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Abstract. In complex multidimensional problems with a highly nonlin-
ear input-output relation, inconsistent or redundant rules can be found
in the fuzzy model rule base, which can result in a loss of accuracy and
interpretability. Moreover, the rules could not cooperate in the best pos-
sible way.

It is known that the use of rule weights as a local tuning of linguistic rules,
enables the linguistic fuzzy models to cope with inefficient and/or redun-
dant rules and thereby enhances the robustness, flexibility and system
modeling capability. On the other hand, rule selection performs a simpli-
fication of the previously identified fuzzy rule base, removing inefficient
and/or redundant rules in order to improve the cooperation among them.
Since both approaches are not isolated and they have complementary
characteristics, they could be combined among them. In this work, we
analyze the hybridization of both techniques to obtain simpler and more
accurate linguistic fuzzy models.

1 Introduction

One of the problems associated with Linguistic Fuzzy Modeling is its lack of
accuracy when modeling some complex systems. It is due to the inflexibility of
the concept of linguistic variable, which imposes hard restrictions to the fuzzy
rule structure [2]. Therefore, in this kind of modeling the accuracy and the inter-
pretability of the obtained model are contradictory properties directly depending
on the learning process and/or the model structure.

Furthermore, in complex multidimensional problems with highly nonlinear
input-output relations many redundant, inconsistent and conflicting rules are
usually found in the obtained rule base, which is detrimental to the linguistic
fuzzy model performance and interpretability. In any case, these rules could not
cooperate appropriately.

To overcome these drawbacks, many different possibilities to improve the
Linguistic Fuzzy Modeling have been considered in the specialized literature [4].

J. Lawry, J. Shanahan, A. Ralescu (Eds.): Modelling with Words, LNATI 2873, pp. 44-64, 2003.
© Springer-Verlag Berlin Heidelberg 2003



Combining Rule Weight Learning and Rule Selection 45

All of these approaches share the common idea of improving the way in which the
linguistic fuzzy model performs the interpolative reasoning by inducing a better
cooperation among the rules in the learned model. This rule cooperation may
be encouraged acting on three different model components: the data base, the
rule base and the whole knowledge base (KB). Focusing on the rule base, there
are different ways to induce rule cooperation acting on that component:

— Rule selection [6, 15, 17, 19, 20, 22, 28, 29, 30, 34]: It involves obtaining
an optimized subset of rules from a previous rule base by selecting some of
them.

— Multiple rule consequent learning [10, 24]: This approach allows the rule
base to present rules where each combination of antecedents may have two
or more consequents associated when it is necessary.

— Weighted linguistic rule learning [7, 21, 25, 35]: It is based on including an
additional parameter for each rule that indicates its importance degree in
the inference process, instead of considering all rules equally important as
in the usual case.

— Rule cooperation [3, 31]: This approach follows the primary objective of
inducing a better cooperation among the linguistic rules. To do so, the rule
base design is made using global criteria that jointly consider the action of
the different rules.

Two of the previous approaches, the weighted linguistic rule learning (ac-
curacy purposes) and the rule selection (interpretability /simplicity purposes),
present complementary characteristics. On the one hand, it is known that the
use of rule weights as a local tuning of linguistic rules, enables the linguistic fuzzy
models to cope with inefficient and/or redundant rules and thereby enhances the
robustness, flexibility and system modeling capability. On the other hand, rule
selection performs a simplification of the previously identified fuzzy rule base,
removing inefficient and/or redundant rules in order to improve the cooperation
among them. Furthermore, reducing the model complexity is a way to improve
the system readability, i.e., a compact system with few rules requires a minor
effort to be interpreted. Since both approaches are not isolated and they have
complementary characteristics, they could be combined.

In this work, we analyze the hybridization of both techniques to obtain sim-
pler and more accurate linguistic fuzzy models. To select the subset of rules with
the best cooperation and the weights associated to them, different search tech-
niques could be considered [26]. In this contribution, we will consider a Genetic
Algorithm (GA) [18, 23] for this purpose. The proposal has been tested with two
different real-world problems achieving good results.

This contribution proposes the use of weighted fuzzy rules and rule selection
to improve simple linguistic fuzzy models. This can be intended as a meta-method
over any other linguistic rule generation method, developed to obtain simpler
linguistic fuzzy models by only selecting the rules with a good cooperation while
the use of rule weights improves the way in which they interact. Depending on
the combination of this technique with different fuzzy rule learning methods,



46 Rafael Alcald et al.

different learning approaches arise. In this work, we will consider the Wang
and Mendel’s method [32] and an extension of this method to obtain double-
consequent fuzzy rules [10] as the initial linguistic rule generation methods.

This contribution is arranged in the following way. In Sections 2 and 3, the
use of rule weights and rule selection is analyzed in depth, considering them as
two complementary ways to improve the linguistic model performance. Sections 4
and 5 present the proposed learning strategy and the evolutionary optimization
process performing the rule selection together with the rule weight derivation.
Experimental results are shown in Section 6. In Section 7, some concluding re-
marks are pointed out. Finally, the double-consequent rule structure is presented
in Appendix A.

2 Weighted Linguistic Rules

Using rule weights [7, 21, 25, 35] has been usually considered to improve the
way in which the rules interact, improving the accuracy of the learned model.
In this way, rule weights involve an effective extension of the conventional fuzzy
reasoning that allows the tuning of the system to be developed at the rule level [7,
25]. Tt is clear that considering rule weights will improve the capability of the
model to perform the interpolative reasoning and, thus, its performance. This is
one of the most interesting features of fuzzy rule-based systems (FRBSs) and
plays a key role in their high performance, being a consequence of the cooperative
action of the linguistic rules existing in the fuzzy rule base.

Weighted linguistic models are less interpretable than the classical ones but,
in any case, these kinds of FRBSs can be interpreted to a high degree, and
also make use of human knowledge and a deductive process. When weights are
applied to complete rules, the corresponding weight is used to modulate the
firing strength of a rule in the process of computing the defuzzified value. For
human beings, it is very near to consider this weight as an importance degree
associated to the rule, determining how this rule interacts with its neighboring
ones. We will follow this approach, since the interpretability of the system is
appropriately maintained. In addition, we will only consider weight values in
[0, 1] since it preserves the model readability. In this way, the use of rule weights
represents an ideal framework to extend the linguistic model structure when we
search for a trade-off between accuracy and interpretability.

2.1 Weighted Rule Structure and Inference System

As we have said, rule weights will be applied to complete rules. In order to do
so, we will follow the weighted rule structure and the Inference System proposed
in [25]:

IF X; is 4; and ... and X, is A, THEN Y is B with [w],

where X; (') are the input (output) linguistic variables, A; (B) are the linguistic
labels used in the input (output) variables, w is the real-valued rule weight, and
with is the operator modeling the weighting of a rule.



Combining Rule Weight Learning and Rule Selection 47

With this structure, the fuzzy reasoning must be extended. The classical
approach is to infer with the FITA (First Infer, Then Aggregate) scheme [11]
considering the matching degree of the fired rules. In this contribution, the Cen-
ter of Gravity weighted by the matching degree will be used as the defuzzification
strategy [11]:

Yo hi-wi - Py
YYo= "7

with yo being the crisp value obtained from the defuzzification process, h; being
the matching degree of the i-th rule, w; being the weight associated to it, and P;
being the characteristic value —Center of Gravity— of the output fuzzy set
inferred from that rule, B]. On the other hand, we have selected the singleton
fuzzification and the minimum t-norm playing the role of the implication and
conjunctive operators.

A simple approximation for weighted rule learning would consists of con-
sidering an optimization technique (e.g., GAs [18, 23]) to derive the associated
weights of a previously obtained set of rules.

2.2 Use of Rule Weights for Implicit Rule Selection

The use of rule weights as a local tuning of linguistic rules, enables the linguis-
tic fuzzy models to cope with inefficient and/or redundant rules and thereby
enhances the robustness, flexibility and system modeling capability [25]. Hence
the ability of this technique to indicate the interaction level of each rule with
the remaining ones is considered, improving the global cooperation. In this way,
when we start from a previous set of rules, inefficient or redundant rules could
be removed by assigning a zero weight to each of them, i.e., an implicit rule
selection could be performed.

However, weights close to zero are usually obtained from the derivation pro-
cess, practically avoiding the effects of such rules but maintaining them in the
KB. It is due to the large search space tackled by this process, and can not
be solved by removing these rules since in some cases they could be important
rules with a low interaction level. Moreover, the obtained weights are highly
dependent among them and to remove rules with low weight after applying the
weighting algorithm (and then normalizing) provokes very bad accuracy. On the
other hand, redundant, inconsistent and conflicting rules could be weighted as
important rules if their neighbors are incorrectly weighted. In most cases, the
algorithm has not the ability to avoid getting stuck at local optima removing (or
weighting with low weights) these kinds of rules. Therefore, rule weighting pro-
cesses could be improved considering any complementary technique that directly
determines what rules should be removed.

2.3 An Example of a Learning Process for Weighted FRBSs

An example for weighted rule learning would consist of the following two steps
—we will use this process in our experiments for comparison purposes—:
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1. Firstly, a preliminary fuzzy rule set is derived considering a specific gener-
ation process. In this work, the generation process proposed by Wang and
Mendel [32] is considered.

2. Then, a learning algorithm is used to derive the associated weights of the
previously obtained rules. A real-coded GA where each gene indicates the
corresponding rule weight may be considered as learning algorithm. The
stochastic universal sampling procedure together with an elitist selection
scheme —using the Mean Square Error (MSE) as fitness— and the max-
min-arithmetical crossover [16] (see Sect. 5.3) together with the uniform
mutation operator can be used.

3 Selecting Cooperative Rules

In complex multidimensional problems with highly nonlinear input-output re-
lations many redundant, inconsistent and conflicting rules are usually found in
the obtained rule base (especially in the case when they are generated by only
considering expert’s knowledge). On the other hand, in high-dimensional prob-
lems, the number of rules in the rule base grows exponentially as more inputs
are added. A large rule set might contain many redundant, inconsistent and
conflicting rules. These kinds of rules are detrimental to the model performance
and interpretability.

Rule selection methods directly aggregate multiple rules and/or select a sub-
set of rules from a given fuzzy rule set in order to minimize the number of rules
while at the same time maintaining (or even improving) the system performance.
Inconsistent and conflicting rules that degrade the performance are eliminated,
thus obtaining a more cooperative fuzzy rule set and therefore involving a poten-
tial improvement of the system accuracy. Moreover, in many cases the accuracy
is not the only requirement of the model and the interpretability becomes an
important aspect. Reducing the model complexity is a way to improve the sys-
tem readability, i.e., a compact system with few rules requires a minor effort to
be interpreted.

Rule reduction methods have been formulated using Neural Networks, clus-
tering techniques and orthogonal transformation methods, and algorithms based
on similarity measures, among others [6, 15, 28, 29, 30, 34]. In [g8], a different
approach was proposed which attempted to reduce the growth of the rule base
by transforming elemental fuzzy rules into DNF-form.

3.1 Considering a Genetic Approach

Using GAs to search for an optimized subset of rules is motivated in the following
situations:

— the integration of an expert rule set and a set of fuzzy rules extracted by
means of automated learning methods [17],

— the selection of a cooperative set of rules from a candidate fuzzy rule set [9,
10, 13, 19, 20, 22],

)



Combining Rule Weight Learning and Rule Selection 49

— the selection of rules from a given KB together with the selection of the
appropriate labels for the consequent variables [5],

— the selection of rules together with the tuning of membership functions by
coding all of them (rules and parameters) in a chromosome [14], and

— the derivation of compact fuzzy models through complexity reduction com-
bining fuzzy clustering, rule reduction by orthogonal techniques, similarity
driving simplification and genetic optimization [27].

Two of them are of particular interest in our case, the second and the fourth.
In this work, we propose the selection of a cooperative set of rules from a candi-
date fuzzy rule set together with the learning of rule weights coding all of them
(rules and weights) in a chromosome. This pursues the following aims:

— To improve the linguistic model accuracy selecting the set of rules best coop-
erating while a local tuning of rules is performed to improve the interaction
among them.

— To obtain simpler, and thus easily understandable, linguistic models by re-
moving unnecessary rules.

3.2 An Example of Rule Selection Process

A simple example to select the subset of rules best cooperating is the selection
process proposed in [17] —we will use this process in our experiments for com-
parison purposes—. Of course, we are assuming the previous existence of a set
of rules.

It is based on a binary coded GA where each gene indicates whether a rule
is considered or not to belong to the final fuzzy rule base (alleles ‘1’ or ‘0,
respectively). The stochastic universal sampling procedure [1] together with an
elitist selection scheme and the two-point crossover together with the uniform
mutation operators are used, and the Mean Squared Error (MSE) is considered
as fitness function. The MSE for a whole rule base RB, calculated over the
example set F, is defined as:

Yeepley' —s(ea’))”

MSE (E,RB) = 2

with s(ez!) being the output value obtained considering RB when the input
variable values are ex! = (ex},... exl) and ey’ is the known desired value.

In this way, considering the m rules contained in the preliminary/candidate
rule set, the chromosome C' = (¢1, .. ., ¢, ) represents a subset of rules composing

the final rule base, such that:
IF ¢, =1THEN (R; € RB) ELSE (R; ¢ RB) ,

with R; being the corresponding i-th rule in the candidate rule set and RB being
the final rule base.
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Fig.1. Graphical representation of a possible fuzzy partition
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4 Combining Rule Weight Derivation and Rule Selection

As discussed above, the hybridization of the rule weight derivation and the rule
selection processes could result in important improvements of the system ac-
curacy, obtaining simpler, and thus easily understandable, linguistic models by
removing unnecessary rules. In this way, the interpretability is maintained to an
acceptable level.

To generate linguistic models combining both approaches, we may follow an
operation mode similar to the learning approach proposed in Section 2.3, by
including the rule selection in the second step. Therefore, after performing the
first step, where an initial set of numerous promising rules is generated, the two
following tasks must be performed:

— Genetic selection of a subset of rules with good cooperation.
— Genetic derivation of the weights associated to these rules.

We will consider symmetrical fuzzy partitions of triangular-shaped member-
ship functions (see Figure 1) to derive a candidate linguistic rule set (first step).
With this aim, two different but similar approaches will be considered depending
on the desired rule structure of the obtained models:

— Based on the classical rule structure. A preliminary fuzzy rule set based on
linguistic rules with the usual structure is derived considering a specific gen-
eration process. In this work, the well-known ad hoc data-driven generation
method" proposed by Wang and Mendel [32] is considered.

— Based on the double-consequent rule structure. Taking the first step of the
Accurate Linguistic Modeling (ALM) methodology [10] and considering the
generation process proposed by Wang and Mendel [32], the process involves
dividing the input and output spaces into different fuzzy regions, generat-
ing the rule best covering each example, and finally selecting the two rules
with the highest covering degree for each fuzzy input subspace (if there
is more than a single rule on it). The double-consequent rule structure is
presented in Appendix A. Notice that the preliminary rule base including

L A family of efficient and simple methods guided by covering criteria of the data in
the example set
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double-consequent rules will be preprocessed before giving it as input to
the selection and rule weight derivation process. In this way, each double-
consequent rule will be decomposed into two simple rules in order to allow
the later process to assign rule weights to each consequent and to select the
consequent /s best cooperating with the remaining rules. Thus, if one of the
two simple rules obtained from decomposing a double-consequent rule is re-
moved by the selection process, the corresponding fuzzy input subspace will
have just a single consequent associated.

To select the subset of rules with the best cooperation and the weights asso-
ciated to them (second step), we will consider a GA coding all of them (rules and
weights) in a chromosome. The proposed algorithm is presented in the following
section.

5 Genetic Weight Derivation and Rule Selection Process

The proposed GA must consider the use of binary (rule selection) and real values
(weight derivation) in the same coding scheme. As we will see, a double coding
scheme will be considered using integer and real coded genes, and therefore
appropriate genetic operators for each part of the chromosome are considered.

In the following, the main characteristics of this genetic approach are pre-
sented.

5.1 Coding Scheme and Initial Gene Pool

A double coding scheme (C' = Cy + C3) for both rule selection and weight
derivation is used:

— For the C; part, the coding scheme generates binary-coded strings of
length m (the number of single fuzzy rules in the previously derived rule
set). Depending on whether a rule is selected or not, the alleles ‘1’ or ‘0’ will
be respectively assigned to the corresponding gene. Thus, the corresponding
part CV for the p-th chromosome will be a binary vector representing the
subset of rules finally obtained.

— For the C5 part, the coding scheme generates real-coded strings of length m.
The value of each gene indicates the weight used in the corresponding rule.
They may take any value in the interval [0,1]. Now, the corresponding
part CF for the p-th chromosome will be a real-valued vector representing
the weights associated to the fuzzy rules considered.

Hence, a chromosome C? is coded in the following way:

Cct = (Cflﬁ""czl)m) ‘ 01172 € {Oal}v
C2p = (612)17"'7012)771) ‘ Cgi € [071}7
CP = Cfcg.
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The initial pool is obtained with an individual having all genes with value
‘1’ in both parts, and the remaining individuals generated at random:

Vke{l,...,m}, clp =1 and c3), = 1.0 .

5.2 Evaluating the Chromosome

To evaluate the p-th chromosome, we will follow an accuracy oriented policy by
using the following fitness function, F(CP)::

eyt —s(ex!))?

with E being the set of training data and s(exz!) being the output value ob-
tained from the rule base encoded in C? when the input ez! = (ez}, ..., ex!)) is
presented, and ey’ being the known desired output. In this case, s(ex!) will be
computed following the extended fuzzy reasoning process in order to consider

the rule weight influence.

5.3 Genetic Components

The different components of the GA are introduced as follows:
Selection and Reproduction

The selection probability calculation follows linear ranking [1]. Chromosomes
are sorted in order of raw fitness, and then the selection probability of each
chromosome, ps(C?), is computed according to its rank, rank(CP) —where
rank(C**) = 1-—, by using the following non-increasing assignment function:

1 rank(CP) — 1

SC;D:_. max — \IImax — Tlmin) * )
ps(CP) No (n (n Nimin ) Ne 1 )

where N¢ is the number of chromosomes in the population and 7, € [0, 1]
specifies the expected number of copies for the worst chromosome (the best one
has Nmaz = 2 — Nmin expected copies). In the experiments developed in this
paper, Nmin = 0.75.

The classical generational [23] scheme has been used in this algorithm. In
this way, linear ranking is performed along with stochastic universal sampling
[1]. This procedure guarantees that the number of copies of any chromosome is
bounded by the floor and by the ceiling of its expected number of copies. Together
with the Baker’s stochastic universal sampling procedure, an elitist mechanism
(that ensures to maintain the best individual of the previous generation) has
been considered.
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Genetic Operators: Crossover and Mutation

Due to the different nature of the chromosomes involved in the rule base
definition process, different operators working on each part, C; and Cs, are
required. Taking into account this aspect, the following operators are considered.

The crossover operator will depend on the chromosome part where it is ap-
plied: in the C7 part, the standard two-point crossover is used, whilst in the Cy
part, the max-min-arithmetical crossover [16] is considered.

The two-point crossover involves interchanging the fragments of the parents
contained between two points selected at random (resulting two descendents).
On the other hand, using the max-min-arithmetical crossover in the second parts,
it C = (chy,y. . Copy-nnychy) and CF = (¢4, ..., 5. .., cY,) are going to be
crossed, the resulting descendents are the two best of the next four offspring:

0} =aC¥ + (1 —a)C¥,
03 =aC§ + (1 —a)C¥,
O3 with ¢3, = min{c},,c% },
O3 with ¢5, = max{c,,c%.},

with a € [0, 1] being a constant parameter chosen by the GA designer. The max-
min-arithmetical crossover was proposed to be used in real-coded spaces aiming
to obtain a good balance between exploration and exploitation. This crossover
operator obtains four well distributed descendents, one with the higher values
of both parents, one with the lower values of both parents and two between
the values of both parents (one nearest of the first parent and one nearest of
the second parent). The two best are selected to replace the parents performing
a good exploration/exploitation of the search space.

In this case, eight offspring are generated by combining the two from the Cy
part (two-point crossover) with the four ones from the Cs part (max-min-
arithmetical crossover). The two best offspring so obtained replace the two cor-
responding parents in the population.

As regards the mutation operator, it flips the gene value in the C part and
takes a value at random within the interval [0, 1] for the corresponding gene in
the C5 part.

Fig. 2 shows the application scope of these operators.

C. C.
Cll Clm CZl C22 C2m-1 C2m
\ 1 J
Two-point crossover Max-Min-Arithmetical crossover
Classical mutation Random mutation

Fig. 2. Genetic representation and operators’ application scope
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Table 1. Methods considered for comparison

Ref. Method Description
[32] WM A well-known ad hoc data-driven method to obtain simple rules
[10] DC A method to obtain double-consequent rules (first step of ALM)
[10, 17] S Rule selection GA (second step of ALM or the WS C part)
— W Weighted rule derivation GA (the WS C part)
— WS The proposed GA performing weight derivation and rule selection

6 Experiments

In this section, we will analyze the performance of the linguistic fuzzy models
generated from the proposed genetic weight derivation and rule selection pro-
cess (see Section 5), when solving two different real-world problems [12]. The
first presents noise and strong nonlinearities and the second presents four input
variables, and therefore a large search space.

Two different approaches have been considered to obtain the initial set of
candidate rules to be weighted and/or selected (see Section 4): the Wang and
Mendel’s method (WM) [32] and an extension of this method to obtain double-
consequent fuzzy rules (DC) based on the ALM methodology [10]. In order to see
the advantages of the combined action of the rule weight derivation and the rule
selection, three different studies have been performed from both approaches: only
considering rule selection (S), only considering rule weights (W) and considering
both together, rule weights and rule selection (WS) —the algorithm proposed
in this work—. Table 1 presents a short description of the methods considered
for this study.

With respect to the fuzzy reasoning method used, we have selected the min-
tmum t-norm playing the role of the implication and conjunctive operators, and
the center of gravity weighted by the matching strategy acting as the defuzzifi-
cation operator [11].

The values of the parameters used in all of these experiments are presented
as follows?: 61 individuals, 1,000 generations, 0.6 as crossover probability, 0.2 as
mutation probability per chromosome, and 0.35 for the a factor in the max-min-
arithmetical crossover.

6.1 Estimating the Length of Low Voltage Lines

For an electric company, it may be of interest to measure the maintenance costs of
its own electricity lines. These estimations could be useful to allow them to justify
their expenses. However, in some cases these costs can not be directly calculated.
The problem comes when trying to compute the maintenance costs of low voltage

2 With these values we have tried to ease the comparisons selecting standard values
for the common parameters that work well in most cases instead of searching very
specific values for each specific method
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Fig. 3. (a) (X1,Y) and (X3,Y) dependency in the training data; (b) (X1,Y) and
(X2,Y) dependency in the test data

lines and it is due to the following reasons. Although maintenance costs depend
on the total length of the electrical line, the length of low voltage lines would
be very difficult and expensive to be measured since they are contained in little
villages and rural nuclei. The installation of these kinds of lines is often very
intricate and, in some cases, one company can serve to more than 10,000 rural
nuclei.

Due to this reason, the length of low voltage lines can not be directly com-
puted. Therefore, it must be estimated by means of indirect models. The problem
involves relating the length of low voltage line of a certain village with the fol-
lowing two variables: the radius of the village and the number of users in the
village [12]. We were provided with the measured line length, the number of
inhabitants and the mean distance from the center of the town to the three
furthest clients in a sample of 495 rural nuclei.

In order to evaluate the models obtained from the different methods con-
sidered in this paper, this sample has been randomly divided into two subsets,
the training set with 396 elements and the test set with 99 elements, the 80%
and the 20% respectively. The existing dependency of the two input variables
with the output variable in the training and test data sets is shown in Fig. 3
(notice that they present strong non-linearities). Both data sets considered are
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Table 2. Results obtained in the length of low voltage lines estimation problem

Method [#R — (SC+DC) MSE,,, MSE;

WM 24 - 222,654 239,962
WM-S 17 - 214,177 265,179
WM-W 24 - 191,577 221,583
WM-WS 20 - 191,565 219,370
Considering double consequent rules
DC 24 (14+10) 231,132 259,973
DC-S (ALM)| 17 (14+ 3) 155,898 178,534
DC-W 24 (14+10) 144,983 191,053
DC-WS 18 (15+ 3) 144,656 177,897

SC = Single Consequent, DC = Double Consequent.

available at http://decsai.ugr.es/~casillas/fmlib/. The linguistic parti-
tions considered are comprised by seven linguistic terms with triangular-shaped
fuzzy sets giving meaning to them (see Figure 1). The corresponding labels,
{l1,12,13,14,15,16,17}, stand for extremely small, very small, small, medium,
large, very large, and extremely large, respectively.

The results obtained by the four methods analyzed are shown in Table 2,
where # R stands for the number of rules, and MSE;,., and MSE;; for the error
obtained over the training and test data respectively. The best results are shown
in boldface in each table. These results were obtained for a PENTIUM III with
clock rate of 550 MHz and 128 MB of RAM. The run times for the different
algorithms do not exceed 20 minutes.

Focusing on the WM approach, the model obtained from WM-WS presented
the best performance, with improvements of a 14% in training and a 9% in
test respect to the basic WM approach and, presenting a similar performance
to the one obtained from WM-W. However, although accuracy and simplicity
are contradictory requirements, four rules were eliminated respect to WM and
WM-W (the second more accurate model), with this number representing the
17% of the candidate set of rules obtained from WM. The model obtaining the
lowest number of rules was obtained from WM-S, but its performance was even
worse than the original model obtained from WM.

Considering the DC approach, the proposed algorithm, DC-WS, obtains
again the best performance, with improvements of about a 37% and a 31% in
training and test, respectively respect to DC. In this case, there are significant
differences between the results obtained by the approaches considering a sin-
gle optimization (i.e., only rule selection, DC-S, or only rule weight derivation,
DC-W) and our two-fold process. On the one hand, DC-S is only able to achieve
a similar performance to DC-WS on the test error, but training is significantly
worse. On the other hand, DC-W is only able to achieve a similar performance
to DC-WS on training, but the test error is significantly worse. However, six
rules were removed from the initial model obtained from DC considering WS. It
represents a 25% of the total number of rules in DC. Furthermore, our model
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Fig. 4. Decision tables of the obtained models considering the WM approach

only presents 3 double-consequent rules respect to the 10 considered in DC and
DC-W.

From the results presented in Table 2, we can say that the proposed tech-
nique is more robust than only considering weight derivation or rule selection
in isolation. On the one hand, W only achieves good results by considering the
WM approach. On the other hand, S only achieves good results by considering
the DC approach.

The decision tables of the models obtained by the studied methods for the
WM approach are presented in Figure 4. Each cell of the tables represents a fuzzy
subspace/rule and contains its associated output consequent(s) —the primary
and/or the secondary in importance when the DC approach is considered—,
i.e., the corresponding label(s) together with its(their) respective rounded rule
weight(s) when they are considered. These weights have been graphically by
means of the grey colour scale, from black (1.0) to white (0.0). In this way, we
can easily see the importance of a rule with respect to their neighbors which could
help the system experts to identify important rules.
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Fig. 5. Decision tables of the obtained models considering the DC approach

Notice that, the model obtained from WM-WS presents practically the same
weights than that obtained from WM-W. Moreover, WM-WS and WM-S prac-
tically coincide in the selected rules to be considered in the final rule base. We
can observe as some rules presenting weights very close to zero were removed in
WM-WS respect to WM-W, those in the subspaces l3-l5, I3-lg and l4-Io. How-
ever, as we said in Section 2.2, some rules were not removed since they were
the one of their regions (that located in I5-l3) or since they improve the system
performance interacting at low level (I1-l and l4-13).

Figure 5 shows the decision tables of the models obtained by the studied
methods when the DC approach is considered. Once again, there are similarities
between DC-WS and DC-W (in terms of weights). However, in this case we
can found some differences due to the large number of double-consequent rules
considered in DC-W. On the other hand, strong similarities are found respect
to the selected rules from DC-WS and DC-S. Taking into account this fact in
both, WM and DC, we could say that WS inherits the accuracy characteristics
of the rule weighting and the simplicity characteristics of the rule selection.
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Table 3. Results obtained in the maintenance costs of medium voltage lines
estimation problem

Method [#R — (SC+DC) MSE,,, MSE,,

WM 66 - 71,294 80,934
WM-S 43 - 57,025 59,942
WM-W 66 - 33,639 33,319
WM-WS§S 43 - 32,476 32,638
Considering double consequent rules
DC 66 (49+17) 217,808 212,966
DC-S (ALM)| 47 (444 3) 51,714 58,806
DC-W 66 (49+17) 26,377 28,637
DC-WS 51 (47+4) 25,657 28,513

SC = Single Consequent, DC = Double Consequent.

6.2 Estimating the Maintenance Costs of Medium Voltage Lines

Estimating the maintenance costs of the optimal installation of medium voltage
electrical network in a town [12] is an interesting problem. Clearly, it is impos-
sible to obtain this value by directly measuring it, since the medium voltage
lines existing in a town have been installed incrementally, according to its own
electrical needs in each moment. In this case, the consideration of models be-
comes the only possible solution. Moreover, the model must be able to explain
how a specific value is computed for a certain town. These estimations allow
electrical companies to justify their expenses. Our objective will be to relate the
maintenance costs of medium voltage line with the following four variables: sum
of the lengths of all streets in the town, total area of the town, area that is occu-
pied by buildings, and energy supply to the town. We will deal with estimations of
minimum maintenance costs based on a model of the optimal electrical network
for a town in a sample of 1,059 towns.

To develop the different experiments in this contribution, the sample has
been randomly divided into two subsets, the training and test ones, with an
80%-20% of the original size respectively. Thus, the training set contains 847 el-
ements, whilst the test one is composed of 212 elements. These data sets used are
available at http://decsai.ugr.es/~casillas/fmlib/. Five linguistic terms
with triangular-shaped fuzzy sets giving meaning to them are considered for each
variable (see Figure 1). In these case, the corresponding labels, {l1,12,15,14,15},
stand for very small, small, medium, large, and very large, respectively.

The results obtained by the analyzed methods are shown in Table 3, where
the same equivalences in Table 2 remain. Again, these results were obtained for
a PENTIUM IIT with clock rate of 550 MHz and 128 MB of RAM. In this case
the run times for the different methods do not exceed 65 minutes.

Considering the WM approach, the results obtained by WM-WS are the best
in accuracy, with improvements of a 55% and a 60% in training and test, respect
to the original simple linguistic model obtained by WM. Similar results were
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Fig. 6. Rule set of the linguistic models obtained from the proposed technique
when both the WM and the DC approaches are considered

obtained by only considering rule weights, WM-W. However, the proposed algo-
rithm presents the simplest model (in terms of the number of rules) together with
WM-S, removing 23 rules (a 35%) respect to WM and WM-W, and improving
WM-S about a 50% in training and test, respectively.

Focusing on the DC approach, similar results were obtained respect to DC,
DC-S and DC-W. Notice that, DC-WS does not only remove 15 rules more than
DC-W but it also achieves a reduction of the number of double-consequent rules,
obtaining only four rules of this type.

Figure 6 represents the rule set of the linguistic models obtained from the
proposed technique. In this case, each row represents a fuzzy subspace/rule and
contains its associated output consequent(s) —the primary and/or the secondary
in importance when the DC approach is considered—, i.e., the corresponding
label(s) together with its(their) respective rounded rule weight(s). Once again,
the absolute importance weight for each fuzzy rule has been graphically shown
by means of the grey colour scale, from black (1.0) to white (0.0).

From the 625 (5%) possible fuzzy rules, the obtained linguistic fuzzy models
are composed of only 43 and 51, respectively. In the case of DC-WS, it only con-
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tains four double-consequent rules. Notice that, all the double-consequent rules
are very near in the four-dimensional space, representing a zone with a high
complexity. Moreover, rules with weights close to 1 represent groups of impor-
tant rules and do not usually appear alone. As in the previous problem, some
similarities can be observed between the obtained models in terms of the derived
weights and the selected rules, even considering different rule structures.

7 Concluding Remarks

In this work, the use of weighted linguistic fuzzy rules together with rule se-
lection to obtain more simple and accurate linguistic fuzzy models has been
proposed. To do so, a GA coding rules and weights in each chromosome has
been developed with the main aim of improving the accuracy of simple linguistic
fuzzy models and maintaining their interpretabiliy to an acceptable level (i.e.,
to obtain compact but powerful models).

In view of the obtained results, the proposed approach seems to inherit the
accuracy characteristics of the rule weighting and the simplicity characteristics
of the rule selection, obtaining simple but powerful linguistic fuzzy models. This
is due to the following reasons:

— The ability of rule weights to indicate the interaction level of each rule
with the remainder, improving the global performance of the weighted fuzzy
model.

— The complementary characteristics that the use of weights and the rule se-
lection approach present. The ability of rule selection to reduce the search
space by only choosing the rules presenting a good cooperation is combined
with an improvement of the rule cooperation capability by determining the
appropriate interaction levels among the selected rules by the use of weights.
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A Double-Consequent Rule Structure

More flexible linguistic models may be obtained by allowing them to present
fuzzy rules where each combination of antecedents may have two consequents
associated [10, 24]:

IF X is A and ... and X,, is A, THEN Y is {By,B2},

with X; (V') being the linguistic input (output) variables, A; being the linguistic
label used in the ¢-th input variable, and By and Bs the two linguistic terms
associated to the output variable.

Since each double-consequent fuzzy rule can be decomposed into two different
rules with a single consequent, the usual plain fuzzy inference system can be
applied. The only restriction imposed is that the defuzzification method must
consider the matching degree of the rules fired, for example, the center of gravity
weighted by the matching degree defuzzification strategy [11] may be used.
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The consideration of this structure to generate advanced linguistic models
was initially proposed in [24]. Another approach, according to the ALM method-
ology, was also introduced in [10].
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