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1. Introduction

Intuitionistic fuzzy sets (IFS) have been introduced [1,2] as a more rich
alternative of the classical fuzzy sets. An IFS A over an universe U is defined as
A={<x,u(x),v(x)>, x€ U} where the functions p:U — [0,1] and v:U — [0,1] stand for
the degree of membership and the degree of nonmembership, respectively, of x to A. The
following inequality always holds: p(x)+v(x)<1. The degree of indeterminateness mw(x)= 1-
(n(x)+v(x)) is supposed to reflect the "hesitation" in assigning the degrees for x. An
ordinary fuzzy set B can be represented in terms of IFS as B={<x,(x),1-pn(x)>, x€ U}

A representation of class membership in pattern classification problems by IFS
seems to give a better means for designing a classifier in comparison with the crisp or
fuzzy labeling of objects. This expectation is based on the possibility to process
simultaneously the positive and the negative strength of evidence expressed by p and v,
respectively. Along with the fact that more information is included into the classifier
design, keeping track on the two processes in parallel seems to be more practically
plausible [3,4]. Thus a physician who is working on a diagnostic hypothesis keeps in
mind both positive and negative pieces of evidence trying (unconsciously) to weight them

with respect to each other. This helpful analogy can be applied in pattern classification
“using an IFS formulation.

Fuzzy k-Nearest Neighbors rule is one of the most widely exploited
classification paradigms due to its theoretical and semantic elegance, and feasibility of
implementation [5,6,7]. Its idea is to assign an unknown object (subjected to
classification) a membership value obtained as a function of the membership values of its
nearest neighbors in the feature space. There are a lot of concrete formulas and
generalizations but neither of these considers membership and nonmembership of the
object simultaneously.

The paper presents an intuitionistic fuzzy version of the k-NN rule. We believe
that due to the additional information included into the rule, this extension can lead to
higher classification accuracy and better explanation capabilities.

2. Geometrical interpretation of IFS

An IFS can be visualized in a p-v plane as shown in fig 1. Every element of U
can be assigned a point in the triangle defined by the points (0,0), (0,1), and (1,0).
Ordinary fuzzy sets are represented by the line (1,0), (0,1) (the thick line) and crisp sets,
by the point (1,0). Obviously, the representation offered by IFS contains more
information, and, therefore, more flexibility in handling membership values and more
tools to resemble human insight.

Let us suppose that the values p(x) and v(x) represent a class membership of the
object x. In order to infer a crisp classification decision the following regions are
formulated: Acceptance, Rejection, and Refuse to decide by introducing appropriate
constants. The rational behind this is that we would like to accept that the class being
investigated is true only if the membership value is high enough (above certain p,), and
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the corresponding nonmembership is low enough (below certain v,). We would reject
the hypothesis that the object belongs to that class if the nonmembership is high enough,
and the membership is low enough (i, and v, respectively). Otherwise we cannot
believe in either of the crisp decisions and it is better to refuse to decide.

Rejection

Acceptance

..... ) H
Refuse

Fig. 1. Geometrical representation of IFS and
the regions of Acceptance, Rejection, and Refuse.

Let us define the following function (we will call it "voting function"):

W), if plx) 2 p,, and vix) < v
o(x) = -v(x), if u(x) < p, and v(x) > v;
0, otherwise.

3. Intuitionistic Fuzzy k-nearest neighbors rule

Let Z = {Z,,...Z,} be the set of objects generated from M classes Q =
{®,5...,0,4. Let us consider a classification problem where the class labels form M IFSs on
Z, i.e. every object Z; € Z is represented by its respective feature vesctor (z;,...,z;,)T and
by M couples <p(x),v(x)>, i = 1,....M.

The classical k-NN rule assigns the object the class where belong the majority of
its k-nearest neighbors. There are a lot of fuzzy versions, the most trivial among which is
to average the membership grades of the k-nearest neighbors of x in respect to a given
class in order to obtain the membership degree to be assigned to x. Let Z\,....,Z" be the k-
nearest neighbors of x among the objects in Z. The membership value in the fuzzy case is
computed as:

k
WO =23 2 M)

It is obvious that if we put in (1) the 0/1 values for p(x) and choose the
classification rule that assigns to x the class corresponding to the maximal value of p/x)
the fuzzy and the crisp rules coincide.

The representation of class membership in terms of IES can be used to express
also the classical and fuzzy statement:

. for the classical case

udx) =1 and v(x)= 0, if x € ®, and
udx) = 0 and v(x)= 1, otherwise

. for the fuzzy case
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RAx) = pux) and v (x)= 1- pufx), i = 1,....M
For the proposed IFS case the following formula is suggested to determine the
membership value to a class :

u(x) =Y. 042)

=1

)

px) =051+ % ux) ]

where the voting function @, (.) uses the degrees of membership and nonmembership to
class o,

Proposition 1. If p(Z) = 1 and v{(Z)= 0, for Z € o, and p(Z) = 0 and
v{Z)= 1, otherwise, for every = 1,...,k, and the decision assigns to x the class with the
maximal pfx), 7 = 1,...,M, (2) coincides with the crisp 2NN for every combination of
values p1,,v,.v, € [0,1], w21, v,2v,.

Proof. Let u(Z) = 1 and v{(Z)) = 0 for a given ¢, i.e. Z € ®; Then (2 = 1
because the inequalities u(Z) > p, and v(Z) < v, hold for any p_ and v, from [0,1].
Let, for another + u(Z) = 0 and v{(Z) = 1, i.e. Z ¢ o, Then 9(Z) = -1 because the
inequalities dual to the above hold for any p, and v, from [0,1]. Therefore

ux)=24k -k
where £; is the number of the neighbors of x (among the % nearest ones) that belong to
class ®,. Therefore

Ll,-(x) = ;l
By using the rule that assigns the class corresponding to the highest value of
1), x will obviously be labeled to the class where belong the majority of its nearest

neighbors. 0

Proposition 2. If u(Z) = u(2) and v(Z)= 1-u(Z), i= 1,..,.M, and #= 1,....k,
and the decision assigns to x the class with the maximal p/x), 7 = 1,...,M, the crisp class
label coincides with that obtained by the fuzzy £-NN (1) for any p, € [0,1], and p, = 1,
andv,=v,=1-p,=1-p.

Proof. Without losing generality we can suppose that the neighbors Z',. Zk are
ordered in such a way that for a given class ®; u(Z) > p, for = 1,...,k,.-1, and u,(Z ) <
for = £ k. Then (2) can be rewritten as

at’c 2

k
G0 = 05+—— z W2 =Y aw@)]

a

-

05+5;[Z W(Z) - (k-k.41) ] =
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1¢ k,—1
;Z w1 + Y

[

1
5 (3)

Since (3) is an increasing function of lz u(Z) , the class corresponding to
=1

the maximal value of p/x) will be the same as the class inferred by the same rule from

(2).0

4. An example

In order to show the flexibility of the proposed IFk-NN rule the following
example is considered. Let Z', ..., Z° be the five nearest neighbors of x and let Q =
{w,,0,,05}. The discussion is confined to the case where the degrees of membership for a
given reference object sum up to 1, and the crisp label corresponds to the maximal
membership value. Since we have no information about the nonmembership we stipulate
that v(Z) = 1 - u(2), i = 1,2,3, £ = 1,...,5. Table 1 shows the degrees of membership and
nonmembership (in the parentheses) of the five neighbors and the respective crisp class

labels.

Table 1.
z z z z 4
o, 0.2(0.8) 0.2(0.8) 0.9(0.1) 0.3(0.7) 0.2(0.8)
o, 0.5(0.5) 0.3(0.7) 0.0(1.0 0.4(0.6) 0.5(0.5)
R 0.3(0.7) 0.5(0.5) 0.1(0.9) 0.3(0.7) 0.3(0.7)
crisp class ®, 0, o, o, o,

Table 2 contains the inferred degrees of membership by the crisp, fuzzy, and
IFk-NN, the latter with three different settings of the parameters p,n,v,v, The

notations are as follows:

Table 2.
K o) K3 Ky s
o, 0 0.36 0.28 0.35 0.35
©, 1 0.34 0.17 0.50 0.40
o, 0 0.30 0.15 0.46 0.41
crisp class o, o, o, o, ®;

. W, : crisp labeling;

. W, : fuzzy k-NN (1);

ey :IFk-NN with p, = 0.79, p,= 0.79, v,= 0.21, v = 0.21;
. W, : IF k-NN with p, = 0.49, p = 0.21, v= 0.51, v,= 0.79;
. s : IF k-NN wich p, = 0.89, p=0.21, v,= 0.11, v,= 0.79;
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Looking at the results in the tables we can conclude that both three hypotheses
yielded by the different parameter setting of the IFk-NN rule are plausible because there
is no visible dominance of any of the classes to the others. What this example is supposed
to emphasize is that the variarion of the threshold values may change the class assignment
which can, hopefully lead to a better classification performance. The values of the
parameters can be tuned by certain optimization procedure using the data set in the task.
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