were very different than these.
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Figure 9. Selection vs. replacement: averages over four data sets.

Figure 11 compares methods that find the number of prototypes automati-
AŽ .cally Auto-n , to methods in which the user has to tell the algorithm how"p

UŽ .many to look for user-n , . Thus, we see that the minimum number of"p
prototypes is discovered automatically by LVQTC, while the minimum average

Ž .error rate is produced by BTS 3 , a method in which the user selects the number
of prototypes, presumably with trial and error comparisons. Figure 11 does not
provide conclusive evidence for either style of prototype generation, since the
‘‘cluster of 6’’ in Figure 11 contains three auto-n and three user-n methods.p p

Figure 12 combines Figures 9 through 11 on one graph, where each of the
ten plotted 1-np classifiers is associated with one of the three coordinate triples
Ž .C1, C2, C3 from Table I. As in Figures 5 through 11, the ‘‘best’’ designs are the
ones closest to the origin, and the four Pareto-optimal designs36 for averages
over the four data sets are captured by the shaded region in Figure 12. The

Ž .coordinates of these four designs in C1, C2, C3 space show ratios of: 3:1 for
replacement vs. selection; 4:0 for presupervised designs vs. postsupervised de-
signs; and 2:2 for auto-n vs. user-n selection of the number of prototypes. Thisp p
indicates that�at least for these data sets and trials�presupervised, replace-

Ž . Ž .ment prototypes are the more desirable combination of C1 and C2 , while
finding the best number of prototypes is done equally well by user specification
or ‘‘automatically.’’
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Figure 10. Presupervised versus postsupervised designs: averages over four data sets.

VI. CONCLUSIONS

We discussed 11 methods for 1-np classifier design, all of which fall under
the umbrella of the generalized nearest prototype classifier model.5 Our study

Ž .explored the interaction of three characteristics of 1-np designs: C1 Selection
Ž . Ž . Ž .V � X versus replacement V � X ; C2 Presuper	ised versus postsuper	iseds r

Ž . Ž .designs; and C3 User-defined n user-n versus algorithmically defined np p p
Ž .auto-n . The error rate on test data and the cardinality of the prototype setp
were the two criteria for comparison. Not surprisingly, different designs were

Ž .better for different data sets see Figs. 5 through 8 . Moreover, no clear
Ž . Ž . Ž .tendency emerged with respect to C1 , C2 , or C3 . Overall, Tabu search and

LVQTC appeared to be the most successful designs. We believe that part of the
success of Tabu search is due to the ‘‘constructive’’ initialization scheme of
Cerveron and Ferri.16 In our experiments Tabu search found, usually within the
first 20 iterations, an excellent initial guess which was almost never changed
later in the algorithm, when the ‘‘do-not-delete’’ restriction is not in force.
However, our study did not attempt to find a ‘‘best’’ 1-np design, but rather, to
explore the importance of the three characteristics of all 11 designs. What can
we say about each of these?

Ž . ŽOur general belief about C1 is that V � X can be better positioned forr
.1-np classification but more difficult to find than V � X. Figure 12 shows thats
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Figure 11. User-p vs. Auto-p: averages over four data sets.

on average over four sets of data, three of the four best methods are replace-
� Ž .�ment methods. These three methods LVQ1, LVQTC, BTS 3 share the prop-

erty that they build replacement prototypes by optimizing local criteria instead
of a global criterion such as that used by batch algorithms like HCM.

Ž .For C2 , intuition suggests that presupervised methods are better than
postsupervised schemes because they use the additional information possessed
by the labels of the training data used to find V. Figures 11 and 12 make it clear
that presupervised methods were superior for these four data sets and 11
methods. This finding is consistent with that of an earlier study, where all five
Pareto-optimal designs among 16 1-np classifiers that were compared with
resubstitution errors committed in the Iris data were presupervised.7 We are
confident enough about this point to assert that some presupervised method will
almost always produce labeled prototypes for 1-np classifier design that are
superior to those found by postsupervised methods. You noticed our use of the
words ‘‘some’’ and ‘‘almost always’’? Some, because in pattern recognition the
trick is always to find the right classifier; almost always, because there is always
a data set out there which provides a glaring counterexample to anything you
claim is always true. For an example, just notice that DSM, W � H, and GA
Ž .which falls outside the frame in Fig. 12 are also presupervised designs, but they
were all inferior to all of the postsupervised designs.
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Ž .Figure 12. C1, C2, C3 triples: averages over four data sets.

Ž .For C3 , auto-n methods will certainly be more popular than user-np p
designs, because they seem simpler to use. However, auto-n methods simplyp
hide the trial and error procedure for finding the ‘‘best’’ number of prototypes
from the user, and instead rely on some mathematical criterion that selects n .p
If the criterion is test error E , this relieves the user from conducting the trialsnp

Žand committing the errors but necessitates the use of a validation test set;
otherwise, there is no reason to believe that auto-n methods will be superior top
user-n designs, and Figure 12 confirms this.p

For each of the four data sets there is a fairly large group of designs with
Ž .similar performance those near the origin in Figures 5 through 12 . The

difference in testing errors or in the number of prototypes retained is small, and
from our viewpoint these designs are all more or less equivalent. The GA design
is missing from Figures 5 through 12 because the number of prototypes found by
it was so high that if we put GA on the scatterplot, the scale would obscure

Ždifferences between some of the other designs. In our previous study Kuncheva
6.and Bezdek , GAs exhibited very good performance. Do we have an explana-

tion for this inconsistency with earlier performance? Nope. Would other choices
for � , ps, T , the initialization and mutation probabilities, and the fitness
function lead to better results? Sure�but then, you can improve any of these
designs if you have enough time and patience.
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What can we conclude about the tradeoff between test error rate and the
number of prototypes used? Nothing new, but these new experiments do support
our convictions about this point more strongly. This tradeoff exists, and the
general trend you would expect�that plots of n vs. E take the general shapep np
of the graph of y � 1
x�holds throughout Figures 5 through 12. Perhaps the
most interesting thing we can observe about this aspect of the experiments is
that none of the auto-n methods decided that n as small as c, or n as largep p p

� �as X , provided the best solution. From this we conclude that you will almosttr
always do better with n � c, i.e., more prototypes than there are classes in thep
training data, but should almost certainly stop short of using as many prototypes

Žas there are training data in this latter case, if the prototypes are being
selected, you arrive at the k-nearest neighbor rule, which is probably a better

.choice than 1-np classifiers anyway�but that is another story .
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