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ABSTRACT

Feature selection is defined as a problem to find
a minimum set of M features for an inductive al-
gorithm to achieve the highest predictive accuracy
from the data described by the original N features
where M < N. A probabilistic wrapper model 1s
proposed as another method besides the exhaus-
tive search and the heuristic approach. The aim of
this model is to avoid local minima and exhaustive
search. The highest predictive accuracy 1s the crite-
rion in search of the smallest M. Analysis and ex-
periments show that this model can effectively find
relevant features and remove irrelevant ones in the
context of improving the predictive accuracy of an
induction algorithm. It is simple, straightforward,
and providing fast solutions while searching for the
optimal. The applications of such a model, its future
work and some related issues are also discussed.

1. INTRODUCTION

The problem of feature selection can be defined
as finding relevant M features among the original N
attributes, where M < N, to define the data in order
to minimize the error probability or some other rea-
sonable selection criteria. Feature selection has long
been the focus of researchers of many fields - pattern
recognition, statistics, machine learning (see Section
2). Many methods have been proposed. In general,
they can be classified into two categories®: (1) the
filter approach [AD94, KR92], i.e., the feature selec-
tor 1s independent of a learning algorithm and serves
as a filter to sieve the irrelevant and/or redundant
features; and (2) the wrapper approach [JKP94], i.e.,
the feature selector as a wrapper around a learning
algorithm relying on which the relevant features are
determined. The major advantage to the wrapper
model 1s that it utilizes the induction algorithm it-

!The given references are just recent examples. Both ap-
proaches have existed for quite some time. See Section 2.

self as a criterion in selecting features since in the
context of learning classification rules, the purpose
of feature selection is to improve the performance of
an induction algorithm. However, incorporating an
induction algorithm in the process of feature selec-
tion is not without a cost. (More discussion below).

In each category, methods can be further divided
into two types: exhaustive or heuristic search. The
difficulty about feature selection can be stated as fol-
lows: except in a few very special cases, the optimal
selection can only be done by testing all possible sets
of M features chosen from the N features, i.e., by ap-
plying the criterion (ﬁ) = m times. If there
are M relevant features, the total number of times
is Zf‘il (Jj) = O(NM). This is prohibitive when
N and/or M is large. In practice, heuristic meth-
ods are the way out of this exponential computation.
Heuristic methods in general make use of low order
(first or second) information? to estimate relevance
of features approximately. Although the heuristic
methods work reasonably well [Qui93, TW93], it is
certain that they miss out the features of high order
relations, for example, the parity problem. On one
hand, it is a problem of exponential explosion; on
the other hand, 1t is very likely that some relevant
features will be omitted if the heuristic approach 1s
taken. Our goal is to have an algorithm that can ex-
plore the high order relations among the N features
and find M relevant features, with high probability,
but without resorting to exhaustive search. In this
work, the feature selection problem is redefined in
terms of predictive accuracy of an inductive algo-
rithm: to find the smallest set of M features for an
inductive algorithm to achieve the highest accuracy.

2. RELATED WORK

The problem of feature selection has long been
an active research topic within statistics and pat-

2First order information contains only one feature, second or-
der information two features, etc.



tern recognition [WDJ80, DK82], but most work in
this area has dealt with linear regression [Lan94] and
under assumptions that do not apply to most learn-
ing algorithms [JKP94]. They pointed out that the
most common assumption is monotonicity, that in-
creasing the number of features can only improve the
performance of a learning algorithm?.

In the past few years, feature selection has re-
ceived considerable attention from machine learning
and knowledge discovery researchers interested in
improving the performance of their algorithms and
cleaning data. There are many heuristic feature se-
lection algorithms. The RELIEF algorithm [KR92]
assigns a “relevance” weight to each feature, which
is meant to denote the relevance of the feature to
the target concept. RELIEF samples instances ran-
domly from the training set and updates the rele-
vance values based on the difference between the se-
lected instance and the two nearest instances of the
same and opposite classes. According to [KR92],
RELIEF assumes two-classes classification problems
and does not help with redundant features. If most
of the given features are relevant to the concept,
it would select most of them even though only a
fraction are necessary for concept description. The
PRESET algorithm [Mod93] is another heuristic fea-
ture selector that uses the theory of Rough Sets to
heuristically rank the features, assuming a noise-
free binary domain. In order to consider higher or-
der information among the feature. It is suggested
in [LW93] to use high order information gain in fea-
ture selection. Since the last two algorithms do not
try to explore all the combinations of features, it
is likely that they fail on the problems like Parity
and Majority functions where the combinations of a
small number of features do not help in locating the
relevant features. Chi2 [LS95] is another heuristic
feature selector, it automatically discretizes the con-
tinuous features and removes irrelevant continuous
features based on the chi-square statistics and the
inconsistency found in the data. However, it can-
not handle nominal features. In [JKP94], forward
selection and backward elimination wrapper models
are studied. Nevertheless, no conclusion is given on
which one is better and no guideline is offered on
which problems which method should be used. It
can also be observed from the results that, in gen-
eral, the latter achieves lower error rates, and the
former achieves smaller numbers of features. The
classic exhaustive method can be found in [AD94]

3The monotonicity assumption is not valid for many induction
algorithms used in machine learning. See dataset 1 in Section 4
which is reproduced from [JKP94].

which is called FOCUS, in which the authors pro-
posed several heuristic versions to speed up the pro-
cess, assuming a noise-free binary domain.

Another common understanding is that some
learning algorithms have built-in feature selection,
for example, ID3 [Qui86], FRINGE [PH90] and
C4.5 [Qui93]. The results in [AD94] suggest that
one should not rely on ID3 or FRINGE to filter out
irrelevant features. Since C4.5 conducts test on each
individual feature as well, it is not proper either to
use C4.5 to find the minimum set of features. It is
expected (to be shown in Section 4) that it will fail
on the parity problems.

A summary is that the exhaustive search approach
i1s infeasible in practice; and the heuristic search
approach can reduce the computational time sig-
nificantly, but cannot explore the combined effects
among the features, will fail on hard problems (e.g.,
the parity problem) or cannot remove redundant fea-
tures. It is right time for the third approach that
relies on neither heuristics nor exhaustive search in
producing solutions and with high probability, se-
lects the optimal and/or near-optimal set(s) of rele-
vant features.

3. PROBABILISTIC WRAPPER MODEL

This probabilistic approach is a modified version
of Las Vegas Algorithms [BB96]. Las Vegas algo-
rithms make probabilistic choices to help guide them
more quickly to a correct solution. One kind of
Las Vegas algorithms uses randomness to guide their
search in such a way that a correct solution is guar-
anteed even if unfortunate choices are made. As we
mentioned earlier, heuristic search methods are vul-
nerable to the datasets of high order relations. Las
Vegas algorithms free us from worrying about such
situations by evening out the time required on dif-
ferent situations. The time performance of a Las
Vegas algorithm may not be better than that of
some heuristic algorithms. With high probability,
data that took a long time deterministically are now
solved much faster, but data on which the heuristic
algorithm was particularly good are slowed down to
average by the Las Vegas algorithm. The following
algorithm generates random subsets of N features;
for each subset S1, a learning algorithm is applied
to the training data in order to obtain its estimated
error rate errl, the smallest subset with the low-
est error rate is kept. In a Las Vegas algorithm,
it 1s guaranteed that given sufficiently long time, it
finds the optimal solution. In search of the mini-



mum set of M features, LVW outputs every current
best. As shown in the algorithm, the computation
of each errl is based on S1 and D¢yqin; Diest 18 only
used in computing err2. That is, at the end, the
learning algorithm is applied to both training and
testing data and produces its estimated error rate
on the testing data. This is the rate reported below
in experiments. K is the specified number maximum
runs, k is the number of runs; C'is the smallest num-
ber of features at present, err is the current smallest
error rate. Function randomSet produces set S1 of
features at each run, C'1 is the number of features
in S1. LearnAlgo can be any induction algorithm
(C4.5 and ID3 are chosen in our experiments).

LVW algorithm
err = 0; k = 0; C' = 100;
repeat
S1 = randomSet();
C'1 = numOfFeatures(S1);
errl = LearnAlgo(S1, Dirgin, NULL);
if (errl < err OR
(errl = err AND C1 < () {
output the current best;
k=0;err = errl;
C=C1;5="51;}
k=Fk+1;
until err is not updated for K times;
err2 = LearnAlgo(S, Dirain, Drest);

Some analysis shows that LVW can give a good
solution, or an optimal solution if K is sufficiently
large. With a good psudo random number gener-
ator [PTVF92], the selection of an optimal subset
of M features can be considered non-replacement
experiments. The probability of finding the optimal
subset is ﬁ at the (k—+1)th experiment, although
the probability of finding the optimal subset after
(k+1) experiments is still 2];;1 X gz:% X .. X 2N1—k =
2%, where N 1s the number of original features. In
our experiments, K (shown in the LVW algorithm)
is approximated as 60x/N. The larger an N is, the
more trials LVW will try. When N is large, this
approximation of K <« 2%. This analysis assumes
there is one optimum. If there exist [ optima, at the
kth tossing, the probability of finding one optimum
would be 2Nl—_k

4. EMPIRICAL STUDY

Although the induction algorithm in the LVW al-
gorithm can be any kind, it is important that the

induction algorithm be fast since the time complex-
ity of LVW is bound by the number of runs and the
time complexity of the induction algorithm. Among
many choices; we chose C4.5 and ID3 in our experi-
ments. The C4.5 program is the program that comes
with Quinlan’s book [Qui93]; the ID3 results were
obtained by running C4.5 and using the unpruned
trees.

Two types of datasets are chosen in experiments.
One type is artificial data so that the relevant fea-
tures are known before feature selection is con-
ducted, which includes CorrAL [JKP94], Monksl-
3 [TBB*91], and Parityb+5. The other type is
real-world data including Credit, Vote, and La-
bor [Qui93, MA94]. The choice of these datasets can
simplify the comparison of this work with some pub-
lished work. These datasets were used in [JKP94]
in which comparisons with different methods were
described.  For the artificial datasets, no cross-
validation 1s done. For the real-world datasets, 10-
fold cross validation is used to obtain the estimated
accuracy on the training data. On the choice of op-
tions of C4.5, following [JKP94], we use “-m1” C4.5
flag which indicates that splitting should continue
until purity on the artificial datasets, the default set-
ting on the real-world datasets.

Artificial Data:

1. CorrAL The data was designed in [JKP94].
There are six binary features, Ag, A1, Bo, By, 1,
and C'. Feature [ 1s irrelevant, feature C' is cor-
related to the class label 75% of the time. The
Boolean target concept is (Ag A A1)V (By A By).
Both ID3 and C4.5 chose feature (' as the root.
This is an example of datasets in which if a fea-
ture like C' is removed, a more accurate tree will
result.

2. Monkl, Monk2, Monk3 The datasets were
taken from [TBB*91]. They have six features.
The training datasets provided were used for
feature selection. Monkl and Monk3 only need
three features to describe the target concepts,
but Monk2 requires all the six. The train-
ing data of Monk3 contains some noise. These
datasets can be used to show that a feature se-
lector selects either only the relevant features or
the relevant ones plus others.

3. Parity5+45 The target concept is the parity of
five bits. The dataset contains 10 features, of
which 5 are uniformly random (irrelevant). The
training set contains 100 instances randomly se-
lected from all 1024 instances. Another inde-
pendent 100 instances are drawn to form the



testing set. Most heuristic feature selectors will
fail on this sort of problems since an individual
feature does not mean anything.

Real-World Data:

4. Vote This dataset includes votes from the U.S.
House of Representatives Congress-persons on
the 16 key votes identified by the Congressional
Quarterly Almanac Volume XL. The data set
consists of 16 features, 300 training instances
and 135 test instances.

5. Credit (or CRX) The dataset contains in-
stances for credit card applications. There are
15 features and a Boolean label. The dataset
was divided by Quinlan [Qui93] into 490 train-
ing instances and 200 test instances.

6. Labor The dataset contains instances for ac-
ceptable and unacceptable contracts. It is a
small dataset with 16 features, a training set of
40 instances, and a testing set of 17 instances.

Results are shown in Tables 1 and 2. In the col-
umn of Err, #(p%) means that there are x instances
misclassified, the percentage is p. For all the artifi-
cial datasets, LVW did find all the relevant features.
For example, LVW rediscovered that features 1, 2
and 5 are relevant for Monkl, all six features for
Monk2, features 2, 4 and 5 for Monk3, five features
for Parityb+b, features Ag, A1, By, By for CorrAL.
These results give us confidence on LVW that using
accuracy as a criterion, relevant features can be se-
lected even in the presence of noise (e.g., Monk3).
For the real-world datasets, there is no knowledge
about which features are relevant. However, the
comparison between with and without LVW can still
be performed along three dimensions: (1) tree size,
(2) error rate (Err), and (3) number of features used
(# Att). The results of ID3 and C4.5 with and with-
out LVW are summarized in terms of the three di-
mensions. For ID3, all the figures improved after
LVW is applied, i.e., except for Monk2, the number
of features is reduced, tree size 1s smaller, and error
rate is decreasing. For C4.5, the improvement is not
clear-cut. Although all datasets but Monk2 have
their number of features reduced, the significantly
decreased error rates for CorrAL, Monkl, and Par-
1tyb+b come with an increase in tree size. This is
not without a reason (see discussion below).

The experimental results from [JKP94] are repro-
duced here in Table 3 for a reference purpose. See
more details in the paper. Before (Bf) means be-
fore feature selection, Forward (Fw) means forward
stepwise selection, Backward (Bw) means backward
stepwise selection, Relieve (Rl) is a modified version

of Relief [KR92], because of significant variance in
the relevance rankings given by Relief [JKP94].

5. CONCLUSION

In a wrapper model, feature selection is closely
linked to an induction algorithm, in other words,
LVW is only constrained by the limitations of the
induction algorithm. If the induction algorithm can
handle noisy data, missing values, both continuous
and discrete values, so can LVW. In this work, C4.5
1s used and no special effort is needed to tailor the
datasets in order to run LVW. To achieve the lowest
possible error rate 1s the aim of both the feature
selector and the induction algorithm. In addition,
LVW produces intermediate solutions while working
toward better ones.

A general belief is that the fewer features, the sim-
pler the decision trees since irrelevant features are re-
moved. However, Murphy and Pazzani [MP94] find
that the smallest trees typically have lower predic-
tive accuracy than slightly larger trees; exhaustive
search for the simplest consistent theories does not
necessarily lead to improvement. That means that
using accuracy as a criterion may not lead to the
simplest tree. This is truly reflected in the results
of these datasets. The size of a decision tree is the
number of leaves of the tree plus 1. The size mea-
sure does not show how many features are contained
in the tree. Our experimental results show that in
pursuit of high accuracy, LVW can reduce the num-
ber of features, improve the accuracy, but may not
always reduce the tree size. A measure which com-
bines the three dimensions may help in achieving
high performance in all the dimensions.

Our experience with LVW is that it is slow in run-
ning many trials (O(K)) of different patterns. Since
every random pattern should be tested by the induc-
tion algorithm, if its time cost 1s Cf,, 4, the minimum
cost of LVW is O(K * Crnq). For cross validations,
this cost should be increased by another factor re-
lated to the number of folds of cross validations.

Due the slowness of LVW, it is not recommended
to use 1t in applications where time is a critical fac-
tor. If it 1s used just once and for all for some period
of time, the slowness does not do much harm. Re-
searchers have been trying to speed up the wrapper
approach [Lan94]. IVW can play a role of a bench
mark for comparisons with other heuristic methods.
All the heuristic FS algorithms are deterministic.
Heuristic algorithms designed for particular applica-
tions can run very fast. LVW can be used to check



Table 1: Results of tree size, error

rate (Err) and number of features (# Att.) for ID3 with/without LVW.

Learner 1D3

Measure Size Err # Att.
LVW w/o | with | w/o with w/o | with
CorrAL, | 13| 13| 0(0.0%) 0(0.0%) 6 1
Monk 1 | 43 | 12 101(23.4%) | 12(2.8%) | 6 3
Monk 2 | 174 | 174 | 131(30.3%) | 131(30.3%) | 6 6
Monk 3 | 42 | 19 | 42(9.7%) 0(0.0%) 6 3
P5+5 87 [ 63 | 0(0.0%) 0(0.0%) 10 |5
Vote B | 7 7(5.2%) 1(3.0%) 6 [ 4
Credit | 117 | 76 | 39(19.5%) | 31(155%) | 15 | 6
Tabor 12 |7 3(17.6%) | 3(17.6%) 16 |4

Table 2: Results of tree size, error rate (Err) and number of features (# Att.) for C4.5 with/without LVW.

Learner C4.5
Measure Size Err # Att.
LVW w/o [ with | w/o with w/o | with
CorrAL | 7 9 2(12.5%) 1(6.2%) 6 1
Monk I | 18 | 38 105(24.3%) | 24(5.6%) 6 3
Monk 2 | 46 | 46 T48(34.3%) | 148(34.3%) | 6 6
Monk 3 12 12 12(2.8%) 12(2.8%) 6 3
P5+5 19 |63 22(22.0%) | 0(0.0%) 0o |5
Vote 7 7 13.0%) 13.0%) 6 |4
Credit 44 30 40(20.5%) 30(15.0%) 15 6
Labor 7 7 3(17.6%) 3(17.6%) i6 | 4
if a fast solution is also a good one when designing Learning boolean concepts in the
a heuristic algorithm. presence of many irrelevant features.
It is noticed that the slowness is caused by the Artificial Intelligence, 69(1-2):279-
learning algorithm. This significantly limits the ap- 305, November 1994.
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