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A new machine learning system is presented in this article. It is called INNER and induces
classification rules from a set of training examples. The process followed by this system starts
with the random selection of a subset of examples that are iteratively inflated in order to cover
the surroundings provided that they are inhabited by examples of the same class, thus becoming
rules that will be applied by means of a partial matching mechanism. The rules so obtained can
be seen as clusters of examples and represent clear evidence to support explanations about their
future classifications and may be used to build intelligent advisors. The whole algorithm can be
seen as a set of elastic transformations of examples and rules and produces concise, accurate rule
sets, as is experimentally demonstrated in the final section of the article. © 2003 Wiley
Periodicals, Inc.

1. INTRODUCTION

Let us consider a set of training examples described by attributes with
different kinds of values: symbolic (or literal) and numerical. Once we have
attached a category label or class to every example, a supervised learning algorithm
tries to build a collection of simple classification procedures able to guess the class
from the attribute values of a given, unseen example.

A useful means of describing these machine learning tools is to consider the
attribute space (the set of all possible examples) from a metric viewpoint. Here,
examples are points and classification procedures, usually called rules, can be
depicted by regions usually limited by borders parallel to the axes with an endowed
class label: respectively, the rule body and conclusion. Hence, to classify a new
example we need only to observe which region its coordinates belong to; its class
label will be the classification returned.

This classification mechanism can, however, be relaxed; when the coordinates
of an example do not exactly belong to any rule body, we can use the nearest one
instead.1 In this case, we no longer need to have large rule bodies: certain
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strategically placed decision regions can play the same role.2–4 We can even have
a collection of paradigmatic examples to classify new cases.5–9

One of the alleged advantages of exact classification systems (those where
points always belong to at least one rule body) such as the paradigmatic C4.510 is
the explicitness of their solutions, but they may fail when decisions borders are not
parallel to the axes. On the other hand, minimum distance classifiers may be
adapted to a wavy geometry but may produce heavily implicit solutions.

The RISE system11 tries to exploit the best of both worlds, and produces a
collection of rules whose bodies range from points to large regions parallel to the
axes. The classification accuracy of these rules is very high, but the number of rules
needed is sometimes too high to tag their solutions as explicit.

In this article, we present a set of elastic transformations of learning objects:
training examples and decision rules. These objects are allowed to inflate their frontiers
to become more general, explicit, ground classification areas. During this expansion
process, some regions may blend together like bubbles to give rise to a single, stronger
rule; the maxim is to make implicitness explicit in classification areas.

The achievement of this elasticity is that a set of training examples can lead
us to a small, explicit, accurate set of rules to be evaluated by means a nearest-
neighbor (or partial matching) strategy. The machine learning system thus obtained
is presented here. We call it INNER: an approximate acronym of the process
description, given that the system advances by INflatiNg Examples to obtain Rules.
There are a number of techniques12 concerned with reducing the size of the
knowledge induced from a set of training examples. What we would like to
emphasize is that in addition to its reduced size, the classification knowledge
induced by INNER is highly intuitive because we only allow our rules to grow while
they have enough training examples in the surroundings to support their general-
ization. The reward is that the explanations that can accompany INNER classifica-
tions (the mention of the rule used) look very much like a representative evidence
cluster. The very small sizes of rule sets obtained add more credibility to the
eventual explanations of INNER.

The generalization device employed is heavily inspired by Kohonen’s selforga-
nizing maps13 and is based on the definition of distances between learning objects:
examples and rules.14–17 After a section devoted to giving an overview of our system,
we spell out the metrics used throughout the article. We have to deal with numeric as
well as symbolic differences. The core idea is that we can learn to measure differences
at the same time as we learn how to classify new cases. The result is a metric that takes
into account local peculiarities of relevant regions of the attribute space.

In order to illustrate INNER’s performance, we close the article with a report of
some experimental results obtained from a set of well-known learning datasets18,19

taken from the UCI repository.20 In this final section, we compare the accuracy,
number and size of rules induced by C4.5, RISE, and our system.

2. OVERVIEW

Our learning system starts from a collection of training examples and is able
to induce classification rules described by two parts. The left-hand side or conclu-
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sion is given by the name of a class; the right-hand side or body of the rule is a
conjunction of conditions or antecedents. We will use the following syntax:

C 4 Atr1 � �x1, x2� ∧ Atr2 � �v1, v2, · · ·� ∧ · · ·

where Atr1 is an attribute with numeric values, while Atr2 has symbolic values
instead. Examples fulfilling these rules should have values of attribute Atr1

between x1 and x2, and a symbolic value of Atr2 belonging to the set {v1, v2, . . .},
etc. However, we are going to allow slightly different values to apply the rule and
conclude that the class must be C. The tolerance threshold will depend of the
remaining available rules, because our evaluation principle is based on the nearest-
neighbor rule.

In fact, the evaluation procedure guides INNER’s induction mechanism. The
overall description of the algorithm (see Fig. 1) can be seen as a variant of the
separate-and-conquer family.21 The main difference is that we do not dispose of
covered examples to generate new classification rules; instead, we propose a kind
of iterate-and-conquer. In each cycle of the main loop, we randomly choose a
small set of training examples of every class by means of FINDBESTRULES. Con-
sidered as point rules, their descriptions are generalized (by inflating them; see Fig.
2) in an attempt to improve their classification accuracy, whereas at same time
aiming at making their correct classification areas explicit.

Figure 1. INNER’s main loop.

Figure 2. The generalization process consists of inflating rule descriptions as far as possible
while the classification quality is maintained or improved.
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If e is a training example, its point rule version is simply

CLASSOF�e� 4 a1 � �ea1, ea1� ∧ a2 � �ea2� ∧ · · ·

where CLASSOF(e) is the class of our example, ai are attribute names, and the body
of the rule is a conjunction where we have singleton sets formed by the example
values attached to each attribute; eai is the value of example e on attribute ai.

The rules obtained by inflating these point rules are saved and used to
compute which training examples are now explicitly covered (this is the function
of COVERAGE); the next iteration will inflate a new set of uncovered examples. The
stopping criterion is related to the number of training examples covered by the
rules generated so far, because the goal is to cover the regions to be classified
explicitly. By default, we require at least 95% of the training examples of each
class to be covered. However, the maximum number of cycles allowed is 5.

Notice that we use two sets of examples: the original training set, and the
collection of uncovered examples. Thus, if we do not obtain high-quality rules in
one iteration, we may try again by picking up better starting points whose
generalizations may overlap the inappropriate rules. Finally, once we have gath-
ered a set of classification rules in our Theory, we try to improve the whole set of
rules in a POSTPROCESS step. Here we dispose of unnecessary or erroneous rules and
we try to join neighboring, coherent decision areas. In a certain sense, we make
rules to play the role of individual examples in the inflating mechanism; see Fig.
11 in Section 5.

3. METRICS USED DURING THE LEARNING PROCESS

Most of INNER’s skill is in its inflating procedure, which is based on an original
way of measuring distances between learning objects. In fact we are not going to
deal with a metric in the mathematical sense of the word. Instead we will have
heuristics able to judge the utility of a rule growing in the direction of a given
training example.

Instance-based learning systems are usually concerned with distances from
examples to examples; a simple generalization leads us to consider distances from
rules to examples, and even more so from rules to other rules. In INNER, we will
have rules and examples in the inflating stage, but only rules in the final rule set
improvement step. In the following, we present and discuss some distance func-
tions to compute distances between examples that will be later generalized to be
used with rules.

Our system is able to handle both numeric and symbolic values within the
same case, so we need some kind of heterogeneous function measure. An initial
candidate is a function similar to the one used by Aha’s IBx algorithms5,6 called
the Heterogeneous Euclidean-Overlap Metric22 defined by

HEOM�x, y� � ��
a�1

m

dh�xa, ya�
2 (1)
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dh�xa, ya� � �1, if xa or ya are missing
overlap�xa, ya�, if a is a symbolic attr.
E�xa, ya�, if a is a continuous attr.

(2)

overlap�xa, ya� � �0, if xa � ya

1, if xa � ya
(3)

E�xa, ya� �
�xa � ya�

maxa � mina
(4)

where x and y are examples described by m attributes, and maxa and mina are
respectively, the highest and the lowest values observed in the training set for
attribute a.

The main defect of HEOM is the use of overlap to decide symbolic differ-
ences. Instead, we might try to take advantage of any additional information
available on training examples that may become relevant for classification pur-
poses. So, for instance, it may happen that the colors green and red appear in
similar proportions in all classes, whereas the occurrence distribution of blue is
quite different; then it is reasonable to assume that green and red are near (from a
metric viewpoint) values but far from blue cases when we are classifying. This idea
is stressed by the so-called virtual difference metric, VDM,23 later developed into
several variants such as HVDM, IVDM or WVDM, introduced in Ref. 22 or
SVDM.11

Our system incorporates a version of HEOM called �-HEOM, since it is
heavily inspired by the ideas involved in Kohonen’s selforganizing maps. Given
that our training stage has to decide which values to incorporate into rule condi-
tions, we will deal in the symbolic case with a kind of membership function for
each rule and condition. Since our symbolically valued attributes have a finite
number of possible values, real number vectors can codify the membership
functions, where there must be one component for each possible value; we call
these vectors difference tables.

To give the formulas of our �-HEOM, let us consider an example e (de-
scribed by m attributes) and a rule with difference table Ta attached to a generic
attribute a; for each individual value ea of a, Ta[ea] stores the difference from the
rule. Then, we define

�-HEOM�Rule, e� � ��
a�1

m

d��Rulea, ea�
2, (5)

where Rulea is the set attached to attribute a in the Rule’s body.

d��Rulea, ea� � �1, if ea is missing
D��Rulea, ea�, if a is a symbolic attr.
E��Rulea, ea�, if a is a continuous attr.

(6)

D��Rulea, ea� � �0, if Ta�ea� � 0
1, if Ta�ea� � 1
Ta�ea�, otherwise

(7)
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E��Rulea, ea� � �0, if ea � Rulea � �x1, x2�
min��x1 � ea�, �x2 � ea��

maxa � mina
, if ea�Rulea � �x1, x2�

(8)

During the training stage, difference tables will be modified in an attempt to
adapt their values to a successful classification role. Hence, some individual
differences may fall outside the interval [0, 1], as shall be explained in the next
section. So, in order to compute distances with D�, we will consider negative
values as 0 and values above 1 in the table as 1.

Once we have induced a set of classifying rules, in order to classify a case we
will find the nearest rule and return the conclusion class of that rule. In other words,
we use a partial matching strategy. The metric used to evaluate test examples is not
�-HEOM. Instead, a simple HEOM is sufficient, because all metric knowledge is
already included in our rules. However, we did investigate the effects of extending
the use of �-HEOM during the evaluation stage, and in Section 6 we discuss the
results obtained in this way in a version of our system that we call �-INNER. The
difference in accuracy is not significant.

Finally, in the POSTPROCESS step, we need to measure distances from rules.
The formulas used are simply a generalization of �-HEOM and can be found in
Appendix A.

4. INSTANCE GENERALIZATION

The core stage of INNER is described in this section. Here the task is to obtain
a set of reasonable classification rules starting from a collection of randomly
chosen training examples called seeds. The algorithm used can be seen in Fig. 3.

First of all we select a small number of uncovered examples of each class. By
default, we need 10 per class unless there are classes with few representatives or
if we have covered all the available examples of a given class in previous
iterations. We then reduce the number of selected uncovered seeds or we choose
already covered examples. The cumbersome details about the election of examples
to be generalized are explained in Appendix B.

The selected seeds are converted into punctual rules, as mentioned in Section
2. The problem arises when we find missing values in the examples. We must then
write some credible values instead. For numerically valued attributes, we use the
average of the attribute in the same class as our example. On the other hand, when
missing values appear in a symbolically valued attribute a, we need a plausible
difference table. Thus, for each possible value v of attribute a, we define

Ta�v� � 1 � P�v�C�, (9)

where P(v�C) is the probability of finding the value v on attribute a in a training
example of class C.

To illustrate the generalization mechanism of our system, we generated 1000
examples described by 3 attributes: x with numeric values in [2.0, 8.0]; flavor,
symbolic, with possible values {sweet, salty}; and color with values in {red, green,
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blue}. These were artificially labeled with a class tag according to the following
rules:

class A 4 x � 6.5 ∧ flavor � �sweet� ∧ color � �red�

class A 4 x � 6.5 ∧ flavor � �salty� ∧ color � �blue, green�

class B 4 in all other cases.

Additionally, 58 randomly selected examples were misclassified to add some
noise to the training data.

Let us suppose that we start with 4 examples to be generalized: 2 of class A
and 2 of class B (see Table I). These are considered as punctual rules and internally
represented, endowed with the corresponding difference tables (Table II).

Continuing with the general case, we need to inflate our recently built
punctual rules, trying to make explicit their implicit and correct decision areas. To
do this iteratively, we present each training example and modify the nearest rule.
The influence of the example over the rules depends on the example’s class and the
distance from the example to the rule. The overall idea is that rules concluding the

Figure 3. INNER’s instance generalization procedure. Training examples are presented several
times (M) to a small set of starting seeds that inflate their descriptions according to the stimuli
so received. This is repeated (no more than 5 times) until the rules obtained cover a significant
part of the training examples. A final generalization process returns the induced rule set.
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same class as the example should grow, trying to shorten their distance, while we
should enlarge distances when classes are different. The magnitude of the move-
ment of rule frontiers will be inversely proportional to the distance between
example and rule.

To modify the nearest rule, we consider each attribute included in its condi-
tion list, changing the respective difference tables for symbolically valued at-
tributes; in the numerical case, we move the extremes of the intervals. For both
types of attributes, modifications are made by means of a Kohonen-like formula,
where constants are empirically obtained default values; the results are not highly
dependent on these values. Equations (10) to (13) show the way we modify the
extremes of a numerical antecedent.

Ext :� Ext � hn�D, t� � da (10)

Table I. Salad data set.

Class x Flavor Color

A 3.932 salty red
A 2.582 salty green
B 2.502 salty red
B 2.450 sweet blue

Starting seeds to be generalized by INNER.
Observe that according to the given class
definition, the first example is a noisy one: its
class should be B instead of A, or its flavor
should be sweet, or its color should be blue.

Table II. Salad data set.

External representation Associated difference tables

A 4 x � [3.932, 3.932] ∧ Flavor Color

∧ flavor � {salty} ∧ Sweet Salty Red Green Blue
∧ color � {red} 1 0 0 1 1

A 4 x � [2.582, 2.582] ∧ Flavor Color

∧ flavor � {salty} ∧ Sweet Salty Red Green Blue
∧ color � {green} 1 0 1 0 1

B 4 x � [2.502, 2.502] ∧ Flavor Color

∧ flavor � {salty} ∧ Sweet Salty Red Green Blue
∧ color � {red} 1 0 0 1 1

B 4 x � [2.450, 2.450] ∧ Flavor Color

∧ flavor � {sweet} ∧ Sweet Salty Red Green Blue
∧ color � {blue} 0 1 1 1 0

The examples of Table I now considered as punctual rules with their associated difference
tables.
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hn�D, t� � �n�t� � Sn�D� (11)

�n�t� � 0.75 � �1 �
t

M� (12)

Sn�D� �
1

1 � e20D�5 . (13)

Here, Ext is the nearest extreme to the value of the considered attribute in the
example being presented, provided this value is not in the interval; in which case,
the numerical interval will not be changed. The extreme will be modified as a
percentage of da, the distance to the attribute’s value of the example. This
percentage is computed by (11) depending on the learning rate �n(t), a value that
decreases linearly as long as examples are presented (M is the number of times that
we repeat the examples), and the neighborhood function Sn(D), a sigmoid used to
smooth changes depending on D, the distance between the rule and the example.

In the symbolic case, we obtain the same effect by modifying the difference
tables in a similar way. As Equation (14) shows, for a symbolic antecedent
corresponding to attribute a, we will modify the entry in its difference table Ta,
whose index is ea, the attribute’s value in the example:

Ta�ea� :� Ta�ea� � hs�D, t� � �Ta�ea� � 1� (14)

hs�D, t� � �s�t� � Ss�D� (15)

�s�t� � 0.675 � �1 �
t

M� (16)

Ss�D� �
1

1 � e10D�5 (17)

Notice the use of (Ta[ea] 	 1) in (14), which gives the system the ability to
modify the difference to an initially covered example (an example for which Ta[ea]
� 0). This leads to a selforganizing procedure whose benefits can be appreciated
in the salad data set introduced above. Thus, the initial punctual rules (Table II)
become the rules represented in Table III, where the first rule has modified the
color of its condition de facto from red to blue. Thus, the rule is now responding
to the specification of a correct classification of this data set. The unpleasant
consequence of this equation is that it can lead us to obtain difference values lower
than 0 or higher than 1, as was anticipated in Section 3. The range of differences
is actually [�1, 
), though it is trimmed to [�1, 2].

From time to time (see function ISTIMETOREGULARIZE in Fig. 3), we proceed
to fix the frontier movements of our rules; we call this process regularization. The
criterion is quite simple: we consolidate rule shapes whenever their classification
quality has improved since the last control; otherwise, no changes are made.
Regularization is applied only once for symbolic antecedents, just when the
learning process has finished, to decide which values should be included in the
conditions established by every antecedent.
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To quantify the classification quality of rules, we cannot use a minimal
distance criterion to apply rules, because we have not yet determined the final rule
set. Therefore given a rule R, we must only consider training examples lying inside
rule frontiers. Hence, we could have applied the so-called Laplace correction, LAP,
to the proportion of successful classifications, as in the CN224 version described in
Ref. 25. This heuristic is given by the quotient of the number of successes
(#success) plus one, and the number of applicable training examples (n �
#success 	 #failures) plus the number of classes (#classes); in symbols,

LAP�R� �
#success � 1

#success � #failures � #classes
. (18)

This measure faithfully reflects the consistency of a rule, but in our case we
are in a nearest-neighbor environment concerned with discovering densely popu-
lated regions of examples of the same class within the attribute space. So, we need
to add more requirements to our heuristic: it should also include completeness. It
may be argued that Domingos used the Laplace correction in RISE,11 but this
algorithm does not necessitate worrying about completeness, because RISE starts
with the whole training set as the rule set to be improved (in consistency) if
possible.

Hence, in order to quantify the classification quality of rules, we use the
impurity level,4,24 a measure that tries to combine the consistency and the com-
pleteness of a rule. It was originally presented with a machine learning system,
FAN, designed in our laboratory, and then used in Refs. 9 and 15–17. It is inspired
by Aha’s criterion for selecting suitable paradigmatic exemplars in IB3.5,6

Table III. Salad data set.

External representation Associated difference tables

A 4 x � [3.93, 3.93] ∧ Flavor Color

∧ flavor � {salty} ∧ Sweet Salty Red Green Blue
∧ color � {blue} 0.92 �1 0.58 1 �1

A 4 x � [2.000, 6.122] ∧ Flavor Color

∧ flavor � {sweet, salty}
∧ Sweet Salty Red Green Blue
∧ color � {green} �1 �1 1 �1 1

B 4 x � [2.026, 7.970]
∧ Flavor Color

∧ flavor � {salty} ∧ Sweet Salty Red Green Blue
∧ color � {red} 1.02 �1 �1 1 1

B 4 x � [2.055, 7.973] ∧ Flavor Color

∧ flavor � {sweet} ∧ Sweet Salty Red Green Blue
∧ color � {blue} 0 1 1 1 0

The initial punctual rules of Table II, after being inflated. Notice that the first rule now
classifies according to the specification of this data set even though the rule seed was a noisy
training example.
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To formulate the impurity level, we first need to compute the confidence
interval of success probability of a rule ( p � #success/n) by means of Ref. 27 (p.
162):

CONFIDENCEINTERVAL�p, n, z� �

p �
z2

2n
� z�p�1 � p�

n
�

z2

4n2

1 �
z2

n

, (19)

where z, according to the confidence level, � (by default 95%), can be found in a
normal distribution table.

Finally, given a rule R concluding class C, we first compute the confidence
interval of the rule: [left(R), right(R)]. Then we compute this interval for the
so-called random rule of a class C; i.e., the rule concluding C without conditions:
[left(C), right(C)]. Thus, we define

IMPURITYLEVEL�R, Examples� � 100 �
right�C� � left�R�

right�R� � left�R�
. (20)

In other words, we are measuring the percentage of the confidence interval of
the rule classification success that is overlapped by the confidence interval of the
random rule of a class (see Fig. 4). So, a negative impurity level means that the
confidence of a successful classification is better than the unconditional classifi-
cation in the same class.

The last function to be applied to a rule set generated by inflating a set of
training example seeds is PRUNECONDITIONS (see Fig. 3). Here each rule description
is optimized by deleting those conditions that increase the impurity level of the
whole rule.4,26,28,29

5. RULE SETS GENERALIZATION

Once we have enough inflated training examples to become rules, INNER starts
a pruning process to optimize the whole rule set thus obtained. The overall

Figure 4. Impurity level. In boxes, we represent confidence intervals of successful classifica-
tion of rules C 4 Ant1 ∧ Ant2

. . . and the random rule of class C (C 4). The overlapping
region of both intervals measures the impurity level of the first rule.
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algorithm is described in Fig. 5. The main operation is the extension of one rule
toward another of the same class, taking for granted that they are near; the resulting
rule improves the classification quality measured by means of the impurity level.
The idea is sketched graphically in Fig. 6.

Figure 5. INNER’s postprocessing procedure. Inflated training examples are extended trying to
cover the body of near rules of the same class. Redundant or ineffective rules are then deleted,
and some final touches complete this rule generalization mechanism.
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During the inflating cycles, INNER has built a number of draft rules that should
be generalized by merging their classification domains. This happens when two
close seeds of the same class are fighting to gain classification space in the same
iteration or when in different cycles we obtain several versions that are only
slightly different from one another (see Fig. 7).

The procedure for making rule extensions can work under two conditions. In
the first stage, we do not allow extensions of a rule that would produce new
intersections with rules of different classes; we only accept this possibility in the
final phase, which implies the definition of application priorities.

To explain the details of rule extensions, let us recall that the formulas used
to measure distance between rules are generalizations of �-HEOM and can be
found in Appendix A.

But distances cannot be the sole condition to be taken into account for
assessing the convenience of a prudent extension of a rule. For instance, Fig. 8
shows three quite different situations of rules at the same distance. Only the
leftmost situation should yield an extension; in the other two cases, extensions
would be too different from the original rules and so could easily become
overgeneralizations. In fact, given two near rules, we will only extend one rule
toward another in the direction of some attributes, i.e., dimensions of the attribute

Figure 6. Extension of rules. Rp and Rq are near rules of the same class. In the figure, Rp is
extended towards Rq in the direction of the horizontal attribute. This process will be applied
whenever the classification quality of the result is improved.

Figure 7. The effect of GENERALIZERULESET. To illustrate the work carried out by this function,
let us consider a data set of points of a square classified as in or out depending on whether they
are inside a cross or outside its limits. The lefthand side shows the rules concluding class out after
some training examples were inflated. The function GENERALIZERULESET will transform the
situation to obtain 4 rules, as depicted on the righthand side of the figure.
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space. To determine the extensible attributes of a rule in the vicinity of another, we
use the degree of inclusion of attribute values defined as follows.

Given the rules

Rp: C 4 · · · ∧ a � �Rp�a · · ·

Rq: C 4 · · · ∧ a � �Rq�a · · · ,

we are going to define the degree of inclusion � or (Rp)a in (Rq)a. The idea is to
measure to what extent (Rp)a is included in (Rq)a; hence, this is not at all a
symmetric measure. On the lefthand side of Fig. 3, the vertical attribute exhibits a
complete degree of inclusion of its values in Rp inside those in Rq, but this is not
the case of Rq and Rp. Moreover, there is no coincidence of values between these
rules in the horizontal attribute. The result is that we will recommend the extension
of Rp toward Rq in the direction of the horizontal attribute so as to obtain the
situation depicted on the righthand side of Fig. 6. Therefore, if a is a continuous
attribute, (Rp)a � [ x1

p, x2
p], and (Rq)a � [ x1

q, x2
q], we define

���Rp�a, �Rq�a� � �min�x2
p, x2

q� � max�x1
p, x1

q�

x2
p � x1

q , if �Rp�a � �Rq�a � A

0, if �Rp�a � �Rq�a � A.
(21)

For symbolic attributes we use the difference tables, but first we reduce their
values to a number in [0, 1]. To do so, we trim the differences below �0.7 and
above 2.0 and then normalize the original values. The thresholds �0.7 and 2.0
were determined experimentally as typical bounds for differences. In symbols, if
Ta

p and Ta
q are their respective difference tables, we define

���Rp�a, �Rq�a� �
¥ea ��Ta

p�ea�� � ��Ta
q�ea��

¥ea ��Ta
p�ea��

, (22)

where

��x� � �
1, if x � �0.7
0, if x � 2

2 � x

2 � ��0.7�
, otherwise

(23)

Figure 8. The distance between rules is not enough to determine which rules should be
extended. Only the leftmost situation seems adequate to try an extension. In the other cases, the
extended rules would be an overgeneralization.
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In general, extensible attributes can be either all the attributes of a rule (they
all have inclusion degrees higher than 0.9) or only one (the only one that has an
inclusion degree below 0.9); see Fig. 9. However, the extended rules can be
extended again starting from their new shape.

The key to extending a rule towards another is the extension of one antecedent
A toward a rule R. The idea is to compute a kind of union between the set of values
of A and the corresponding values in R. Thus, in the numeric case, the extension
is the smallest interval containing the union of two intervals. In the symbolic case,
we must act on the difference tables of the corresponding attributes: we build the
union table with the minimum difference for each individual value.

Once an initial extension of the whole rule set has been carried out as in the
previous section with the function PRUNECONDITIONS, there is a kind of counterpart
in the function SELECTION. It deletes redundant rules from the final rule set as well
as those that cause more misclassifications than their absence. Thus, rules are
sorted by their impurity level, and we then sequentially consider removing those
with a higher impurity level than a certain threshold; the number of classification
failures in training examples decides the best rule set.4,26

As a part of the final selection process, when all the attributes are symbolic,
we make an additional simplification of the rule set. Notice that now, when we
have a case at a greater distance than zero from all available rules, the evaluation
procedure assigns the class of a rule following a legal but unnatural algorithm. To
avoid this, we include a default rule; i.e., a rule to be applied to those cases not
explicitly covered by any other rule. This is a rule with no conditions and the
lowest priority. Then the minimum distance criterion to apply rules is only
formally present: all cases will have some rule at distance zero. Additionally, the
rules of the default class are unnecessary if they have no intersection with rules of
other classes or have a lower priority than these. This is hence a powerful
simplification mechanism in the number of final rules.

Notice that when numeric attributes are present, a default rule would destroy
the essence of distance evaluation. In fact, cases at a positive distance from all rules

Figure 9. Selection of extensible attributes. The lefthand side shows a typical situation where
rules should be merged in all possible directions: all the attributes are extensible. The righthand
side shows the case where there is only one attribute; the horizontal should be used to extend Rp

towards Rq.
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would be classified according to the geometrically nearest rule. There is not a
privileged class, as happens in the symbolic case. Thus, data sets with some
numeric attribute will never include a default rule.

The last two steps in the post process of INNER to produce a final rule set are
a new generalization of the whole set of rules and a new inflating if there are still
some uncovered examples. However, there is a difference between previous
generalization and inflating processes: in these final steps we allow intersections
between rules of different classes. The possibility of overlapping rules has been a
matter of controversy. In Ref. 3, the authors conclude that a major source of
problems in NGE2 is the creation of overlapping rectangles. We think that these
problems may be caused by the peculiar criterion used to resolve priorities.
However, INNER’s position in this sense is quite different; its algorithm for deciding
priorities is more similar to the policy followed in RISE,11 given that both are
based on measurements of the classification quality of the rules. To handle
overlapping rules, INNER explicitly assigns relative application priorities to the rules
involved. The criterion for defining priorities is based on the impurity level of the
intersection.

In the case of the final inflating of rules, the algorithm used is the one
previously described in Fig. 3. However, in order to regularize the modified rules,
we take into account the effective impurity level. Given a rule R, its effective
impurity level is computed as described in Equation (20) but considering only the
examples covered by R and not covered by any other rule with higher priority than
R. In this way, our rules can reach regions impossible to cover without intersec-
tions due to the strict application of the impurity level; see Fig. 10.

Finally, Fig. 11 presents the transformations described in this section for
INNER rules induced from a very well-known data set, namely iris flowers, whose
examples are described by four numeric attributes: petal and sepal length and
width. They are classified into three classes: setosa, virginica, and versicolor. These
drawings show only petal attributes, because it is known that these measurements
are the most relevant ones for classifying irises. The first snapshot (a) shows the
rule set generated by INNER after inflating some iris training examples. Snapshot (b)
represents our rule set after the action of PRUNECONDITIONS (see Section 4), the first

Figure 10. The final inflation of rules allows intersections of rules of different classes. In
drawing (a) we see a data set where two rules are being inflated, one for each class; the result
being shown in (b). Only when we allow intersections can Rq go below Rp to reach all the
examples of its class (c).
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GENERALIZERULESET, and the SELECTION. The last snapshot (c), depicts the final rule
set. We can observe how our rules have been inflated to cover most of the training
examples of their classes, especially for iris versicolor and iris virginica. Worthy

Figure 11. Iris data set. Three snapshots of rule generation. The final rules, represented in (c),
are (1) setosa4 Petal Length � [1.0, 1.9]; (2) versicolor4 Petal Length � [3.0, 4.9] ∧ Petal
Width � [1.0, 1.6]; and (3) virginica 4 Petal Length � [4.8, 6.9].
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of note is the concise and accurate final set of rules obtained; only three rules are
needed, one for each class.

6. EVALUATION OF THE SYSTEM

In this section we present a detailed study of the results obtained with INNER.
We shall discuss the accuracy and size of the knowledge induced as well as its
usefulness, a subtle term that depends not only on the accuracy achieved but also
on the kind or quality of the solution induced. This could be thought of as a
weighted combination of accuracy and complexity of the solution. The weightings
can be different depending on the problem. Thus, for some problems a less accurate
but simpler solution might be preferable to one that is more accurate but humanly
unreadable. We will emphasize the ability of learning solutions to endow classi-
fications with a sound explanation of the reasons that led us to conclude a given
class.

With respect to the kind of solution, symbolic rules are in general more
readable than other representations, but we have to differentiate two main ap-
proaches when using symbolic rules to classify:

● Applying a rule whenever an example fulfills the rule antecedents. This approach implies
that rules must cover the whole attribute space in order to classify all the examples and
unseen cases.

● Applying the closest rule to a given example. The metric used to measure distances is
of crucial importance to correctly find the appropriate rule. Rules do not have to cover
the whole attribute space.

Although the former approach is a particular case of the latter, where the
distance is always 0 from any example to one or more rules, the difference of these
approaches is very important when trying to explain a classification decision, as we
will discuss later.

Throughout this section we show estimations in different senses of the quality
of INNER’s solutions, comparing them with those found using two other systems,
RISE and C4.5 in its rule generation version (C4.5R); both using their default
parameter settings. We used these two systems mainly for the following reasons:

● Both are rule induction systems, like INNER.
● C4.5R exemplifies the paradigm of algorithms producing rule sets that cover the whole

attribute space and has a very well-established reputation in machine learning, so we
consider it to be an obligatory reference for comparison.

● The core idea used in INNER to induce rules is similar to that used in RISE. In fact, we
also unify, in the way stated in Ref. 11, the use of instances and rules. Both INNER and
RISE apply their rules using a minimum distance criterion. In addition, RISE has proven
itself to be a very accurate algorithm, so its precision is a good reference for any new
system.

The first two subsections report the empirical study carried out with bench-
mark datasets. We then discuss the features of INNER’s solutions in order to provide
explanations of the classifications. In another subsection, some variants of the
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original algorithm are studied to clarify how the final results are concerned with the
most striking aspects of INNER: the use of �-HEOM, the coverage threshold, and
the initial instances selection. Finally, we examine the theoretical time complexity
of our system, accompanied by a table of the average running time consumed by
the compared algorithms during the empirical study detailed in Section 6.1.

6.1. Experimental Results with Holte’s and Monk’s Problems

When selecting some datasets for validating a machine learning algorithm, an
author may (unconsciously) select suitable problems to exploit some features of his
or her algorithm; this selection would probably be inadequate due to its lack of
generality. To avoid this pathology, we have used Holte’s problems, a well known
set of 16 datasets used in Ref. 18 to compare the results of his 1R system versus
C4.5 and to justify the fact that the accuracy of systems tested against these
datasets will be similar in real-world problems, because their number and diversity
indicates that they represent a class of problems that often arises. Because INNER

employs an original method to deal with symbolic attributes, we carried out some
additional experiments with another well-known set of problems, the Monk’s
problems.30 Discussion of the results obtained in these problems will permit us to
justify some of the benefits provided by �-HEOM, the metric used by INNER. All
datasets used in our experiments were downloaded from the machine learning
repository20 hosted by the University of California at Irvine (UCI).

Experimental results on Holte’s problems were obtained by performing a
stratified cross-validation with 10 folds. This means that every dataset was ran-
domly divided in 10 partitions, maintaining the same proportion of classes as in the
original dataset. Every partition is used as a test set for one experiment in which
the system is trained with the other 9 partitions, giving 10 (different) results; this
process was repeated 5 times, yielding 50 train/test experiments for each dataset.

In order to avoid undesirable effects due to randomness in the partitioning of
each dataset and to make a fair comparison, all the experiments were carried out
using tools from MLC		.31 This library allowed us to obtain exactly the same
folds for every system whenever we used the same initial random seed in every
cross-validation. Because INNER uses a random generator for some operations, it
was also always initialized with a fixed seed. Additionally, all the experiments
were carried out on the same machine.

Table IV shows the average error � sample standard deviation obtained in the
experiments for each system under comparison. In general, INNER’s accuracy is
similar to that of C4.5R and slightly lower than RISE’s.

However, Table V shows a notable difference between INNER and the other
systems in the size of the induced knowledge. This table contains the average
number of rules and rule conditions obtained by each system in the domains
studied.

Domingos11 reports that RISE can considerably reduce the size of its outputs
if rules that do not classify any training examples are discarded, whereas the
decrease in accuracy is minimized; in all tables we refer to this release by RISE( p).
However, even using this pruning method, the size of the resulting rule sets is still
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much larger than the size of INNER’s rule sets, as can be appreciated in the
corresponding column of Table V.

The second block of comparisons used the Monk’s problems,19 three datasets
that were specially devised to evaluate the performance of different machine
learning techniques when they are acting on training examples described by
symbolically valued attributes.

These datasets are composed of examples whose attributes represent some
characteristics of a robot, for example, the color of its jacket, if it is smiling or not,
etc. A robot can be good or bad depending on the relation of attributes and values
defined for every problem.

Because Monk’s problems have well defined train/test sets, a cross-validation
is not appropriate, so we made a simple experiment with C4.5R and RISE.
However, taking into account the fact that INNER’s results depend on the order of
examples presented, we carried out 50 different experiments by giving different
initial random seeds to our system. The average results together with the results of
C4.5R, RISE and RISE( p) are shown in Tables VI (accuracy) and VII (size of the
solutions).

We added this set of problems to the comparative study to show that
�-HEOM handles symbolic attributes satisfactorily. There are several datasets in
Holte’s problems with only symbolic attributes, but the main difference with the
Monk’s problems is that the correct solution is known in the latter. This knowledge
of the domain allows us to notice, for instance, that INNER correctly solves Monk’s
1 in the 50 different experiments, yielding the rules that exactly represent the
relation to be learned.

In contrast with �-HEOM, the metric used by RISE, SVDM, encounters some
problems in solving Monk’s 1, a fairly easy problem for most of the rule induction

Table IV. Average error � standard error in 5 times 10-fold stratified cross-validation
experiments.

Domains C4.5R RISE RISE(p) INNER

BC 29.64 � 1.10 26.70 � 0.90 27.25 � 0.87 26.57 � 0.90
CH 0.96 � 0.08 1.95 � 0.11 2.02 � 0.12 6.30 � 0.30
G2 22.72 � 1.34 20.66 � 1.43 21.13 � 1.47 23.53 � 1.38
GL 30.73 � 1.27 27.28 � 1.31 28.21 � 1.41 34.49 � 1.22
HD 23.34 � 1.10 18.92 � 0.98 18.79 � 1.02 17.68 � 0.85
HE 19.41 � 1.17 21.00 � 1.48 21.26 � 1.44 19.88 � 1.22
HO 16.30 � 0.78 14.94 � 0.90 15.42 � 0.92 15.92 � 0.92
HY 0.91 � 0.06 1.84 � 0.11 1.84 � 0.10 3.58 � 0.19
IR 4.93 � 0.73 4.41 � 0.75 4.54 � 0.72 4.40 � 0.62
LA 14.60 � 1.92 9.60 � 2.05 9.54 � 1.84 11.27 � 1.55
LY 22.96 � 1.39 18.23 � 1.28 18.09 � 1.40 24.09 � 1.65
MU 0.03 � 0.02 0.00 � 0.00 0.00 � 0.00 1.47 � 0.06
SE 2.36 � 0.11 3.58 � 0.12 3.74 � 0.12 7.27 � 0.25
SO 2.90 � 1.03 0.00 � 0.00 0.00 � 0.00 2.10 � 0.90
V1 10.34 � 0.60 11.22 � 0.53 10.76 � 0.54 9.88 � 0.57
VO 4.46 � 0.45 4.79 � 0.39 4.88 � 0.40 4.78 � 0.43

Average 12.91 11.57 11.72 13.33
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algorithms. The relation to be learned in Monk’s 1 is jacket_color � RED ∨
(head_shape � body_shape). The difficulty for SVDM lies in capturing the
equality of shape values, because the probability distribution is the same for every
possible value in both attributes. This peculiarity puzzles SVDM when it is
searching for the nearest adequate rule to a given example, probably the most
important task to learn and classify in distance-based algorithms.

In order to carry out an in-depth analysis of these peculiarities from the point
of view of �-HEOM and SVDM, we modified the original Monk’s 1 problem. The
first modification was the elimination of jacket_color � RED from the defined

Table V. Average size of the induced knowledge.

Domains

C4.5R RISE(p) INNER

Rules Cond. Rules Cond. Rules Cond.

Av. St. Dv. Av. St. Dv. Av. St. Dv. Av. St. Dv. Av. St. Dv. Av. St. Dv.

BC 7.84 2.56 16.18 6.40 53.00 7.33 300.74 50.21 9.20 4.13 23.34 13.10
CH 22.90 4.92 86.70 19.51 95.90 5.02 2649.34 165.64 4.74 1.21 9.48 4.98
G2 8.48 1.58 22.08 4.71 31.24 3.80 281.16 34.23 12.40 2.16 32.62 5.88
GL 12.30 2.01 42.34 7.32 40.62 3.99 365.58 35.95 18.62 3.65 53.12 9.99
HD 11.00 1.97 31.48 6.60 50.94 4.98 518.38 53.60 6.62 2.10 13.98 4.40
HE 5.70 1.35 13.60 4.16 27.54 3.19 308.00 43.10 5.42 1.81 10.16 3.98
HO 9.10 2.14 20.32 6.80 78.20 7.79 746.04 98.46 4.96 1.09 6.68 1.92
HY 8.36 2.06 19.24 6.52 161.68 18.71 3247.30 408.57 1.54 0.61 2.52 1.53
IR 4.12 0.32 6.30 1.22 11.00 2.77 44.00 11.09 4.08 0.89 6.20 1.89
LA 3.92 0.74 6.24 1.24 14.06 3.78 107.84 45.43 5.64 0.93 7.18 1.61
LY 10.00 1.28 23.10 2.92 30.64 5.20 365.50 85.47 7.40 1.57 13.20 3.98
MU 16.48 1.90 25.02 3.56 14.98 0.14 160.00 1.60 4.06 0.24 3.12 0.47
SE 13.92 2.16 43.70 8.27 232.48 17.77 5088.82 422.03 2.70 1.28 6.38 2.98
SO 4.00 0.00 5.24 0.65 4.00 0.00 44.40 0.53 4.90 0.30 4.90 0.30
V1 10.70 1.33 28.06 3.81 50.38 6.01 404.46 71.26 5.56 2.13 14.60 6.53
VO 6.04 0.69 13.64 2.46 35.34 5.19 236.84 44.36 3.06 1.10 6.10 3.47

Average 9.68 25.20 58.25 929.28 6.31 13.35

The data under RISE( p) correspond to the size of the solutions induced by RISE with the
pruning suggested by Domingos,11 which reduces the sizes to 30% of the original,
approximately. Even so, INNER’s results are much smaller. Notice that dataset MU, on
average, gives rise to 4.06 rules with a total of 3.12 conditions. This means that the default
rule, which has zero conditions, is usually present.

Table VI. Error � theoretical standard deviation for the Monk’s problems.

Domains C4.5R RISE RISE(p) INNER

Monk’s 1 0.00 � 0.00 13.40 � 1.64 17.10 � 1.81 0.00 � 0.00
Monk’s 2 31.94 � 2.25 30.60 � 2.22 31.20 � 2.23 31.53 � 2.24
Monk’s 3 3.70 � 0.91 7.20 � 1.25 5.60 � 1.11 2.34 � 0.65

Average 11.88 17.07 17.97 11.29

Values for INNER are the average of 50 different experiments varying the initial random seed.
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relation. This simplification does not help SVDM. Instead, the new relation to
be learned depends only on the problematic part of the original relation. We
made this modification on the original test set that contains all possible (432)
combinations. Thus, the experimental method was a typical cross-validation of
10 folds repeated 5 times. The scores obtained with the new problem showed
an increase in the error made by RISE from 7.63% up to 11.13%, while INNER’s
error remained at 0%.

Realizing that when we increase the number of possible values for one
attribute we are modifying the probability distribution of its values, we added 5
new values to attribute head_shape. A new cross-validation obtained an error of
1.34% with RISE; INNER’s error again remaining at 0%. The last modification was
the addition of 5 new values to body_shape, but not coincident with the values
added to head_shape; in this case RISE’s error decreased to 0.37%, whereas
INNER’s still remained at 0%.

Returning to the standard datasets, Monk’s 2 can be considered a difficult
problem because the relation to be learned is quite complex to represent using the
rule syntax of these systems. The relation defined in Monk’s 3 is similar to that in
Monk’s 1 but has a 5% of noisy examples, which adds an extra difficulty to the
learning task. This difficulty seems to be harder for SVDM than for �-HEOM,
according to the scores in Table VI.

To complete the comparative study of this section, we carried out a
number of statistical tests to measure the significance of the differences
between the means of accuracy and size obtained by the algorithms in the
datasets used. Table VIII presents the results of the one-tail t and Wilcoxon
tests. There is no significant difference in accuracy between C4.5R and INNER,
and the difference is only very low with respect to the RISE versions if we are
using the Wilcoxon test. However, the differences in size of the induced
knowledge, the number of rules, and the number of conditions are statistically
significant in favor of INNER.

Table VII. Size of the induced knowledge for the Monk’s problems.

Domains

C4.5R RISE(p)

INNER

Rules Cond.

Rules Cond. Rules Cond. Av. St. Dv. Av. St. Dv.

Monk’s 1 13.00 25.00 45.00 216.00 5.00 0.00 7.00 0.00
Monk’s 2 11.00 27.00 44.00 187.00 26.90 2.71 92.34 11.52
Monk’s 3 13.00 25.00 33.00 134.00 3.26 0.44 2.58 1.00

Average 12.33 25.67 40.67 179.00 11.72 33.97

These results were obtained with a simple train/test experiment, as defined for every problem,
except for INNER, the results of which were obtained as the average of 50 experiments with
different random seeds. The data under RISE( p) correspond to the size of the solutions
induced by RISE with the pruning suggested by Domingos,11 which reduces the sizes to 30%
of the original, approximately.

1134 LUACES AND BAHAMONDE



6.2. Explanations

As we pointed out at the beginning of this section we consider that the
possibility of building a useful explanations device is a consequence of inducing a
small set of compact and sound classification rules. INNER offers a kind of solutions
suitable to this purpose due to a number of reasons that we shall discuss in what
follows.

First of all, the size of INNER’s solutions (the number of rules and its
conditions) is significantly smaller than those found by other systems, and it is
easier to understand a classification mechanism if it can be characterized by a few
rules.

On the other hand, the existence of a rule in a certain region of the attribute
space depends primarily on the existence of an important mass of examples
belonging to the same class. When INNER uses a rule to classify a new case, an
explanation follows implicitly from the rule itself: a case belongs to class C
because it is in (or close to) a region where training examples usually belong to that
class C. Moreover, the region is defined by the antecedents or conditions of the rule
and here again, INNER requires fewer conditions to define a good rule, which makes
the validation of the classification easier for a human user.

One may argue that a k-NN algorithm can explain its classifications the same
way, but it cannot show the region that the example belongs to, because k-NN does
not handle regions, just representative exemplars. This difference can be very
important when offering a convincing explanation to a user, as can be appreciated
in the following hypothetic problem.

Let us suppose that a kind of industrial processes can be described by two
attributes, the integer values of parameters X and Y, and the class, indicating
whether the results are GOOD or BAD, where a GOOD result will be obtained if
X � [55, 100] and Y � [0, 30] and a BAD result will be obtained if X  40 or
if X � 55 and Y � 60.

We built a training set of randomly generated examples according to the
preceding specifications, but adding some noise by changing the class values in 4%
of the examples. The classification rules generated by C4.5R and INNER are given
in Table IX and depicted graphically in Fig. 12 together with the training examples.

Given a case with X � 61 units and Y � 29 units, a previously trained k-NN
algorithm could say something like “this process will produce good results since
there are k processes in the surroundings of this one which are mostly GOOD.” In
the same situation, INNER could explain “this process will produce good results

Table VIII. Significance tests.

C4.5R vs. INNER RISE vs. INNER RISE(p) vs. INNER

Acc. Rules Cond. Acc. Rules Cond. Acc. Rules Cond.

t-test ns 94.5 91.3 ns 99.2 97.3 ns 99.9 99
Wilcoxon ns 96.5 98.2 90.8 100 100 90.8 100 100

Confidence levels at which the difference with INNER’s scores are significant using one-tail t
and Wilcoxon tests; values below 90% are considered nonsignificant and marked ns.
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since processes with values of parameter X within 55 and 100 units and values of
parameter Y within 0 and 30 units produce good results.” Notice that INNER’s rule
(X � [55, 100] ∧ Y � [0, 30] 3 GOOD) explicitly shows the conditions
required to obtain good results.

Another salient aspect of the solutions provided by our algorithm is that rules
are not induced to cover the whole attribute space, INNER just tries to cover relevant
and well situated regions. This characteristic allows an assistant to indicate what to
do to change a predicted undesirable result in order to get a desirable one. To
illustrate this capability, let us assume that we want to predict the result of a
running process whose parameters are X � 38 and Y � 45. C4.5R’s rules will
predict BAD given that the case fulfills the rule Y � 30 3 BAD. INNER will
predict BAD too, because the case is classified by X � [0, 40] 3 BAD.

Now, if we want to know what to change in this situation to get a GOOD
result, we need to know how the values of X and Y must change to reach a region
of GOOD examples. If our explanation assistant uses C4.5R’s rules it will recom-
mend varying the value of X and Y (acting on a pressure valve, etc.) till they
become X � 41 and Y � 30, thus satisfying the conditions to be a GOOD
example. However, this seems to be a poor recommendation, since the new
situation is clearly more similar to BAD examples than to GOOD ones [see Fig.
12(a)]. Advice based on INNER’s rules would be more appropriate, because this
would recommend changing X and Y to the new values X � 55 and Y � 30, if
possible, as shown in Fig. 12(b).

Table IX. Rules for a hypothetical problem.

C4.5 rules INNER rules

X � 40 ∧ Y  30 3 GOOD X � [55, 100] ∧ Y � [0, 30] 3 GOOD
X  40 ∧ Y  30 3 BAD X � [0, 40] 3 BAD
Y � 30 3 BAD Y � [60, 100] BAD

From C4.5R, covering the whole attribute space, and from INNER, covering
just relevant regions. Although both kind of rules can achieve the same
accuracy, INNER’s rules describe the regions characterized for belonging to a
class better.

Figure 12. An hypothetic problem to show the explanation ability of INNER’s rules against
C4.5-like rules covering the whole attribute space. INNER’s rules offer a more plausible expla-
nation about the changes needed to vary the predicted class of an example.
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The appealing qualities of partial matching for providing useful advice de-
crease as the number of rules increases. So in this training set, for instance, RISE
produces 101 rules, 31 if the pruning process described in Ref. 11 is used, which
is much more than the 3 rules needed by C4.5R and INNER. In addition, RISE
suffers overfitting because it obtains an error of 3.1%, whereas there is 4% of noisy
examples, the error made by C4.5R and INNER.

6.3. Some Variants of INNER

There are some points in our algorithm that can may lead the reader to suspect
they have a patent influence on the global behavior of the system. The most
important ones are the following:

● The use of difference tables to adapt distances of symbolic values solely during the
induction stage, but not in that of classification, when the training has finished.

● The random selection of initial instances to be inflated.
● The coverage threshold used as the stopping criterion in the main loop.

To clarify the importance of these elements, we made some modifications to
the original algorithm, giving rise to some variants that were used to conduct a
comparative study with the standard INNER.

The first modification is related to the role played by difference tables, giving
rise to a variant called �-INNER. In fact, the only difference with respect to the
original system is that this release maintains the difference tables obtained during
the induction process and uses them to classify. Obviously, this involves the use of
�-HEOM instead of HEOM when classifying. Therefore, with this version we
check whether keeping the selforganized differences in the classification, using
some kind of fuzzy symbolic antecedents instead of crisp ones, would improve
accuracy. The results obtained confirm that there is just a slight improvement in
some domains with symbolic attributes and, obviously, there is no difference at all
in domains described solely by continuous attributes. In turn, induced knowledge
is not as explicit as in the original system because the user obtains rules plus the
difference tables attached to every symbolic antecedent.

The second modification consists of providing well-situated initial instances
to be inflated instead of the random selection mechanism. So, we used a system
called BETS

9 that it is capable of selecting paradigmatic training examples from a
dataset. This variant, called �-INNER, achieved almost the same scores as the
original INNER, which allowed us to conclude that the initial selection of instances
is not of crucial importance. The reason is that the iterative mechanism counteracts
the lack of precision in discovering good initial instances, and random selection is
not as computationally expensive as the use of more sophisticated methods.
However, �-INNER usually reaches high coverage values in fewer cycles than
INNER.

We conducted a third trial to study how important the coverage threshold is.
As stated previously, this parameter stops the main loop when 95% (default value)
of training examples of every class have been covered. Taking into account the fact
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that we are looking for explicit rules covering as many cases as possible, this
parameter must obviously have a rather high value. Our experience indicates that
the coverage threshold should have values of around 90–100%, but it is not highly
dependent on an exact value. In general, smaller values make accuracy decreases
notably, as expected.

6.4. Complexity and Running Time

In this subsection we study the time consumption of our system. We will
proceed in two steps starting with the estimation order of the theoretical time
complexity in the improbable worst case. We then report a table with CPU times
used during the experiments discussed in this section.

Let e be the number of training examples, a the number of attributes, and c
the number of classes. The algorithm followed by INNER (see Fig. 1) has a while
loop that is repeated at most 5 times. The relevant function iterated here is
FINDBESTRULES, which has a complexity of the order �(c � (e 	 e � a 	 e2 � a2 	
a2)).

After the loop, the rule set generated is modified by POSTPROCESS, whose
complexity (see Fig. 5) is �(e � a � number_of_rules2). Given that number-
_of_rules is bound by 5 � 10 � c � a, the whole system is �(c � (e 	 e � a 	 e2 �
a2 	 a2)) 	 �(e � a3 � c2). If we consider the number of classes as constant, the
theoretical time complexity of INNER is �(e2 � a2) 	 �(e � a3).

Let us recall that the total time complexity of RISE11 is �(e2 � a2) or �(e3 �
a2) depending on the stopping criterion used. On the other hand, the decision tree
building process of C4.5 is �(e � a2) when the examples are described by symbolic
attributes, but it is at least quadratic in e when continuous attributes are involved.
In general, the final pruning stage is worst than quadratic in e.

Table X shows the average running time of INNER, RISE, RISE( p), and C4.5R
for every dataset in the comparative study reported in this section. The values
shown in this table are calculated by dividing the total CPU time needed to
complete a full cross-validation by the number of single train/test experiments
carried out: 50 (5 times a 10-fold cross-validation) for Holte’s problems and only
one for Monk’s. All the experiments were carried out under the same conditions
using a 200-MHz Intel Pentium Pro running Linux.

7. CONCLUSIONS AND FUTURE WORK

Simplicity in rule sets is usually upheld as a desirable quality of the induced
knowledge synthesized by machine learning algorithms.18 The algorithm presented
in this article, INNER, returns concise rule sets, applicable by means of a minimum
distance criterion, with high classificatory accuracy.

In this algorithm, each rule is a representative cluster of training examples of
the same class. So, when a rule is used to classify an unseen case, a natural and
solid explanation can back the suggested class. This quality is the main achieve-
ment of INNER.
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The previous section showed the results of a number of experiments con-
ducted to compare the performance of INNER with two state-of-the-art algorithms
related to our system: C4.5R and RISE. These results let us conclude that INNER

generally induces a smaller set of rules while maintaining a high level of accuracy,
which reinforces the idea that simple solutions, i.e., small sets of small rules, can
achieve the same (and sometimes even higher) accuracy as more complex ones.
Moreover, given that users can more easily understand simpler solutions, the sets
of rules induced by our system can be greatly improved with sound, clear expla-
nations attached to their classifications. In this sense, we have included a subsec-
tion devoted to spelling out the advantages of using the kind of rules induced by
INNER, illustrating how it may become an intelligent advisor by means of the cited
explanations mechanism.

Possible future directions for research may be the adaptation of some of the
advantages of Kohonen’s SOM philosophy to INNER’s generalization mechanism.
We might, for instance, investigate how to extend the selforganizing principle,
already used for dealing with symbolic values, to continuous attributes.
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APPENDIX A: DISTANCE BETWEEN RULES

Rule set generalization is mainly a process that involves extension of some
rules towards others, but not all the possible combinations are tried; INNER uses
some criteria to restrict the possibilities to the most reasonable ones, as was
explained in Section 5. One of these criteria, the first one to be satisfied, establishes
that a rule should be close enough to another in order to attempt an extension
toward it. Hence, a way to measure distances between rules is needed. We use a
generalization of �-HEOM called �-HEOM; Equations (24) and (25) reflect how
INNER computes the distance from Rp to Rq:

�-HEOM�Rp, Rq� � ��
a�1

m

d���Rp�a, �Rq�a�
2 (24)

d���Rp�a, �Rq�a�) � �0, if �Rq�a is true
D���Rp�a, �Rq�a�, if ea is symbolic
E���Rp�a, �Rq�a�, if ea is continuous.

(25)

In the symbolic case, if Ta
p and Ta

q are their respective difference tables:

D���Rp�a, �Rq�a�) � min
ea

���Ta
p�ea��/��Ta

q�ea�� � 0�, (26)

where

��x� � 1 � ��x�. (27)

In the continuous case, if (Rp)a � [ x1
p, x2

p], and (Rq)a � [ x1
q, x2

q], we define

E���Rp�a, �Rq�a�) � �0, if �Rp�a � �Rq�a � A

min��x1
p � x2

q�, �x2
p � x1

q��
maxa � mina

, otherwise. (28)
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Obviously, the distance between rules depends on the distance between their
antecedents, which is calculated by means of dR. It is quite simple to calculate the
distance between two continuous antecedents: the normalized Euclidean distance
between the nearest extremes of the intervals is used, giving 0 if they intersect.

However, the distance between symbolic antecedents deserves special atten-
tion. The process of extending a rule toward another can be seen as the effort that
the rule should make to reach the other one. In this sense, we want to measure the
minimum effort needed for a symbolic antecedent to reach its counterpart in the
second rule. So we will take the minimum value from its difference table, looking
only at the entries associated with symbols included in the antecedent of the second
rule (i.e., those whose value is below the threshold �0.7). If we recall, values in
the difference tables range from �1 to 2, so we have to re-map the value returned
to range from 0 to 1, depending on how far the value is from the threshold of
inclusion. The re-mapping is done by function � used in Equation (26).

In other words, if we want to compute the distance from a symbolic anteced-
ent of Rp to its counterpart in Rq, the algorithm re-maps the difference tables of
both antecedents using �. Then it returns the minimum re-mapped value of the
antecedent belonging to Rp, taking into account only those entries whose re-
mapped value in the antecedent of Rq is 0.

This mechanism is not symmetric, because the effort needed to extend a rule
toward another is not necessarily the same as the one needed to extend the second
toward the first. In fact, what we are actually measuring is not the distance between
rules: we are measuring the distance from the rules to some symbolic values and
obviously, one rule may be closer than another to these values.

Additionally, dR should consider the fact that some antecedents of rule Rp

may not be present in Rq, no matter what type of antecedents these are. In this case,
the distance returned is 0, because a missing antecedent in Rq is equivalent to an
antecedent including all the possible values of an attribute and therefore intersects
the antecedent of Rp.

APPENDIX B: INITIAL INSTANCES SELECTION

The instances generalization process starts from a set of uncovered examples
taken from the training dataset. By default, 10 randomly selected instances per
class are used, but the user can specify a different number, which will be
constrained by Equation (29). In fact, 10 is the maximum number permitted; the
algorithm may choose a lower number of instances to be generalized, depending on
the number of examples in the smaller class (#sc). Figure 13 represents Equation
(29) graphically.

Imax � min�10, max�1, e#sc/�50/log 10��� (29)

The reason for limiting the initial number of instances to a maximum of Imax

is related to the part of the main algorithm that drops noisy rules, explained in
Section 5. The noise filter uses the number of examples of the smaller class to
decide which rules seem to be noisy and should therefore be eliminated.
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Considering a uniform distribution of examples in the attribute space and
selecting I instances for each class C, we hopefully get a set of generalized
instances, i.e., rules, covering each of the NC/I examples, where NC is the number
of examples belonging to class C. Obviously, as I increases, the number of covered
examples per rule decreases and the noise filter may decide to eliminate most of the
above mentioned rules, accuracy decreasing at the same time. In short, we are
facing the small disjuncts problem already observed by Holte.32 Taking into
account the way that INNER generalizes rules, a large number of these would
encumber one another, impeding adequate growth.

Figure 13. Maximum number of initial instances of every class to be generalized in each cycle.
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