
Data Mining and Knowledge Discovery, 4, 315–344, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

PUBLIC: A Decision Tree Classifier that Integrates
Building and Pruning

RAJEEV RASTOGI rastogi@bell-labs.com
Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA

KYUSEOK SHIM shim@cs.kaist.ac.kr
Korea Advanced Institute of Science and Technology, and Advanced Information Technology Research Center,
373-1 Kusong-dong, Yusong-gu, Taejon 305-701, South Korea

Editors: Fayyad, Mannila, Ramakrishnan

Abstract. Classification is an important problem in data mining. Given a database of records, each with a
class label, a classifier generates a concise and meaningful description for each class that can be used to classify
subsequent records. A number of popular classifiers construct decision trees to generate class models. These
classifiers first build a decision tree and then prune subtrees from the decision tree in a subsequentpruningphase
to improve accuracy and prevent “overfitting”.

Generating the decision tree in two distinct phases could result in a substantial amount of wasted effort since
an entire subtree constructed in the first phase may later be pruned in the next phase. In this paper, we propose
PUBLIC, an improved decision tree classifier that integrates the second “pruning” phase with the initial “building”
phase. In PUBLIC, a node is not expanded during the building phase, if it is determined that it will be pruned
during the subsequent pruning phase. In order to make this determination for a node, before it is expanded,
PUBLIC computes a lower bound on the minimum cost subtree rooted at the node. This estimate is then used by
PUBLIC to identify the nodes that are certain to be pruned, and for such nodes, not expend effort on splitting
them. Experimental results with real-life as well as synthetic data sets demonstrate the effectiveness of PUBLIC’s
integrated approach which has the ability to deliver substantial performance improvements.

Keywords: data mining, classification, decision tree

1. Introduction

Classification is an important problem in data mining. It has been studied extensively
by the machine learning community as a possible solution to theknowledge acquisition
or knowledge extractionproblem. The input to the classifier construction algorithm is a
training setof records, each of which is tagged with a class label. A set of attribute values
defines each record. Attributes with discrete domains are referred to ascategorical, while
those with ordered domains are referred to asnumeric. The goal is to induce a model or
description for each class in terms of the attributes. The model is then used by the classifier
to classify future records whose classes are unknown.

Figure 1(a) shows an example training set for a loan approval application. There is a
single record corresponding to each loan request, each of which is tagged with one of two
labels—accept if the loan request is approved orreject if the loan request is denied. Each

316 RASTOGI AND SHIM

Figure 1. Decision trees.

record is characterized by two attributes,salary andeducation, the former numeric and
the latter categorical with domain{high-school, undergraduate, graduate}. The attributes
denote the income and the education level of the loan applicant. The goal of the classifier is
to deduce, from the training data, concise and meaningful conditions involvingsalaryand
educationunder which a loan request is accepted or rejected.

Classification has been successfully applied to several areas like medical diagnosis,
weather prediction, credit approval, customer segmentation and fraud detection. Among
the techniques developed for classification, popular ones include bayesian classification
(Cheeseman et al., 1988), neural networks (Bishop, 1995; Ripley, 1996), genetic algo-
rithms (Goldberg, 1989) and decision trees (Breiman et al., 1984): In this paper, however,
we focus on decision trees. There are several reasons for this. First, compared to a
neural network or a bayesian classification based approach, a decision tree is easily inter-
preted/comprehended by humans (Breiman et al., 1984). Second, while training neural
networks can take large amounts of time and thousands of iterations, inducing decision
trees is efficient and is thus suitable for large training sets. Also, decision tree generation
algorithms do not require additional information besides that already contained in the train-
ing data (e.g., domain knowledge or prior knowledge of distributions on the data or classes)
(Fayyad, 1991). Finally, as shown in Mitchie et al. (1994), decision trees display good
classification accuracy compared to other techniques.

Figure 1(b) is a decision tree for the training data in figure 1(a). Each internal node of
the decision tree has a test involving an attribute, and an outgoing branch for each possible
outcome. Each leaf has an associated class. In order to classify new records using a decision
tree, beginning with the root node, successive internal nodes are visited until a leaf is
reached. At each internal node, the test for the node is applied to the record. The outcome
of the test at an internal node determines the branch traversed, and the next node visited.
The class for the record is simply the class of the final leaf node. Thus, the conjunction of
all the conditions for the branches from the root to a leaf constitute one of the conditions
for the class associated with the leaf. For instance, the decision tree in figure 1(b) approves
a loan request only ifsalary≥ 20,000 oreducation∈ {graduate}; otherwise, it rejects the
loan application.

PUBLIC 317

A number of algorithms for inducing decision trees have been proposed over the years
(e.g., CLS (Hunt et al., 1966), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), CART (Breiman
et al., 1984), SLIQ (Mehta et al., 1996), SPRINT (Shafer et al., 1996)). Most of the algo-
rithms have two distinct phases, abuildingor growingphase followed by apruningphase.
In the building phase, the training data set is recursively partitioned until all the records in a
partition have the same class. For every partition, a new node is added to the decision tree;
initially, the tree has a single root node for the entire data set. For a set of records in a parti-
tion P, a test criterionT for further partitioning the set intoP1, . . . , Pm is first determined.
New nodes forP1, . . . , Pm are created and these are added to the decision tree as children
of the node forP. Also, the node forP is labeled with testT , and partitionsP1, . . . , Pm are
then recursively partitioned. A partition in which all the records have identical class labels
is not partitioned further, and the leaf corresponding to it is labeled with the class.

The building phase constructs a perfect tree that accurately classifies every record from
the training set. However, one often achieves greater accuracy in the classification of
new objects by using an imperfect, smaller decision tree rather than one which perfectly
classifies all known records (Quinlan and Rivest, 1989). The reason is that a decision tree
which is perfect for the known records may be overly sensitive to statistical irregularities
and idiosyncrasies of the training set. Thus, most algorithms perform a pruning phase after
the building phase in which nodes are iteratively pruned to prevent “overfitting” and to
obtain a tree with higher accuracy.

An important class of pruning algorithms are those based on the Minimum Description
Length (MDL) principle (Quinlan and Rivest, 1989; Wallace and Patrick, 1993; Fayyad
and Irani, 1993; Mehta et al., 1995). Consider the problem of communicating the classes
for a set of records. Since a decision tree partitions the records with a goal of separating
those with similar class labels, it can serve as an efficient means for encoding the classes
of records. Thus, the “best” decision tree can then be considered to be the one that can
communicate the classes of the records with the “fewest” number of bits. The cost (in
bits) of communicating classes using a decision tree comprises of (1) the bits to encode
the structure of the tree itself, and (2) the number of bits needed to encode the classes of
records in each leaf of the tree. We thus need to find the tree for which the above cost is
minimized. This can be achieved as follows. A subtreeS is pruned if the cost of directly
encoding the records inS is no more than the cost of encoding the subtree plus the cost
of the records in each leaf of the subtree. In Mehta et al. (1995), it is shown that MDL
pruning (1) leads to accurate trees for a wide range of data sets, (2) produces trees that are
significantly smaller in size, and (3) is computationally efficient and does not use a separate
data set for pruning. For the above reasons, the pruning algorithms developed in this paper
employ MDL pruning.

Generating the decision tree in two distinct phases could result in a substantial amount
of wasted effort since an entire subtree constructed in the first phase may later be pruned in
the next phase. During the building phase, before splitting a node, if it can be concluded
that the node will be pruned from the tree during the subsequent pruning phase, then we
could avoid building the subtree rooted at the node. Consequently, since building a subtree
usually requires repeated scans to be performed over the data, significant reductions in
I/O and improvements in performance can be realized. In this paper, we present PUBLIC

318 RASTOGI AND SHIM

(PrUning and BuiLding Integrated in Classification), a decision tree classifier that during
the growing phase, first determines if a node will be pruned during the following pruning
phase, and subsequently stops expanding such nodes. Thus, PUBLIC integrates the pruning
phase into the building phase instead of performing them one after the other. Furthermore,
by only pruning nodes that we know will definitely be pruned in the pruning phase, we
guarantee that the tree generated by PUBLIC’s integrated approach is exactly the same as
the tree that would be generated as a result of executing the two phases separately, one after
another.

Determining, during the building phase, whether a node will be pruned during the pruning
phase is problematic since the tree is only partially generated. Specifically, this requires us
to estimate at each leaf of the partial tree, based on the records contained in the leaf, a lower
bound on the cost of the subtree rooted at the leaf. Furthermore, the better (higher) this
estimate, the more we can prune during the building phase and consequently, the more we
can improve performance. We present several algorithms for estimating the subtree cost—
the algorithms illustrate the trade-off between accuracy of the estimate and the computation
involved. Our experimental results on real-life as well as synthetic data sets demonstrate
that PUBLIC’s integrated approach can result in substantial performance improvements
compared to traditional classifiers.

The remainder of the paper is organized as follows. In Section 2, we survey existing
work on decision tree classifiers. Details of the building and pruning phases of a traditional
decision tree classifier along the lines of SPRINT (Shafer et al., 1996) are presented in
Section 3. The PUBLIC algorithm as well as techniques for estimating lower bounds on
subtree costs are described in Sections 4 and 5. In Section 6, we compare PUBLIC’s
performance with that of a traditional decision tree classifier. Finally, in Section 7, we offer
concluding remarks.

2. Related work

In this section, we provide a brief survey of related work on decision tree classifiers.
The growing phase for the various decision tree generation systems differ in the algorithm
employed for selecting the test criterionT for partitioning a set of records. CLS (Hunt et al.,
1966), one of the earliest systems, examines the solution space of all possible decision trees
to some fixed depth. It then chooses a test that minimizes the cost of classifying a record.
The cost is made up of the cost of determining the feature values for testing as well as
the cost of misclassification. ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) replace the
computationally expensive look-ahead scheme of CLS with a simple information theory
driven scheme that selects a test that minimizes theinformation entropyof the partitions
(we discuss entropy further in Section 3), while CART (Breiman et al., 1984), SLIQ (Mehta
et al., 1996) and SPRINT (Shafer et al., 1996) select the test with the lowest GINI index.
Classifiers like C4.5 and CART assume that the training data fits in memory. SLIQ and
SPRINT, however, can handle large training sets with several million records. SLIQ and
SPRINT achieve this by maintaining separate lists for each attribute and pre-sorting the
lists for numeric attributes. We present a detailed description of SPRINT, a state of the art
classifier for large databases, in Section 3.

PUBLIC 319

In addition to MDL pruning described earlier, there are two other broad classes of pruning
algorithms. The first includes algorithms like cost-complexity pruning (Quinlan, 1987) that
first generate a sequence of trees obtained by successively pruning non-leaf subtrees for
whom the ratio of the reduction in misclassified objects due to the subtree and the number
of leaves in the subtree is minimum. A second phase is then carried out in which separate
pruning data (distinct from the training data used to grow the tree) is used to select the tree
with the minimum error. In the absence of separate pruning data, cross-validation can be
used at the expense of a substantial increase in computation. The second class of pruning
algorithms, pessimistic pruning (Quinlan, 1987), do not require separate pruning data, and
are computationally inexpensive. Experiments have shown that this pruning leads to trees
that are “too” large with high error rates.

The above-mentioned decision tree classifiers only consider “guillotine-cut” type tests
for numeric attributes. Since these may result in very large decision trees when attributes
are correlated, in Fukuda et al. (1996), the authors propose schemes that employ tests
involving two (instead of one) numeric attributes and consider partitions corresponding to
grid regions in the two-dimensional space. Recently, in Gehrke et al. (1998), the authors
propose Rainforest, a framework for developing fast and scalable algorithms for constructing
decision trees that gracefully adapt to the amount of main memory available. In Fayyad
and Irani (1993), Zihed et al. (1997), the authors use the entropy minimization heuristic
and MDL principle for discretizing the range of a continuous-valued attribute into multiple
intervals.

Note that PUBLIC’s integrated approach is different from that in Agrawal et al. (1992)
where adynamic pruningcriterion based on pessimistic pruning is used to stop expanding
nodes during the growing phase. The dynamic pruning scheme proposed in Agrawal et al.
(1992) is ad-hoc and it does not guarantee that the resulting tree is the same as the tree
that would be obtained as a result of performing the pruning phase after the completion of
the building phase. This is a major drawback and could adversely impact the accuracy of
the tree. For instance, in Agrawal et al. (1992), if successive expansions of a node and its
children do not result in acceptable error reduction, then further expansions of its children
are terminated.

3. Preliminaries

In this section, we present a more detailed description of the building and pruning phases
of a traditional decision tree classifier. In the following subsections, the tree building phase
is identical to that used in SPRINT (Shafer et al., 1996), while the MDL pruning algorithm
employed for pruning the tree is along the lines described in Quinlan and Rivest (1989) and
Mehta et al. (1995). While traditional classifiers perform pruning only after the tree has
been completely built, in PUBLIC, the building and pruning phases are interleaved.

3.1. Tree building phase

The overall algorithm for building a decision tree is as shown in figure 2. The tree is built
breadth-first by recursively partitioning the data until each partition ispure, that is, each

320 RASTOGI AND SHIM

Figure 2. Building algorithm.

partition contains records belonging to the same class. The splitting condition for partition-
ing the data is either of the formA < v if A is a numeric attribute (v is a value in the domain
of A) or A ∈ V if A is a categorical attribute (V is a set of values fromA’s domain). Thus,
each split is binary.

Data structures. Each node of the decision tree maintains a separate list for every attribute.
Each attribute list contains a single entry for every record in the partition for the node. The
attribute list entry for a record contains three fields—the value for the attribute in the record,
the class label for the record and the record identifier. Attribute lists for the root node are
constructed at the start using the input data, while for other nodes, they are derived from their
parent’s attribute lists when the parent nodes are split. Attribute lists for numeric attributes
at the root node are sorted initially and this sort order is preserved for other nodes by the
splitting procedure. Also, at each node, a histogram is maintained that captures the class
distribution of the records at the node. Thus, the initialization of the root node in Step 1 of
the build algorithm involves (1) constructing the attribute lists, (2) sorting the attribute lists
for numeric attributes, and (3) constructing the histogram for the class distribution.

Selecting splitting attribute and split point. For a set of recordsS, the entropyE(S)
is defined as—

∑
j pj log pj , wherepj is the relative frequency of classj in S. Thus, the

more homogeneous a set is with respect to the classes of records in the set, the lower is its
entropy. The entropy of a split that dividesS with n records into setsS1 with n1 records
andS2 with n2 records isE(S1, S2) = n1

n E(S1)+ n2
n E(S2). Consequently, the split with the

least entropy best separates classes, and is thus chosen as the best split for a node.
To compute the best split point for a numeric attribute, the (sorted) attribute list is scanned

from the beginning and for each split point, the class distribution in the two partitions is
determined using the class histogram for the node. The entropy for each split point can thus
be efficiently computed since the lists are stored in a sorted order. For categorical attributes,
the attribute list is scanned to first construct a histogram containing the class distribution

PUBLIC 321

for each value of the attribute. This histogram is then utilized to compute the entropy for
each split point.

We must point out that instead of entropy, other criteria can be used to select the best split
point for an attribute. For instance, SPRINT uses thegini indexwhich, for a set of records
S, is defined as 1−∑ j p2

j , wherepj is the relative frequency of classj in S. Additional
information on the gini index can be found in Shafer et al. (1996).

Splitting attribute lists. Once the best split for a node has been found, it is used to
split the attribute list for the splitting attribute amongst the two child nodes. Each record
identifier along with information about the child node that it is assigned to (left or right) is
then inserted into a hash table. The remaining attribute lists are then split using the record
identifier stored with each attribute list entry and the information in the hash table. Class
distribution histograms for the two child nodes are also computed during this step.

3.2. Tree pruning phase

To prevent overfitting, the MDL principle (Rissanen, 1978; Rissanen, 1989) is applied to
prune the tree built in the growing phase and make it more general. The MDL principle
states that the “best” tree is the one that can be encoded using the fewest number of bits.
Thus, the challenge for the pruning phase is to find the subtree of the tree that can be encoded
with the least number of bits.

In the following, we first present a scheme for encoding decision trees. We then present
a pruning algorithm that, in the context of our encoding scheme, finds the minimum cost
subtree of the tree constructed in the growing phase. In the remainder of the paper, we
assume thata is the number of attributes.

Cost of encoding data records. Let a setScontainn records each belonging to one ofk
classes,ni being the number of records with classi . The cost of encoding the classes for
then records (Quinlan and Rivest, 1989) is given by1

log

(
n+ k− 1

k− 1

)
+ log

n!

n1! · · ·nk!

In the above equation, the first term is the number of bits to specify the class distribution,
that is, the number of records with classes 1, . . . , k. The second term is the number of
bits required to encode the class for each record once it is known that there areni records
with class labeli . In Mehta et al. (1995), it is pointed out that the above equation is not
very accurate when some of theni are either close to zero or close ton. Instead, they
suggest using the following equation from Krichevsky and Trofimov (1981), which is what
we adopt in this paper for the costC(S) of encoding the classes for the records in setS.

C(S) =
∑

i

ni log
n

ni
+ k− 1

2
log

n

2
+ log

πk/2

0(k/2)
(1)

322 RASTOGI AND SHIM

In Eq. (1), the first term is simplyn ∗ E(S), whereE(S) is the entropy of the setS of
records. Also, sincek ≤ n, the sum of the last two terms in Eq. (1) is always non-negative.
We utilize this property later in the paper when computing a lower bound on the cost of
encoding the records in a leaf.

In SPRINT, the cost of encoding a set of data records is assumed to be simply the number
of records that do not belong to the majority class for the set. However, our experience with
most real-life data sets has been that using Eq. (1) instead results in more accurate trees. In
PUBLIC, even though we use Eq. (1) as the cost for encoding a set of records, PUBLIC’s
pruning techniques are also applicable if we were to use the approach adopted in SPRINT.

Cost of encoding tree. The cost of encoding the tree comprises of three separate costs:

1. The cost of encoding the structure of the tree.
2. The cost of encoding for each split, the attribute and the value for the split.
3. The cost of encoding the classes of data records in each leaf of the tree.

The structure of the tree can be encoded by using a single bit in order to specify whether
a node of the tree is an internal node (1) or leaf (0). Thus, the bit string 11000 encodes
the tree in figure 1(b). Since we are considering only binary decision trees, the proposed
encoding technique for representing trees is nearly optimal (Quinlan and Rivest, 1989).

The cost of encoding each split involves specifying the attribute that is used to split the
node and the value for the attribute. The splitting attribute can be encoded using loga bits
(since there area attributes), while specifying the value depends on whether the attribute is
categorical or numeric. Letv be the number of distinct values for the splitting attribute in
records at the node. If the splitting attribute is numeric, then since there arev− 1 different
points at which the node can be split, log(v − 1) bits are needed to encode the split point.
On the other hand, for a categorical attribute, there are 2v different subsets of values of
which the empty set and the set containing all the values are not candidates for splitting.
Thus, the cost of the split is log(2v − 2). For an internal nodeN, we denote the cost of
describing the split byCsplit(N).

Finally, the cost of encoding the data records in each leaf is as described in Eq. (1).

Pruning algorithm. Now that we have a formulation for the cost of a tree, we next turn
our attention to computing the minimum cost subtree of the tree constructed in the building
phase. The simple recursive algorithm in figure 3 computes the minimum cost subtree rooted
at an arbitrary nodeN and returns its cost. LetS be the set of records associated withN.
If N is a leaf, then the minimum cost subtree rooted atN is simply N itself. Furthermore,
the cost of the cheapest subtree rooted atN is C(S)+1 (we require 1 bit in order to specify
that the node is a leaf).

On the other hand, ifN is an internal node in the tree with childrenN1 andN2, then there
are the following two choices for the minimum cost subtree—(1) the nodeN itself with no
children (this corresponds to pruning its two children from the tree, thus making nodeN a
leaf), or (2) nodeN along with childrenN1 andN2 and the minimum cost subtrees rooted
at N1 andN2. Of the two choices, the one with the lower cost results in the minimum cost
subtree forN.

PUBLIC 323

Figure 3. Pruning algorithm.

The cost for choice (1) isC(S)+1. In order to compute the cost for choice (2), in Steps 2
and 3, the procedure recursively invokes itself in order to compute the minimum cost subtrees
for its two children. The cost for choice (2) is thenCsplit(N)+ 1+minCost1+minCost2.
Thus, the cost of the cheapest subtree rooted atN is given by minCostN as computed in
Step 4. Note that if choice (1) has a smaller cost, then the children of nodeN must be
pruned from the tree. Or stated alternately, children of a nodeN are pruned if the cost of
directly encoding the data records atN does not exceed the cost of encoding the minimum
cost subtree rooted atN.

The tree built in the “growing” phase is pruned by invoking the pruning algorithm in
figure 3 on the root node.

4. The PUBLIC integrated algorithm

Most algorithms for inducing decision trees perform the pruning phase only after the entire
tree has been generated in the initial building phase. Our typical experience on real-life data
sets has been that the pruning phase prunes large portions of the original tree—in some
cases, this can be as high as 90% of the nodes in the tree (see Section 6). These smaller
trees are more general and result in smaller classification error for records whose classes
are unknown (Quinlan and Rivest, 1989; Fayyad, 1991).

It is clear that in most decision tree algorithms, a substantial effort is “wasted” in the
building phase on growing portions of the tree that are subsequently pruned in the pruning
phase. Consequently, if during the building phase, it were possible to “know” that a certain
node is definitely going to be pruned, then we can stop expanding the node further, and thus
avoid the computational and I/O overhead involved in processing the node. As a result,
by incorporating the pruning “knowledge” into the building phase, it is possible to realize
significant improvements in performance. This is the approach followed by the PUBLIC
classification algorithm that combines the pruning phase with the building phase.

The PUBLIC algorithm is similar to the build procedure shown in figure 2. The only dif-
ference is that periodically or after a certain number of nodes are split (this is a user-defined

324 RASTOGI AND SHIM

parameter), the partially built tree is pruned. The pruning algorithm in figure 3, however,
cannot be used to prune the partial tree.

The problem with applying the pruning procedure at a leaf in figure 3 before the tree has
been completed is that in the procedure, the cost of the cheapest subtree rooted at a leafN
assumed to beC(S)+1. While this is true for a tree that has been completely built, it is not
true for a partially built tree since a leaf in a partial tree may be split later, thus becoming
an internal node. Consequently, the cost of the subtree rooted atN could be a lot less than
C(S) + 1 as a result of the splitting. Thus,C(S) + 1 may over-estimate the cost of the
cheapest subtree rooted atN and this could resulting in over-pruning, that is, nodes may
be pruned during the building phase that would not have been pruned during the pruning
phase. This is undesirable since we would like the decision tree induced by PUBLIC to be
identical to the one constructed by a traditional classifier.

In order to remedy the above problem, we make use of the following observation—
running the pruning algorithm described in figure 3, while under-estimating the minimum
cost of subtrees rooted at leaf nodes that can still be expanded, is not harmful. With an
under-estimate of the minimum subtree cost at nodes, the nodes pruned are a subset of
those that would have been pruned anyway during the pruning phase. PUBLIC’s pruning
algorithm, illustrated in figure 4, is based on this under-estimation strategy for the cost of
the cheapest subtree rooted at a “yet to be expanded” leaf node.

PUBLIC’s pruning distinguishes among three kinds of leaf nodes. The first kind of leaves
are those that still need to be expanded. For such leaves, as described in the following
section, PUBLIC computes a lower bound on the cost of subtrees at the leaves. The two
other kinds of leaf nodes consist of those that are either a result of pruning or those that
cannot be expanded any further (because they are pure). For such leaves, we use the usual
cost ofC(S)+1. Thus, the pruning procedure is similar to the earlier procedure in figure 3
except that the cost for the cheapest subtree at leaf nodes that have not yet been expanded
may not beC(S) + 1. Also, when children of a nodeN is pruned, all its descendants are

Figure 4. PUBLIC’s pruning algorithm.

PUBLIC 325

removed from the queueQ maintained in the build procedure—this ensures that they are
not expanded by the build procedure.

In PUBLIC, the modified pruning algorithm shown in figure 4 is invoked from the build
procedure periodically on the root of the partially built tree. Note that once the building
phase ends, there are no leaf nodes belonging to the “yet to be expanded” category. As a
result, applying the pruning algorithm in figure 4 at the end of the building phase has the
same effect as applying the original pruning algorithm and results in the same pruned tree
as would have resulted due to the previous pruning algorithm.

5. Computation of lower bound on subtree cost

Any subtree rooted at a nodeN must have a cost of at least 1, and thus 1 is a simple,
but conservative estimate for the cost of the cheapest subtree at leaf nodes that are “yet to
be expanded”. In our experiments, we found that even with this simple estimate enables
PUBLIC to substantially reduce the number of nodes generated. Since more accurate
estimates can enable PUBLIC to prune even more nodes, in this section, we propose two
algorithms for computing better and higher estimates for the minimum cost subtrees at
leaf nodes. The first considers split costs and the second incorporates even the cost of
describing the value for each split in the computed estimates. An important point to note
is that the computed estimates represent more accuratelower boundson the cost of the
cheapest subtree at a leaf node. As mentioned before, it is essential that we underestimate
the costs at leaf nodes to prevent over-pruning.

We refer to the version of the PUBLIC algorithm based on a cost estimate of 1 as
PUBLIC(1). The other two versions (presented in the following two subsections) that incor-
porate the cost of splits and cost of values into the estimates are referred to as PUBLIC(S)
and PUBLIC(V), respectively. Note that PUBLIC(1), PUBLIC(S) and PUBLIC(V) are
identical except for the value returned in Step. 1 of the pruning algorithm in figure 4. Thus,
PUBLIC(1), PUBLIC(S) and PUBLIC(V) use increasingly accurate cost estimates for “yet
to be expanded” leaf nodes, and result in fewer nodes being expanded during the building
phase. We describe the notation employed in the following subsections in Table 1.

Table 1. Notation.

Symbol Description

S Set of records in nodeN

k Number of classes for the records inS

a Number of attributes

Sij Set of records belonging to classi in leaf j

nij Number of records belonging to classi in leaf j , that is|Sij |
Si Set of records belonging to classi

ni Number of records belonging to classi , that is|Si |
Sj Set of records in leafj

cj Majority class for leafj

326 RASTOGI AND SHIM

5.1. Estimating split costs

The PUBLIC(S) algorithm takes into account split costs when computing a lower bound on
the cost of the cheapest subtree rooted at a “yet to be expanded” leaf nodeN. Specifically,
for values ofs ≥ 0, it computes a lower bound on the cost of subtrees rooted atN and
containings splits (and consequently,s internal nodes). The cost estimate for the cheapest
subtree at nodeN is then set to the minimum of the lower bounds computed for the different
s values—this guarantees that PUBLIC(S) underestimates the cost of the cheapest subtree
rooted atN.

Let S be the set of records at nodeN andk be the number of classes for the records
in S. Also, let ni be the number of records belonging to classi in S, andni ≥ ni+1 for
1≤ i < k (that is,n1, . . . ,nk are sorted in the decreasing order of their values). As before,
a denotes the number of attributes. In case nodeN is not split, that is,s = 0, then the
minimum cost for a subtree atN is C(S) + 1. For values ofs > 0, a lower bound on the
cost of encoding a subtree withs splits and rooted at nodeN is derived in the following
theorem.

Theorem 5.1. The cost of any subtree with s splits and rooted at node N is at least
2 ∗ s+ 1+ s ∗ loga+∑k

i=s+2 ni .

Proof: The cost of encoding the structure of a subtree withs splits is 2∗ s+ 1 since a
subtree withs splits hass internal nodes ands+1 leaves, and we require one bit to specify
the type for each node. Each split also has a cost of at least loga to specify the splitting
attribute. The final term is the cost of encoding the data records in thes+ 1 leaves of the
subtree.

Let nij denote the number of records belonging to classi in leaf j of the subtree. A class
i is referred to as amajority class in leafj if nij ≥ nkj for every other classk in leaf j (in
case for two classesi andk, nij = nkj, then one of them is arbitrarily chosen as the majority
class). Thus, each leaf has a single majority class, and every other class in the leaf that is
not a majority class is referred to as aminority class. Since there ares+ 1 leaves, there
can be at mosts+ 1 majorityclasses, and at leastk− s− 1 classes are a minority class in
every leaf.

Consider a classi that is a minority class in leafj . Due to Eq. (1),C(Sj) the cost of
encoding the classes of records in the leaf is at least

∑
i nij ∗ E(Sj) whereSj is the set

of records in leafj and
∑

i nij is the total number of records in leafj . Since for classi ,
E(Sj) contains the term nij∑

i nij
log

∑
i nij

nij
, the records of classi in leaf j contribute at least

(
∑

i nij) ∗ (nij∑
i nij

log
∑

i nij

nij
) to C(Sj). Furthermore, since classi is a minority in leaf j , we

have
∑

i nij

nij
≥ 2 and so the records with classi in leaf j contribute at leastnij to C(Sj).

Thus, if L is the set containing thek− s− 1 classes that are a minority in every leaf, then
the minority classesi in L across all the leaves contribute

∑
i∈L ni to the cost of encoding

the data records in the leaves of the subtree.
Since we are interested in a lower bound on the cost of the subtree, we need to consider

the setL containingk−s−1 classes for which
∑

i∈L ni is minimum. Obviously, the above
cost is minimum for thek − s− 1 classes with the smallest number of records inS, that

PUBLIC 327

is, classess+ 2, . . . , k. Thus, the cost for encoding the records in thes+ 1 leaves of the
subtree is at least

∑k
i=s+2 ni . 2

Example 5.2. Consider a database with two attributesageandcar type. Attributeageis a
numeric attribute, whilecar typeis categorical with domain{family, truck, sports}. Also,
each record has a class label that is one oflow, medium, or high, and which indicates the
risk level for the driver. Let a “yet to be expanded” leaf nodeN contain the following set
Sof data records.

age car type label

16 truck high

24 sports high

32 sports medium

34 truck low

65 family low

The minimum cost subtrees atN with 1 and 2 splits are as shown in figure 5(a) and
figure 5(b), respectively. The minimum cost for encoding each node is presented next to
it and the records in each leaf node are listed. Each node has a cost of 1 for encoding its
type. In addition, internal nodes have an additional cost of log 2 for specifying the splitting
attribute. Furthermore, in figure 5(a), the second leaf node contains a record with class
medium which is different from the class for the leaf, and it thus has an extra cost of at
least 1. The remaining leaf nodes in both subtrees are all pure nodes and so do not incur
any additional costs.

The minimum cost of each subtree is the sum of the minimum costs for all the nodes.
Thus, a lower bound on subtrees with 1 split is 5, while for subtrees with 2 splits, it is 7,
which are identical to the lower bounds for the subtree costs due to Theorem 5.1.

Figure 5. Minimum cost subtrees with 1 and 2 splits.

328 RASTOGI AND SHIM

Figure 6. Algorithm for computing lower bound on subtree cost.

Theorem 5.1 gives a lower bound on the cost of any subtree withs splits and can be used
to estimate the cost for the minimum cost subtree rooted at a nodeN. A point to note is
that when the number of splits considered increases froms to s+ 1, the minimum subtree
cost (as described in Theorem 5.1 increases by 2+ loga and decreases byns+2.

Thus, we simply need to compute, using the result of Theorem 5.1, the minimum cost for
subtrees rooted atN with 0, . . . , k−1 splits and set our cost estimate to be the minimum of
all these costs. The reason for only considering uptok−1 splits is that beyondk−1 splits,
the subtree cost does not reduce any further. This is because the last term in Theorem 5.1
(which is the sum of the number of records of thek − s− 1 smallest classes) becomes 0
for k− 1 splits and cannot decrease any further, while the other terms keep increasing with
the number of splits.

In addition, if for a certain numbers of splits, it is the case thatns+2 ≤ 2+ loga, then
we do not need to consider subtrees with splits greater thans. The reason for this is that
whens increases and becomess+1, the minimum subtree cost increases by a fixed amount
which is 2+ loga while it decreases byns+2. Thus, sinceni ≥ ni+1, increasings further
cannot cause the minimum subtree cost to decrease any further.

The algorithm for computing the estimate for the minimum cost subtree at a “yet to be
expanded” nodeN in PUBLIC(S) is as shown in figure 6. In the procedure, the variable
tmpCost stores the minimum cost subtree withs ≥ 1 splits. Fors= 0, since the bound due
to Theorem 5.1 may be loose, the procedure usesC(S) + 1 instead. The maximum value
considered fors is k− 1, and if for ans, ns+2 ≤ 2+ loga, then values larger thans are not
considered. The time complexity of the procedure is dominated by the cost of sorting the
ni ’s in the decreasing order of their values, and is thus,O(k logk).

5.2. Incorporating costs of split values

In the PUBLIC(S) algorithm described in the previous section, when estimating the cost of
a subtree rooted at a “yet to be expanded” nodeN, we estimate the cost of each split to be
loga bits. However, this only captures the cost of specifying the attribute involved in the

PUBLIC 329

split. In order to completely describe a split, a value or a set of values is also required for
the splitting attribute—this is to specify the distribution of records amongst the children of
the split node.

In this section, we present the PUBLIC(V) algorithm, which estimates the cost of each
split more accurately than PUBLIC(S) by also including the cost of encoding the split
value in the cost of each split. Except for this, the PUBLIC(V) algorithm follows a similar
strategy as PUBLIC(S) for estimating the cost of the cheapest subtree rooted at a “yet to be
expanded” nodeN. For values ofs ≥ 0, PUBLIC(V) first computes a lower bound on the
cost of subtrees containings splits and rooted atN. The minimum of these lower bounds
for the various values ofs is then chosen as the cost estimate for the cheapest subtree atN.
The time complexity of the cost estimation procedure for PUBLIC(V) isO(k∗ (logk+a)).

For a subtree withs splits and rooted at a nodeN, the cost of specifying the structure
of the subtree is 2∗ s+ 1, while the cost of encoding the splitting attribute at the internal
nodes iss∗ loga. Compared to the cost for specifying the splitting attribute which requires
a fixed number of bits, loga, estimating the cost of split values is a difficult problem. The
reason for this is that we are trying to compute a lower bound on the cost of a subtree with
s splits and rooted at a “yet to be expanded” leaf nodeN. As a result, we do not know
in advance the splitting attribute for a split node in the subtree—the cost of encoding the
split value depends on the splitting attribute. Also, it is difficult to estimate the number of
values for the splitting attribute at a split node since the distribution of records at the leaves
and the structure of the subtree is unknown. In order to keep the minimum subtree cost
estimation procedure computationally efficient, we make the assumption that all we know
is that the subtree hass split nodes. In the following subsections, for a subtree withs splits,
we compute a lower bound on the cost of encoding the split values at the internal nodes and
the cost of describing the records in the leaves. After presenting the underlying intuition,
We develop, in Section 5.2.2, the overall algorithm to compute the minimum subtree cost.

5.2.1. Intuition. Before we present an algorithm for computing a lower bound on the cost
of encoding the split values and the records in the leaves, we need to first devise a cost
model for these in a specific subtree withs splits ands+ 1 leaves. This is later used to
formulate the problem of finding a lower bound in a manner that is independent of the exact
distribution of the records in the leaves and the internal structure of the tree (since this is
unknown). LetS be the set of records in nodeN andk be the number of classes inN.
Also, let Si denote the set of records inS that belong to classi , ni = |Si |, andSij , the set
of records belonging to classi in leaf j . Note that|Sij | ≤ ni . Furthermore, letcj be the
majority class for leafj andM be the set of majority classes in thes+ 1 leaves.

Note that classes not contained inM are a minority in all the leaves. In addition, a class
i ∈ M is a minority in leavesj for which cj 6= i . Thus, using arguments similar to those
employed in the proof of Theorem 5.1, it can be shown that the cost of encoding the records
in the leaves is at least

∑
i 6∈M

ni +
∑
i∈M

ni −
s+1∑
j=1

∣∣Scj j

∣∣ (2)

330 RASTOGI AND SHIM

Figure 7. Subtree with minimum cost for encoding split values.

Next, we focus on the cost of encoding the split values. SupposeV(Sij) denotes the
minimum cost for encoding a split value at the parent of a node containing the set of records
Sij . We show later, how to estimateV(Sij). A simple observation is that the set of records
Sij is contained in every ancestor of leafj in the subtree. Thus, if leafj is a descendant
of an internal node, then the set of recordsSij occur in one of the internal node’s children.
Since leafj contains the records inScj j , it follows that the cost of specifying a split value
at an internal node is greater than or equal to the maximumV(Scj j) for leavesj that are its
descendants.

Since we are interested in computing a lower bound on the cost of specifying split values,
we need to find the tree for which the sum of the costs of encoding split values at its
internal nodes is minimum. Without loss of generality, supposeV(Sc11) ≥ V(Sc22) ≥ · · · ≥
V(Scs+1s+1). Then the tree with the least cost for encoding split values at internal nodes is as
shown in figure 7(a) and the minimum cost of encoding splits is

∑s
i=1 V(Sci i). This can be

shown using the following simple observation. Consider a subtreeT with leaves numbered
1, . . . , s+ 1 where 1 is the leaf with the maximum value forV(Sci i). Let T ′ be the subtree
obtained by deleting leaf 1 and its parent fromT , and making leaf 1’s parent the root of
the resulting tree (see figure 7(b)). The cost of encoding split values forT ′ is no more than
that for T . This is because the cost of representing the split value in every ancestor of 1
in T previously does not increases inT ′ while the cost for other internal nodes remains
unchanged. Therefore, using induction with the above observation, we can show that the
tree in figure 7(a) is a lower bound on the cost of representing split values for subtrees with
leaves 1, . . . , s+ 1 whereV(Sc11) ≥ V(Sc22) ≥ · · · ≥ V(Scs+1s+1).

Thus, in general, the cost of encoding the split values at all the internal nodes is at least∑s+1
j=1 V(Scj j) − min{V(Scj j) : 1 ≤ j ≤ s+ 1}. Combining the cost of specifying split

values described above with the cost of encoding the records in the leaf nodes (see Eq. (2)),
we obtain (after simplification) the total cost to be at least

k∑
i=1

ni −
(

s+1∑
j=1

(∣∣Scj j

∣∣− V
(
Scj j

))+min
{
V
(
Scj j

)
: 1≤ j ≤ s+ 1

})
(3)

PUBLIC 331

Thus, since we are interested in a lower bound on the total cost, we need to find a setM
of majority classes (these are thecj ’s for thes+ 1 leaves), and the set of recordsScj j for
them such that the quantity in the following equation is maximized.

s+1∑
j=1

(∣∣Scj j

∣∣− V
(
Scj j

))+min
{
V
(
Scj j

)
: 1≤ j ≤ s+ 1

}
(4)

We still need to defineV(Sij) for a set of recordsSij . Let vA denote the number of distinct
values that occur for attributeA in records belonging toSij . We defineV(Sij) as follows.

V(Sij) = min
A
{v : v = log(vA) if A is numeric, elsev = vA (if A is categorical)}

(5)

We explain below our rationale for the above definition forV(Sij). If A is the splitting
attribute in the parent of a node that contains the set of recordsSij , then the number of
values for attributeA in the parent node must be at leastvA + 1 (since the sibling node
must contain at least one additional value). Thus, ifA is numeric, the split value cost with
attributeA as the splitting attribute is at least log(vA) while if A is categorical, the cost is
log(2vA+1 − 2) or at leastvA since log(2vA+1 − 2) ≥ log(2vA) for all vA ≥ 1. As a result,
in Eq. (5), sinceV(Sij) is set to the minimum cost of split values over all the attributesA,
the cost of specifying the split value at the parent of a node containingSij is at leastV(Sij).

Example 5.3. Consider the nodeN containing the 5 records described in Example 5.2.
For our cost model, the minimum cost subtrees atN with 1 and 2 splits are as shown
in figure 8(a) and (b), respectively. Each node has a cost of 1 for encoding its type. In
addition, internal nodes have an additional cost of log 2 for specifying the splitting attribute.
Furthermore, the second leaf node in figure 8(a) has an additional cost of at least 1 due to
the record belonging to classmedium. Also, for the subtree in figure 8(a),c1 = high and
c2 = low. Thus,Sc11 is the set of records withhigh class labels. We can computeV(Sc11)

Figure 8. Minimum cost subtrees with 1 and 2 splits.

332 RASTOGI AND SHIM

as follows. On both theageand thecar typeattributes, records inSc11 take 2 values. Since
ageis numeric andcar typeis categorical,V(Sc11) = log 2 which is the minimum of log 2
and 2. Similarly, the value ofV(Sc22) can also be shown to be log 2. Thus, the cost of
encoding splits in the internal node for the subtree in figure 8(a) using our cost model is
1+ log 2+ log 2.

The cost of each subtree is the sum of the costs for all the nodes. Thus, a lower bound on
the cost of subtrees with 1 split is 6, while for subtrees with 2 splits, it is 9. These bounds
are higher and thus more accurate than the bounds computed previously in Example 5.2
that only considered the cost of describing splitting attributes and not the cost of encoding
split values.

The minimum cost of encoding the records and split values in a subtree withs splits
can be found by computing the minimum possible value for Eq. (3). This is equivalent to
computing a setM of majority classes such that Eq. (4) is maximized. We need to consider
two possible cases—(1) each class is a majority class in at most one leaf, and (2) at least
one class is a majority class in multiple leaves. Due to space constraints, we address only
Case (1) in the body of this paper. Case (2) is dealt with in Appendix A.2.

For subtrees in which a class can be a majority class in at most one leaf, the majority
classescj for the leaves are distinct andM containss+ 1 classes. The following lemma
states the properties of classes in the setM that maximizes the value of Eq. (4).

Lemma 5.4. For subtrees in which no two leaves contain the same majority class, for
every class cj in set M, the value of Eq.(4) is maximized when Scj j = Scj .

Proof: See Appendix A.1. 2

Thus, due to the above lemma, the optimal value forScj j is Scj , the set of all records
belonging to classcj in setS. As a result, for subtrees at nodeN with s splits and with
no two leaves containing the same majority class, a lower bound on the cost of encoding
split values and records in the leaves can be obtained by finding the setM containings+ 1
classes such that

∑
i∈M(ni − V(Si))+min{V(Si) : i ∈ M} is maximized.

5.2.2. Overall algorithm. Figure 9 illustrates the algorithm in PUBLIC(V) for computing
the minimum cost for a subtree rooted at a “yet to be expanded” leaf nodeN and no two
leaves of which have the same majority class. The estimate computed by PUBLIC(V) is
at least as good as that computed by PUBLIC(S), and in many cases, better. For subtrees
in which a class is a majority class in more than one leaf, the algorithm for computing a
lower bound on the cheapest subtree is presented in Appendix A.2. The lower bound on
the subtree cost is thus the minimum of the two computed lower bounds.

Due to Eq. (3), for the case of subtrees withssplits and each leaf with a different majority
class, a lower bound on the cost is 2∗ s+ 1+ s∗ loga+ ∑k

i=1 ni − (
∑

i∈M(ni −V(Si))+
min{V(Si) : i ∈ M}), whereM is a set ofs+ 1 classes for which

∑
i∈M(ni − V(Si)) +

min{V(Si) : i ∈ M} is maximized. Assuming that arrayA is as defined in Step 2 of the
algorithm, in the following, we show that

∑s
i=1(nA[i]−V(SL[i]))+max{nA[i] : s+1≤ i ≤ k}

PUBLIC 333

Figure 9. Algorithm for computing lower bound on subtree cost.

exceeds the maximum possible value for
∑

i∈M(ni − V(Si)) + min{V(Si) : i ∈ M}) and
can thus be used in its place to compute the lower bound for the subtree withs splits.

A sketch of the proof is as follows. Consider the setM that maximizes
∑

i∈M(ni −
V(Si)) +min{V(Si) : i ∈ M}). Let p be the class inM such thatnp ≤ ni for all i ∈ M .
First, since classes inA are sorted in the decreasing order ofni − V(Si), it follows that∑

i∈M−{p}(ni −V(Si)) ≤
∑s

i=1(nA[i]−V(SA[i])). Next,np−V(Sp)+min{V(Si) : i ∈ M}
≤ np, andnp ≤ max{nA[i] : s+ 1 ≤ i ≤ k} sincenp is thes+ 1st largest class inM . This
concludes the sketch of our proof.

In the algorithm in figure 9, for a givens, tmpCost stores the quantity 2∗ s+ 1+ s ∗
loga+∑k

i=1 ni −
∑s

i=1(nA[i] − V(SL[i])), and thus the minimum cost for a subtree withs
splits can be obtained by subtracting max{nA[i] : s+1≤ i ≤ k} from tmpCost. Note that we
only need to contain subtrees with less thank splits, since for trees withk or greater splits,
a pair of leaves would be forced to contain the same majority class. Thus, the minimum
cost for a subtree can be found by computing minimum costs for subtrees with 1 through
k − 1 splits and taking the lowest among them (variable minCost in the algorithm is used
to keep track of this).

The complexity of the estimation procedure is dominated by the costs of computing
V(Si) for the classes, and the cost of sorting arrayA. TheV(Si)’s for thek classes can be
computed when attribute lists for a node are split and requires timeO(ka), while the sorting
can be accomplished in timeO(k logk). Note that the quantity max{nA[i] : s+ 1≤ i ≤ k}
for eachs can be precomputed for arrayA in O(k) time by performing a single reverse scan
of A.

6. Experimental results

In order to investigate the performance gains that can be realized due to PUBLIC’s integrated
approach to classification, we conducted experiments on real-life as well as synthetic data
sets. We used an implementation of SPRINT (Shafer et al., 1996) as described in Section 3
as representative of traditional classifiers that carry out building and pruning in separate

334 RASTOGI AND SHIM

phases. We are thus primarily interested in the speedup due to the integrated PUBLIC
algorithms as measured against SPRINT.

Since real-life data sets are generally small, we also used synthetic data sets to study
PUBLIC’s performance on larger data sets. The purpose of the synthetic data sets is primarily
to examine the PUBLIC’s sensitivity to parameters such as noise, number of classes and
number of attributes. Synthetic data sets allow us to vary the above parameters in a controlled
fashion. Since PUBLIC is based on SPRINT except for the integration of the building
and pruning phases, and SPRINT was shown to scale well for large databases in Shafer
et al. (1996), our goal is not to demonstrate the scalability of PUBLIC. Instead, as we
mentioned before, we are more interested in measuring the improvements in execution time
due to combining the building and pruning phases compared to performing the two phases
separately.

All of our experiments were performed using a Sun Ultra-2/200 machine with 512MB
of RAM and running Solaris 2.5. Our experimental results with both real-life as well as
synthetic data sets clearly demonstrate the effectiveness of PUBLIC’s integrated algorithm
compared to traditional classification algorithms.

6.1. Algorithms

In our experiments, we compared the execution times for four algorithms, whose charac-
teristics we summarize below.

• SPRINT: This is the algorithm that we use as representative of traditional algorithms
with separate building and pruning phases.
• PUBLIC(1): This is the simplest of the PUBLIC algorithms. It performs building and

pruning together, and uses the very conservative estimate of 1 as the cost of the cheapest
subtree rooted at a “yet to be expanded” leaf node.
• PUBLIC(S): Unlike PUBLIC(1), for the minimum cost subtree at a “yet to be ex-

panded” leaf node, PUBLIC(S) considers subtrees with splits and includes the cost of
specifying the splitting attribute for splits.
• PUBLIC(V): Among the PUBLIC algorithms, PUBLIC(V) computes the most accu-

rate lower bound on the cost for a subtree at a “yet to be expanded” leaf node. In addition
to the cost of specifying the splitting attribute for splits, it also considers the cost of spec-
ifying split values. Our implementation of PUBLIC(V) includes the portions described
in Section A.3 Section A.4.

The integrated PUBLIC algorithms are implemented using the same code base as SPRINT
except that they perform pruning while the tree is being built. The tree itself is built depth-
first, and the pruning procedure is invoked on the tree each time a node is split.

6.2. Real-life data sets

We experimented with eight real-life datasets whose characteristics are illustrated in Table 2.
These datasets were obtained from the UCI Machine Learning Repository.2 Data sets in the
UCI Machine Learning Repository often do not have both training and test data sets. For

PUBLIC 335

Table 2. Real-life data sets.

Data set Breast cancer Car Letter Satimage Shuttle Vehicle Yeast

No. of categorical attributes 0 6 0 0 0 0 0

No. of numeric attributes 9 0 16 36 9 18 8

No. of classes 2 4 26 7 5 4 10

No. of records (train) 469 1161 13368 4435 43500 559 1001

No. of records (test) 214 567 6632 2000 14500 287 483

these data sets, we randomly choose 2/3 of the data and used it as the training data set. The
rest of the data is used as the test data set. Table 2 shows the number of records for both
the training and the test data sets.

6.3. Results on real-life data sets

For each of the real-life data sets, we counted the number of nodes generated by each
algorithm (see Table 3). The last but one row of Table 3 (labeled “Max Ratio”) contains the
percentage of additional nodes generated by SPRINT compared to PUBLIC(V), the best
PUBLIC algorithm. The number of nodes in the final tree for each data set is contained in
the final row of the table.

Intuitively, the number of nodes generated is a good measure of the work done by
a classifier since decision tree classifiers spend most of their time splitting the gener-
ated nodes (more than 95%). From the table, it follows that for certain data sets (e.g.,
yeast), SPRINT may generate as many as 99% more nodes than PUBLIC(V). This con-
firms our conjecture that by pruning early, PUBLIC can result in a significant reduc-
tion in the number of redundant nodes generated. Note that even though PUBLIC can
result in substantial decreases in the number of generated nodes compared to SPRINT,
it still generates more nodes than the final number of nodes in the tree (after pruning).
This suggests that there may still be room for further reducing the number of generated
nodes.

Note that there is no direct corelation between the reduction in the number of generated
nodes by PUBLIC and the data set size, the number of attributes or the number of classes

Table 3. Real-life data sets: Number of nodes generated.

Data set Breast cancer Car Letter Satimage Shuttle Vehicle Yeast

SPRINT 21 97 3265 657 53 189 325

PUBLIC(1) 17 83 3215 565 53 141 237

PUBLIC(S) 15 71 2979 457 53 115 169

PUBLIC(V) 15 65 2875 435 53 107 163

Max ratio 40% 48% 14% 51% 0% 77% 99%

Nodes in final tree 9 37 1991 185 51 35 43

336 RASTOGI AND SHIM

Table 4. Real-life data sets: Execution time (secs).

Data set Breast cancer Car Letter Satimage Shuttle Vehicle Yeast

SPRINT 0.87 1.59 334.90 177.65 230.62 11.98 6.56

PUBLIC(1) 0.82 1.51 285.56 167.78 229.21 10.58 5.55

PUBLIC(S) 0.83 1.44 289.70 166.44 230.26 9.81 4.94

PUBLIC(V) 0.81 1.45 300.48 159.83 227.26 9.64 4.89

Max ratio 9% 0% 17% 11% 2% 2% 3%

in the data set. Rather, the effectiveness of PUBLIC depends more on the distribution of
data and the degree of noise/outliers in the data set since these factors influence the number
of nodes pruned in the final tree. In general, PUBLIC performs better when there is more
opportunity for pruning in the data set. This is corroborated by the data in Table 3. For
instance, in the yeast data set on which PUBLIC delivers the best results, nearly 100% of
the nodes generated in the building phase by SPRINT are pruned in the pruning phase.
In contrast, in the shuttle data set no nodes in the tree are pruned. Note that since the
building phase of traditional classifiers split nodes until they become pure, the number of
nodes pruned increases with the amount of noise in the underlying data. Thus, PUBLIC
can be expected to result in better performance improvements for data sets with more
noise.

We also present the execution times for the algorithms on the various data sets in Table 4.
The final row indicates how much worse SPRINT is compared to the best PUBLIC al-
gorithm. In general, PUBLIC results in improvements to execution times that are inferior
compared to those realized for the number of nodes generated. There are two reasons for
this. One is that the nodes that PUBLIC does not generate tend to be deeper in the tree
and so contain fewer data records. As a result, the amount of work conserved for each
node (in terms of scanning data for splits) that is pruned early is smaller compared to
the amount of work already done for the ancestor nodes. Thus, the improvements in ex-
ecution times are less than the improvements in the number of nodes generated. Also,
note that compared to SPRINT which invokes the pruning procedure only once at the
end, the PUBLIC algorithms may invoke the pruning procedure several times. Further,
each invocation of the pruning procedure also computes estimates for the “yet to be ex-
panded” leaves. However, our experience has been that the additional overhead of this is
miniscule.

The smaller run time improvements with PUBLIC can also be attributed to the fact that
the real-life data sets contain a few thousand records, and are thus are fairly small. As a
result, the overhead of initializing the root node and sorting the attribute lists initially is
significant relative to the time to construct the decision tree itself, and is common to both
SPRINT and PUBLIC. Thus, if we exclude the preprocessing cost of building attribute lists
from the execution times, the performance improvement due to PUBLIC is much better as
illustrated in Table 5. Consequently, for large data sets, we expect the execution times for
PUBLIC to be much better compared to SPRINT; this is corroborated by our results for
synthetic data sets in the following subsection.

PUBLIC 337

Table 5. Real-life data sets: Execution time without initial sorting overhead (secs).

Data set Breast cancer Car Letter Satimage Shuttle Vehicle Yeast

SPRINT 0.6 1.27 304.04 150.07 176.16 10.44 6.01

PUBLIC(1) 0.55 1.18 254.62 139.95 174.88 9.02 5.0

PUBLIC(S) 0.56 1.11 256.30 137.15 175.77 8.28 4.39

PUBLIC(V) 0.54 1.12 269.53 132.36 173.82 8.11 4.34

Max Ratio 13% 13% 19% 13% 2% 39% 38%

6.4. Synthetic data set

In order to study the sensitivity of PUBLIC to parameters such as noise in a controlled
environment, we generated synthetic data sets using the data generator used in Agrawal
et al. (1993), Mehta et al. (1996) and Shafer et al. (1996) and available from the IBM
Quest home page.3 Every record in the data sets has nine attributes and a class label which
takes one of two values. A description of the attributes for the records is as shown in Table 6.
Among the attributes,elevel, car andzipcode are categorical, while all others are numeric.
Different data distributions are generated by using one of ten distinct classification functions
to assign class labels to records. Function 1 involves a predicate with ranges on a single
attribute value. Functions 2 and 3 use predicates over two attributes, while functions 4, 5, 6
have predicates with ranges on three attributes. Functions 7 through 9 are linear functions
and function 10 is a non-linear function (Agrawal et al., 1993). Further details on these ten
predicates can be found in Agrawal et al. (1993). To model fuzzy boundaries between the
classes, a perturbation factor for numeric attributes can be supplied to the data generator
(Agrawal et al., 1993). In our experiments, we used a perturbation factor of 5%. We also
varied the noise factor from 2 to 10% to control the percentage of noise in the data set. The
number of records for each data set is set to 75000.

Table 6. Description of attributes in synthetic data sets.

Attribute Description Value

salary Salary Uniformly distributed from 20000 to 150000

commission Commission If salary≥75000 then commission is zero
else uniformly distributed from 10000 to 75000

age Age Uniformly distributed from 20 to 80

elevel Education level Uniformly chosen from 0 to 4

car Make of the car Uniformly chosen from 1 to 20

zipcode Zip code of the town Uniformly chosen from 9 to available zipcodes

hvalue Value of the house Uniformly distributed from 0.5k100000 to 1.5k100000
wherek ∈ {0, . . . ,9} depends onzipcode

hears Years house owned Uniformly distributed from 1 to 30

loan Total loan amount Uniformly distributed from 0 to 500000

338 RASTOGI AND SHIM

Table 7. Synthetic data sets: Number of nodes generated.

Predicate no. 1 2 3 4 5 6 7 8 9 10

SPRINT 20133 18819 19639 26823 17749 20069 18977 20583 18839 19255

PUBLIC(1) 7933 7175 7771 11173 7173 7879 8441 8287 7459 7287

PUBLIC(S) 6435 5887 6329 8947 5817 6435 6873 6667 6061 5927

PUBLIC(V) 5823 5391 5657 8105 5299 5811 6191 5979 5449 5363

Max ratio 246% 249% 245% 231% 235% 245% 207% 244% 246% 259%

Nodes in final tree 61 27 61 25 55 59 75 25 23 23

Table 8. Synthetic data sets: Execution time (secs).

Predicate no. 1 2 3 4 5 6 7 8 9 10

SPRINT 8519 3627 5919 15185 4343 12572 9142 6005 2098 4414

PUBLIC(1) 1493 1363 1427 1527 1350 1468 1306 1439 1529 1448

PUBLIC(S) 1428 1331 1413 1483 1306 1432 1271 1396 1501 1447

PUBLIC(V) 1415 1348 1428 1468 1290 1406 1253 1385 1475 1393

Max ratio 502% 169% 314% 934% 237% 974% 630% 334% 42% 217%

6.5. Results on synthetic data sets

In Tables 7 and 8, we present the number of nodes generated and the execution times for the
data sets generated by functions 1 through 10. For each data set, the noise factor was set to
10%. From the tables, we can easily see that PUBLIC outperforms SPRINT by a significant
amount. For example, SPRINT is more than 900% slower than PUBLIC(V) for functions 4
and 6, and more than 200% slower than PUBLIC(V) for most other functions. The wide
variance in SPRINT’s performance for the range of functions is due to differences in the
structure of the trees generated for each function. In general, the construction of deeper
highly skewed trees incurs more I/O than balanced shallow trees. It is interesting to observe
that PUBLIC(1), the simplest of the PUBLIC algorithms, results in most of the realized
gains in performance. The subsequent reductions in execution time due to PUBLIC(S)
and PUBLIC(V) are not as high. Also, the time spent for generating attribute lists for the
synthetic data sets was approximately 95 seconds. So, the improvement in running times
excluding the cost of building attribute lists is slightly better.

We also performed experiments to study the effects of noise on the performance of
PUBLIC. We varied noise from 2% to 10% for every function, and found that the execution
of the algorithms on all the data sets were very similar. As a result, in figure 10 and figure 11,
we only plot the execution times and number of generated nodes for functions 5 and 6. From
the graphs, it follows that both execution times and the number of generated nodes increase
as the noise is increased. This is because as the noise is increased, the size of the tree
and thus the number of nodes generated increases. Furthermore, the running times for

PUBLIC 339

Figure 10. Synthetic data sets: Execution time (secs).

Figure 11. Synthetic data sets: Number of nodes generated.

SPRINT increase at a faster rate than those for PUBLIC as the noise factor is increased.
Thus, PUBLIC results in better performance improvements at higher noise values. We also
conducted experiments in which we varied the number of classes as well as the number of
attributes in the data sets. However, we found that the performance of PUBLIC relative to
SPRINT did not vary much for the different parameter settings.

The goal of our final set of experiments is to study the scale-up performance of PUBLIC.
We varied the number of records in the training set from 10,000 to 1000,000 for every
function, and found that the execution of the algorithms on all the data sets were very
similar. As a result, in figure 12, we again plot the execution times for functions 5 and 6
only. From the graphs, we can see that the PUBLIC algorithms scale much better than
SPRINT for large data sets. The execution times for SPRINT increase at a faster rate
than those for PUBLIC as the number of records is increased. Consequently, we could
not measure the running time for SPRINT beyond 100,000 records—this establishes the
effectiveness of PUBLIC for handling large datasets.

340 RASTOGI AND SHIM

Figure 12. Synthetic data sets: Execution time (secs).

7. Concluding remarks

Traditional decision tree classifiers generally construct a decision tree in two distinct phases.
In the firstbuilding phase, a decision tree is first built by repeatedly scanning database,
while in the secondpruningphase, nodes in the built tree are pruned to improve accuracy
and prevent overfitting. A drawback with performing the building and pruning actions in
separate phases is that it could result in a fair amount of wasted effort since a significant
portion of the tree generated during the building phase may subsequently be pruned during
the pruning phase.

In this paper, we proposed a new classifier, PUBLIC, that integrates the pruning phase into
the building phase. Specifically, nodes that are certain to be pruned are not expanded during
the building phase—as a result, fewer nodes are expanded during the building phase, and
thus the amount of work (e.g., disk I/O) required to construct the decision tree is reduced. In
order to determine, during the building phase, nodes that are certain to be pruned, we need to
know the cost of encoding the subtrees at the node. For this, we developed three techniques
for computing a lower bound on the cost of a subtree at a “yet to be expanded” leaf node.
By performing additional computation, each successive technique is able to generate more
accurate estimates for the minimum cost subtree. Experimental results with real-life as
well as synthetic data sets show that PUBLIC (with the tree estimation techniques for the
minimum cost subtree) can result in significant performance improvements compared to
traditional classifiers such as SPRINT.

Appendix

A. Estimating value costs in splits

A.1. Proofs of lemmas

Proof: (Lemma 5.4) SinceScj is the largest possible set forScj j , V(Scj j) is maximum
for Scj j = Scj . Thus, since the setsScj are non-overlapping, the second term in Eq. (4) is

PUBLIC 341

maximum whenScj j = Scj . For the first term in Eq. (4), we consider(|Scj j | − V(Scj j))

for each leafj separately since the majority classescj for the leaves are different. Suppose
(|Scj j | − V(Scj j)) is maximum forScj j = Ŝcj , whereŜcj ⊂ Scj . We show that this leads
to a contradiction and thus,(|Scj j | − V(Scj j)) is maximum forScj j = Scj . Let A be the
attribute with the minimum split value cost forŜcj —thus, the split cost forA determines
the value ofV(Ŝcj).

SupposeA is a numeric attribute andV(Ŝcj) = log(vA). Then, withScj j equal toScj

instead ofŜcj causes(|Scj j | −V(Scj j)) to increase by(ncj − |Ŝcj |) and decrease by at most
log(vA + ncj − |Ŝcj |) − log(vA) (since at mostncj − |Ŝcj | new values for attributeA can
be introduced into setScj j). SincevA ≥ 1 and for positivel , l ≥ log(vA+l

vA
), it follows that

(|Scj j | − V(Scj j)) is larger forScj j = Scj than forScj j = Ŝcj .
On the other hand, ifA were a categorical attribute andV(Ŝcj) = vA, then withScj j

equal toScj instead ofŜcj causes(|Scj j |−V(Scj j)) to increase by(ncj −|Ŝcj |) and decrease
by at most(vA + ncj − |Ŝcj |) − vA. Consequently,(|Scj j | − V(Scj j)) is maximum when
Scj j = Scj . 2

A.2. Class majority in multiple leaves

For a subtree in which the majority class for two leavesj andk are identical,Scj = Sck . As a
result, we cannot claim, as we did in Lemma 5.4, that Eq. (4) is maximum whenScj j = Scj .
The reason for this is thatScj j andSckk are disjoint since the same record cannot be in two
leaves. Thus, whenScj j = Scj , Sckk = ∅ sinceck = cj which requiresScj j andSckk to both
be subsets ofScj .

Note that having a class be the majority class in multiple leaves (say leavesj andk)
has the potential to improve the value of Eq. (4). be negligible or very small compared to
V(Scj j ∪ Sckk). Thus, splitting a class’s records over multiple leaves may have advantages
over concentrating all of them in a single leaf. However, in order to determine best value
for Eq. (4) when a class can span over multipleScj j s, we may need to consider several
possible ways in which the class’s records can be split into multiple sets, which can be
computationally expensive.

In order to address this problem, for a leafj such that the majority class in the leafcj

is also a majority class in other leaves, we simply ignoreV(Scj j) for the leaf—that is, we
assume thatV(Scj j) is 0. This has the following two implications. First, since at least one
class is a majority class over multiple leaves, the term min{V(Scj j) : 1 ≤ j ≤ s+ 1} in
Eq. (4) becomes 0 and so we do not need to consider it. Second, for a class that is a majority
class in multiple leavesj , the contribution to Eq. (4) is the sum of the sizes of the setsScj j

for the leaves (since we ignoreV(Scj j) for the leaves). Thus, the maximum contribution
from such a classcj to Eq. (4) isncj —this happens when the union of the setsScj j for the
leaves where it is a majority class isScj , the set of all the records belonging to the class.
Furthermore, the maximum benefit can be achieved by simply distributing all the class’s
records over 2 leaves—spreading the class’s records across more leaves does not increase
the value for Eq. (4). Finally, if a class is a majority class in only one leaf, sayj , then
as shown in the previous subsection, it’s maximum contribution to Eq. (4) isnj − V(Scj)

(whenScj j = Scj).

342 RASTOGI AND SHIM

procedurecomputeMinCostV2(NodeN):
1. if k = 1 return (C(S)+ 1)
2. for i := 1 to k do {
3. B[2 ∗ i − 1] := ni − V(Si)

4. B[2 ∗ i] := V(Si)

5. }
6. sort arrayB in decreasing order ofB[i]
7. s :=1
8. tmpCost := minCost := 1+∑k

i=1 ni

9. while s< 2 ∗ k do {
10. tmpCost := tmpCost+ 2+ log a −B[s]
11. minCost := min{minCost, tmpCost−B[s+ 1]}
12. s++
13. }
14. return min{C(S)+ 1, minCost}

Figure 13. Algorithm for estimating cost of cheapest subtree.

Thus, since the number of leaves in the subtree iss+ 1, the problem is to find disjoint
sets of classesM1 (comprising of classes that are a majority in exactly one leaf) andM2

(containing classes which are a majority in 2 leaves) that satisfy the following constraints:

1. |M1| + 2 ∗ |M2| ≤ s+ 1.
2.
∑

i∈M1
(ni − V(Si))+

∑
i∈M2

ni is maximized.

A.3. Overall algorithm

Figure 13 presents the algorithm in PUBLIC(V) for computing the minimum cost for a
subtree rooted at a “yet to be expanded” leaf nodeN which A class is a majority class in
more than one leaf.

For subtrees withs splits and containing at least a pair of leaves with the same ma-
jority class, a lower bound on the cost is 2∗ s+ 1+ s∗ loga+ ∑k

i=1 ni − (
∑

i∈M1
(ni −

V(Si))+
∑

i∈M2
ni), whereM1 and M2 are sets of classes satisfying the two constraints

mentioned in Section A.2. Assuming that arrayB for the various classes is as defined in
Steps 2–5, in the following, we show that the sum of thes+1 largest elements inB exceeds
the maximum possible value for

∑
i∈M1

(ni − V(Si)) +
∑

i∈M2
ni and can thus be used in

its place to compute the lower bound for the subtree withs splits.
A sketch of the proof is as follows. LetM1 andM2 be the set of classes that maximize∑
i∈M1

(ni − V(Si))+
∑

i∈M2
ni . First, for every classi in M1, B[2 ∗ i − 1] ≥ ni − V(Si).

Next, for all classesi ∈ M2, B[2 ∗ i − 1] + B[2 ∗ i] = ni . Thus, if for a classi ∈ M1,
B[2 ∗ i − 1] does not make it to the tops+ 1 elements inB, or for classi ∈ M2, one of
B[2 ∗ i − 1] or B[2∗ i] are not in the tops+1 elements inB, then it follows that the missing
elements are smaller than every one of the tops+1 elements inB. Thus, we are guaranteed
that the sum of the tops+ 1 elements inB is at least

∑
i∈M1

(ni − V(Si))+
∑

i∈M2
ni .

PUBLIC 343

A.4. Further optimizations

For a class that is a majority class in only leafj , we can estimate the maximum value of
|Scj j | − V(Scj j) more accurately. The basic idea is that if attributeA assumesv values in
setS, and alsov values in setSij , then it cannot qualify to be a candidate for splitting the
parent of a node containing the set of recordsSij . Thus, the definition ofV(Sij) in Eq. (5)
must be modified to choose the minimum from among attributes who are candidates for
splitting with Sij and not all the attributes (an attribute is a candidate for splitting withSij if
the number of values it assumes inSij is strictly less than the number of values for it inS).

The new definition forV(Sij) has the implication that|Scj j | − V(Scj j) may not be
maximum forScj j = Scj . Instead, in order to find theScj j that maximizes|Scj j |−V(Scj j),
we need to consider, for every attribute, the largest subset ofScj such that the attribute is a
candidate for the subset. From amongst these subsets, the subset for which|Scj j |−V(Scj j)

is maximum (with the new modified definition ofV(Sij)) is the desired value forScj j . For
an attribute, if itScj is not a candidate for splitting withScj , then the largest subset ofScj

for which the attribute is a candidate can be computed by deleting fromScj , records with
the least frequently occurring value for the attribute inScj .

Acknowledgments

We would like to thank Narain Gehani, Hank Korth and Avi Silberschatz for their encour-
agement. Without the support of Yesook Shim, it would have been impossible to complete
this work. The work of Kyuseok Shim was partially supported by the Korea Science and
Engineering Foundation (KOSEF) through the Advanced Information Technology Research
Center (AITrc).

Notes

1. All logarithms in the paper are to the base 2.
2. Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html.
3. The URL for the page is http://www.almaden.ibm.com/cs/quest/demos.html.

References

Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., and Swami, A. 1992. An interval classifier for database mining
applications. In Proc. of the VLDB Conference, Vancouver, British Columbia, Canada, August, pp. 560–573.

Agrawal, R., Imielinski, T., and Swami, A. 1993. Database mining: A performance perspective. IEEE Transactions
on Knowledge and Data Engineering, 5(6):914–925.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification and Regression Trees. Belmont:
Wadsworth.

Bishop, C.M. 1995. Neural Networks for Pattern Recognition. New York: Oxford University Press.
Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., and Freeman, D. 1988. AutoClass: A Bayesian classification

system. In 5th Int’l Conf. on Machine Learning, June, Morgan Kaufman.
Fayyad, U. 1991. On the induction of decision trees for multiple concept learning. PhD Thesis, The University of

Michigan, Ann Arbor.

344 RASTOGI AND SHIM

Fayyad, U. and Irani, K.B. 1993. Multi-interval discretization of continuous-valued attributes for classification
learning. In Proc. of the 13th Int’l Joint Conference on Artificial Intelligence, pp. 1022–1027.

Fukuda, T., Morimoto, Y., and Morishita, S. 1996. Constructing efficient decision trees by using optimized numeric
association rules. In Proc. of the Int’l Conf. on Very Large Data Bases, Bombay, India.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Morgan Kaufmann.
Gehrke, J., Ramakrishnan, R., and Ganti, V. 1998. Rainforest—A framework for fast decision tree classification

of large datasets. In Proc. of the VLDB Conference, August, New York City, NY.
Hunt, E.B., Marin, J., and Stone, P.J. (Eds.) 1966. Experiments in Induction. New York: Academic Press.
Krichevsky, R. and Trofimov, V. 1981. The performance of universal encoding. IEEE Transactions on Information

Theory, 27(2):199–207.
Mehta, M.P., Agrawal, R., and Rissanen, J. 1996. SLIQ: A fast scalable classifier for data mining. In EDBT 96,

March, Avignon, France.
Mehta, M., Rissanen, J., and Agrawal, R. 1995. MDL-based decision tree pruning. In Int’l Conference on Knowl-

edge Discovery in Databases and Data Mining (KDD-95), August, Montreal, Canada.
Mitchie, D., Spiegelhalter, D.J., and Taylor, C.C. 1994. Machine Learning, Neural and Statistical Classification.

Ellis Horwood.
Quinlan, J.R. and Rivest, R.L. 1989. Inferring decision trees using minimum description length principle. Infor-

mation and Computation, 30(3):227–248.
Quinlan, J.R. 1986. Induction of decision trees. Machine Learning, 1:81–106.
Quinlan, J.R. 1987. Simplifying decision trees. Journal of Man-Machine Studies, 27:221–234.
Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufman.
Ripley, B.D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.
Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14:465–471.
Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry. World Scientific Publ. Co.
Shafer, J., Agrawal, R., and Mehta, M. 1996. SPRINT: A scalable parallel classifier for data mining. In Proc. of

the VLDB Conference, September, Bombay, India.
Wallace, C.S. and Patrick, J.D. 1993. Coding decision trees. Machine Learning, 11:7–22.
Zihed, D.A., Rakotomalala, R., and Feschet, F. 1997. Optimal multiple intervals discretization of continuous

attributes for supervised learning. In Int’l Conference on Knowledge Discovery in Databases and Data Mining
(KDD-97).

