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of torque minimization, a smaller value of� is preferable, and as a
tradeoff, a larger critical area has to be prescribed [e.g.,� = 0:8 when
selecting� = 2:0 as in Fig. 9(c)]. In summary, performance of the pre-
sented examples demonstrates the effectiveness of the proposed dual
neural network model (12) on the path-following and torque minimiza-
tion task of redundant manipulators with limited joint ranges.

VI. CONCLUDING REMARKS

The one-layer dual neural network model provides a new parallel
distributed computational approach to real-time torque minimization
of limited-joint-range redundant manipulators in real-time. Compared
with other studies on torque optimization, the proposed formulation
resolves redundancy at the acceleration level and simultaneously con-
siders the joint limit avoidance. Different from other recurrent neural
network approaches, the proposed dual neural network is developed for
avoiding robot joint limits during the path-following torque optimiza-
tion task. Future works include the neural network implementation on a
dedicated hardware such as ASIC, and then experimental verifications
on different manipulators.
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A Merge-Based Condensing Strategy for Multiple
Prototype Classifiers

Ramón A. Mollineda, Francesc J. Ferri, and Enrique Vidal

Abstract—A class-conditional hierarchical clustering framework has
been used to generalize and improve previously proposed condensing
schemes to obtain multiple prototype classifiers. The proposed method
conveniently uses geometric properties and clusters to efficiently obtain
reduced sets of prototypes that accurately represent the data while
significantly keeping its discriminating power. The benefits of the proposed
approach are empirically assessed with regard to other previously pro-
posed algorithms which are similar in their foundations. Other well-known
multiple prototype classifiers have also been taken into account in the
comparison.

Index Terms—Clustering, condensing, multiple prototypes, nearest
neighbors (NNs).

I. INTRODUCTION

One of the best known and most extensively studied family of pat-
tern classifiers is thek-nearest neighbor (NN) rule. Given a training set
of previously labeled samples (or prototypes) and an unknown sample
x, thek-NN rule assigns the most frequently represented class-label
among thek closest prototypes tox. In spite of its conceptual sim-
plicity, the rule is asymptotically optimal in the Bayes sense [1], pro-
vided there is an arbitrarily large number of prototypesn available so
thatk can be taken as large as necessary, while keeping the ratiok=n
arbitrarily small which, in turn, implies that the neighbors are infin-
itely close tox. A trivial consequence of the large size of the sets of
prototypes is the computational burden this searching problem implies.
Another very important drawback comes from the erroneously labeled
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or noisy prototypes, which may lead to arbitrarily large deviations from
the asymptotically optimal results which could be expected.

Several different ways of circumventing these drawbacks have been
proposed. In this context,prototype selectiontries to modify the ini-
tially given set of prototypes, in order to reduce its size as well as im-
prove classification performance. This family of methods can be di-
vided into editing and condensingtechniques [2]. The editing tech-
nique aims at removing outliers and prototypes which are placed at
the overlap among classes, producing well-clustered groups of homo-
geneous prototypes that lead to optimal (in the Bayes sense) 1-NN clas-
sification. On the other hand, condensing algorithms try to find a sig-
nificantly reduced set of prototypes the 1-NN results of which are as
close as possible to those obtained using all of the original prototypes.
Because of its goal, pure condensing algorithms cannot properly gen-
eralize when the original 1-NN classifier is far from optimal (mainly
because of overlapping). Nevertheless, generalization can be achieved
in several different ways, e.g., by previously using editing [2].

According to the way in which prototypes are obtained, these al-
gorithms are separated intoselectiontechniques [3]–[5], in which the
resulting prototypes are taken from the original set, andreplacement
techniques [6]–[8], in which resulting prototypes are built and may be
different from any prototype in the original set.

A novel approach for obtaining a condensed set of prototypes by re-
placement from an initial set is presented in this paper. A hierarchical
agglomerative framework is used along with a convenient criterion to
keep discriminating power while obtaining representative (and rela-
tively reduced) sets of prototypes [9]. This scheme constitutes a gener-
alization of previously presented approaches [6], [8].

II. PROTOTYPEREPLACEMENT ALGORITHMS

Prototype replacement algorithms are usually considered as objec-
tively superior to selection algorithms because there is no restriction
upon the position of the prototypes finally obtained. Although this is
only true for vectorial representation spaces, the fact that many dif-
ferent optimization techniques can potentially be used makes these ap-
proaches more appealing.

One of the best studied and well-known replacement approaches
consists of the so-calledadaptivealgorithms, in which prototype fea-
tures are considered as weights in some sort of connectionist system.
Then, a criterion function is defined which leads to a reward-punish-
ment modification rule which permits the update of prototype locations
over a convenient number of iterations. Because of its simplicity and
surprisingly excellent results in practice, the LVQ approach introduced
by Kohonen, based on his self organizing maps [7], [10], has sometimes
eclipsed other interesting approaches based on the same idea [11], [12].

An alternative to adaptive algorithms consists of the so-calledag-
glomerative approachin which groups of samples are replaced by a
representative in different iterations driven by a convenient criterion re-
lated to the discriminating power of the obtained prototypes. The main
advantage of these algorithms with regard to the adaptive ones is that
they are unaffected by initialization and that the final number of pro-
totypes is decided by the algorithm itself and need not be prespecified.
Chang [6] proposed one of the first condensing methods based on this
strategy. It begins with a training setT , considering all the samples in
T as initial prototypes. The algorithm iteratively attempts to merge the
two closest prototypes (p, q) of the same class and replace them with
their weighted average prototypep�, until no new merge is possible.
A merge is accepted if the new set of prototypes does not misclassify
any pattern inT . This property is calledconsistencyand is shared by a
number of both replacement and selection algorithms. In the particular
case of LVQ, this property is not considered and, consequently, the sets
of prototypes obtained are not necessarily consistent.

The modified Chang algorithm (MCA)presented by Bezdeket al.
[8] constitutes a slight improvement over the previous algorithm. With
regard to the original algorithm of Chang, the MCA uses the simple
arithmetic mean betweenp andq to computep� instead of the weighted
mean. This scheme also implies an algorithmic change in the way in
which pairs of prototypes are considered, introducing a different way
of merging. As a consequence, the MCA generally obtains smaller sets
of prototypes than Chang’s algorithm. A computational improvement
is also achieved based on storing cross distances among prototypes in
the same class only. Nevertheless, the strategy behind the original idea
remains unchanged.

Both algorithms have two kinds of drawbacks. First, they use a
restricted strategy for building prototypes based on pairwise merging
only, and consequently, they may provide condensing results which
are far from the optimal ones, both from the point of view of their size
and their representativity. Second, they employ a considerable amount
of computation to exhaustively check consistency for any possible
merging.

III. A N EW GENERALIZED PROTOTYPEMERGINGSTRATEGY

A further generalization of the idea of merging prototypes while
maintaining consistency has been recently proposed [9]. From an al-
gorithmic point of view, our proposal is quite similar to a classical
hierarchical agglomerative clustering [13], in which pairs of clusters
are successively merged according to a minimum intercluster criterion.
The difference is that now merging occurs only between clusters with
the same class label and only if the consistency of the resulting cluster
representatives with regard to the whole input set is guaranteed.

This algorithmic scheme extends the concept of prototype by at-
taching a subset of samples which are close enough to it. The main idea
consists of considering clusters of initially given (labeled) samples and
their cluster representatives as some sort of extended prototypes. In this
way, the merging of prototypes becomes a union of two clusters of the
same class (and the recomputation of the new representative), while the
distance between prototypes becomes a cluster distance.

The use of clusters leads to a merging process where prototypes are
built on the basis of distances between the whole clusters (neighbor-
hood) that they represent, which tends to result in a more meaningful
placement of the final prototypes. Additionally, clusters lead to impor-
tant computational shortcuts when checking the consistency of proto-
types.

The fact that each cluster representative is responsible for the cor-
rect classification of all its members will be calledcluster consistency.
More formally, a set of (labeled) prototypesP is said to beproto-
type-consistentwith respect to a set of initially given prototypesT , if
every point inT is correctly classified by the 1-NN rule usingP as a
reference set. On the other hand, a partition of a set of initially given
prototypesT into clusters (with the corresponding set of cluster rep-
resentatives,P ) is said to becluster-consistentif every point inT is
closer to its representative than to any other prototype inP with a dif-
ferent class label.

It trivially follows from these definitions that cluster consistency im-
plies prototype consistency. In general, the converse is not true, but
cluster consistency can always be easily recovered given a prototype-
consistent set by simply reassigning each point to the cluster represen-
tative which is the closest (which is from the same class by the consis-
tency property).

IV. EFFICIENT CONSISTENCYVERIFICATION PROCEDURE

If the consistency ofp prototypes with regard ton original ones is
checked exhaustively [6], [8], it requiresO(np) time which makes any
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Fig. 1. Geometric representation of (2) which is sufficient to test cluster
consistency: (a) the condition is satisfied and (b) the condition is not satisfied
(a samplex could exist which is represented byp but which is closer tos).

agglomerative consistency-based approach to run at least inO(n3).
Moreover, the empirically observed hidden constants in this asymptotic
result appear to be quite large.

A cluster-based consistency checking procedure could benefit from
early consistency confirmation, by using the concept of cluster con-
sistency and some geometric properties of the clusters. The main idea
of this new consistency verification procedure can be detailed as fol-
lows. Given a cluster-consistent partition of a set of labeled prototypes
(T and the associated set of representativesP ), the partition resulting
from combining two clusters into a new one which is represented by
p� from classk� will also be cluster-consistent if8s 2 P , the class of
which is different fromk�

d(s; x) >d (p�; x) ; 8x in the cluster ofp�

d(s; y) <d (p�; y) ; 8y in the cluster ofs: (1)

This fact can be easily proved. It is worth noting that checking cluster
consistency using (1) and consequently, the induced prototype consis-
tency, does not improve the exhaustive procedure of the consistency
checking mentioned above. The assumption of some properties on the
distance function and the use of simple geometric information of the
clusters, leads to some shortcuts in checking consistency.

Let rp be the radius associated with the cluster represented by pro-
totypep, in such a way that any sample in this cluster is at a distance
frompwhich is not greater thanrp. Given a cluster-consistent partition
of T and the associated set of representativesP , the partition resulting
from combining two clusters into a new one (which is represented by
p� from classk�) will satisfy (1) if

8s 2 P : class(s) 6= k
�

; d (p�; s) > 2 �max (rp ; rs) : (2)

The fulfillment of thetriangular inequalityandsymmetryon the dis-
tance function, leads to a straightforward proof of the previous fact. As
a consequence, (2) is sufficient for cluster consistency. Fig. 1 shows a
simple example where (2) is used to assess cluster consistency.

A sufficient condition for (2) can be obtained by considering only the
closest representatives for each class and the maximum radius in the
corresponding class. Given a cluster-consistent partition ofT and the
associated set of representativesP , the partition resulting from com-
bining two clusters into a new one (which is represented byp� from
classk�) will satisfy (2) if

8k 6= k
�

; d p
�

; s
k

> 2 �max rp ; r
k (3)

wheresk is the prototype which is closest top� andrk is the radius of
the maximum-radius cluster in classk.

Note that the rest of the cluster representatives of each classk 6= k�

are located farther fromp� thansk and their associated radii are no
larger thanrk. From the previous analysis, it can be deduced that (3)
is sufficient for cluster consistency.

Fig. 2. Illustrative examples. Letm and m be the midpoints between
prototypes. In (a), consistency can be guaranteed by (3). No sample can
possibly create an inconsistency because other classB representatives must be
farther thans and with smaller or equal radius thanr . In (b), (2) is needed
to guarantee consistency because (3) is not fulfilled. All clusters in classB (the
ones represented bys ands) need to be visited.

Fig. 3. Schematic description of the consistency checking procedure.

Fig. 2(a) illustrates a situation in which cluster consistency can be
assessed using (3). A different one is shown in Fig. 2(b) in which (3)
fails and (2) confirms the cluster consistency.

Condition (3) can be used as afirst stage, (2) can be used as asecond
stage, and (1) can be used as athird stage of an efficient scheme to check
cluster consistency and consequently, prototype consistency (the final
goal). These three stages can be used in a complementary way (see
Fig. 3). When (3) is unable to assess cluster consistency for a specific
classk, (2) attempts to check it for each individual cluster in classk. If
the latter fails for some clusters member of classk, then (1) is used for
each sampley which is a member of the cluster represented bys and
also for each samplex member ofp� (new agglomerated cluster). In
case of failure of (1) for any samplex ory, the current local structure is
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not cluster-consistent and a direct verification of prototype consistency
is needed.

In this context, a so-calledfourth stage is used for checking proto-
type consistency. It requires looking for the same-class nearest proto-
type tox ory (which does not need to be their corresponding prototype
or cluster representative), which is producing the cluster inconsistency.
The distance between them is compared with the distance between the
sample and the other-class prototype involved. If the sample is correctly
classified, it must be moved from its current cluster to the cluster rep-
resented by its same-class nearest prototype, transforming the current
prototype consistency into cluster consistency.

The computational cost of the four stages of the previous algorithm
areO(p),O(p),O(np), andO(np), respectively. Nevertheless, it has
been observed that the third and fourth stages have a reduced influence
in the work done to check consistency, especially for moderately-sized
data sets. Even though the worst case complexity of the consistency
checking procedure presented here is certainly inO(np), the empir-
ically observed behavior of the final algorithm is significantly better
than our MCA implementation.

The resulting method has been namedgeneralized modified Chang
algorithm (GMCA)[9]. In the particular case where the intercluster
distance is the median [13], (which implies the simple mean as the
way to agglomerate prototypes), GMCA results in an improved version
of the MCA yielding identical results, but cutting the computing time
by more than half in most cases. When other intercluster measures are
used, smaller and better sets of prototypes (in the sense of classification
power) can be built, reducing the condensing time even more.

V. EXPERIMENTAL RESULTS

Several different groups of experiments have been performed to
properly assess the merits and possible drawbacks of the presented
techniques. In this paper, the goal consists of showing that GMCA
clearly improves previously proposed merge-based condensing
algorithms (which use consistency-like criteria) both in number of
prototypes retained and representativity. In particular, experiments
were conducted to compare GMCA (with different intercluster mea-
sures) and MCA with respect to the number of prototypes built, the
error rate of the corresponding condensed 1-NN classification rule and
the computation time. Also important from a practical point of view,
the experimentation aims at showing that GMCA (possibly combined
with editing) constitutes a valid alternative to the well-known and
powerful family of LVQ-like algorithms.

The Euclidean distance has been taken as the generic distance be-
tween pairs of patterns on which the presented method is built. Four
basic intercluster distances [13] were used: 1) average link (AV); 2)
complete link (CO); 3) median (ME); and 4) the ward minimum vari-
ance method (WA). Also, the radius of the next agglomerated cluster1

was used as an additional dissimilarity measure (RA). Following the
suggestions found in [8], the Euclidean distance and the simple mean
were always used as the procedure to compute new prototypes, except
for Ward’s method where the weighted mean and the squared Euclidean
distance were considered because of its original formulation [13]. In
this way, a proper comparison between GMCA and MCA results can
be accomplished.

Both schemes (MCA and GMCA) were implemented inC pro-
gramming language using the same data structures and code to make
them as similar as possible. The major functional difference was in the
checking-consistency procedure. The experiments were performed on
a 450-MHz Intel Pentium II.

Four data sets were used to assess the behavior of the different
merging schemes in several ways. These sets are the well-known

1That is, the distance between two clusters equals the radius of the cluster
which results from their merge.

TABLE I
CONDENSING RESULTS ON THE IRIS DATA

SET. PTMCA AND PDMCA REPRESENT THEPERCENTAGE OFTIME SPENT AND

DISTANCESCOMPUTED BY GMCA WITH REGARD TOMCA, RESPECTIVELY

Anderson Iris data [14], a synthetic two-dimensional (2-D) data set
[15], the DNA data set [16], and the Landsat satellite image data [16],
which are publicly available at UCI Machine Learning Repository. No
normalization has been applied to these data sets in any case.

The algorithms proposed need to be applied in practice to
overlap-free data sets, as discussed in Section I. Nevertheless, the first
data set is treated in a special way as in previous published works [6],
[8], in order to obtain a zero resubstitution error rate starting from the
whole data set.

As a general rule for the remaining data sets and according to pre-
viously published results [17], the Wilson editing [18] has been con-
sidered as a good compromise in practice to properly remove over-
lapping between classes. The only parameter involved (k) has been
obtained in our experiments (unless otherwise stated) by performing
a fivefold cross validation experiment using the training setonly and
computing the average classification accuracies for different values of
k and comparing them to the “no editing” option. The best edited set
(including the “no editing” option) is thus selected as input for the dif-
ferent GMCA algorithms [9].

The sets of prototypes obtained in this way have been compared in
terms of size and error rate (using independent test sets) to the results
obtained for LVQ1 and LVQ2 classifiers from the publicly available
LVQ_PAK software [19]. Five different random initializations (ten in
the case of synthetic data) have been considered using a prespecified
number of codebook vectors in the range of the ones obtained through
the GMCA approach. LVQ parameter setting and codebook initializa-
tion has been done exactly as suggested in [19]. Note that LVQ needs to
be applied in general to unedited sets because the reward-punishment
policy uses all the information about the data everywhere. In contrast,
consistency-based methods implicitly use the information present in
the margin between classes only.

A. Experiments on the Iris Data Set

This set has three classes that represent three varieties of iris flowers,
namely, Setosa, Versicolor, and Virginica. Fifty samples from each
class are available. Every sample is described by four measurements.
Using the 150 prototypes available, Chang [6] and Bezdeket al. [8]
reported two consistent sets of 14 and 11 prototypes, respectively,
built by their schemes. The results obtained by GMCA are shown in
Table I. The best result obtained with GMCA+ WA consisted of only
nine consistent prototypes. It is worth noting that all GMCA schemes
were about twice as fast as MCA at obtaining solutions which were
equal or better.

B. Experiments With Synthetic Data

The data set consists of two concentric bivariate normal distribu-
tions. Class 0 has zero mean and standard deviation equal to 1 in both
dimensions, and class 1 has the same mean but standard deviation equal
to 2 in both dimensions [15]. A training and test set consisting of 2500
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Fig. 4. Prototypes obtained on a particular run by LVQ2 (eight prespecified
codevectors) and GMCA+WA (which obtains six prototypes) along with their
corresponding decision boundaries for the 2-D concentric gaussians data set.
The edited training set used by GMCA (dots) and the Bayes decision boundary
are also shown as a reference.

and 10 000 cases, respectively, have been randomly and independently
generated for training and testing, respectively.

In order to isolate the effect of the particular editing on the final solu-
tion, anoptimalWilson editing has been used for this data set only. To
obtain this, the Bayes rule with reject thresholdt = 0:40 [20, p. 10] has
been used as the internal classifier in the Wilson procedure. The partic-
ular reject threshold used was selected (based on the training set only)
in order to obtain optimally (but realistic) edited sets of similar size and
margin between classes compared to practical editing algorithms such
as Wilson and Multiedit [2]. Typical sets of prototypes obtained in this
way by GMCA (using Ward’s distance in this case) and LVQ (LVQ2
using the whole training set) are shown in Fig. 4.

Ten different random initializations of LVQ algorithms with a
number of codebook vectors ranging from 5 to 16 have been per-
formed. The averaged error rates obtained are shown in Fig. 5 along
with the corresponding number of prototypes. The Bayes error rate for
this problem is 26.37 and is also shown.

The main fact that can be emphasized from this experiment is that
all the methods obtain solutions relatively close to the optimal one but
GMCA manages to represent the central cluster in an optimal way and
consequently needs less prototypes to obtain similar or better results. It
is worth noting that for this problem, very good results are also obtained
if a different editing algorithm is used [9]. In particular, using Multiedit
or Wilson editing with large values ofk lead to results very similar to
the ones shown in Fig. 5.

C. Experiments on the DNA Data Set

This data set corresponds to primate gene sequences. The problem
is to recognize boundaries between different parts of the DNA. There
are two sets, one for training composed by 2000 samples and one for
testing with 1186 samples, which are partitioned into three classes.
Each sample is described by 180 binary attributes (Statlog version)
[16].

In all GMCA schemes, error rates were estimated on the test set
by using the 1-NN rule with the condensed sets of prototypes which
were built from theuneditedtraining set, which was the best among
all editing options according to above established procedure. Table II

Fig. 5. Error rates and the corresponding standard deviations for different
numbers of codevectors obtained with LVQ1 and LVQ2 algorithms, along with
MCA and GMCA (with the intercluster dissimilarities: ME, CO, WA, RA, an
AV) results using the 2-D concentric Gaussian data set. The Bayes error is also
shown as a reference.

TABLE II
CONDENSINGRESULTS ON THEDNA DATA SET. PTMCA AND PDMCA

REPRESENT THEPERCENTAGE OFTIME SPENT AND DISTANCESCOMPUTED BY

GMCA WITH REGARD TO MCA, RESPECTIVELY

lists the condensing results. The classification error rates on the test
set using the 1-NN and the 30-NN (bestk-NN) rules with the original
training set were 23.44% and 13.07%, respectively.

GMCA merging schemes yielded smaller sets of prototypes than
MCA, which were much better at classifying the test set. At the same
time, GMCA schemes achieved a dramatic reduction in the resources
(condensing time and computed distances) required by MCA.

Error rates and the number of prototypes of these approaches (the
same listed in Table II) along with the results obtained with LVQ al-
gorithms are shown in Fig. 6. As could be expected, the LVQ2 was
slightly (but clearly) better than all the other algorithms (including
LVQ1) which exhibited very similar error rates (apart from MCA). This
behavior can be related to the fact that GMCA is constrained to obtain
consistent sets which may lead to some inaccuracies in the regions close
to class boundaries. Conversely, it is well known that LVQ approaches
are able to deal with very high overlapping, provided a good initial-
ization has been done. The fact that GMCA results lie between LVQ1
and LVQ2 can be considered as a good result for this high-dimensional
problem.

D. Experiments on the Landsat Satellite Image Data

This database consists of the multispectral values of pixels in 3� 3
neighborhoods in a satellite image and the classification associated
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Fig. 6. Error rates and the corresponding standard deviations for different
numbers of codevectors obtained with LVQ1 and LVQ2 algorithms, along with
MCA and GMCA (with the intercluster dissimilarities: ME, CO, WA, RA, and
AV) results using the DNA data set.

TABLE III
CONDENSINGRESULTS ON THELANDSAT SATELLITE IMAGE DATA SET.

PTMCA AND PDMCA REPRESENT THEPERCENTAGE OFTIME SPENT AND

DISTANCESCOMPUTED BY GMCA WITH REGARD TOMCA, RESPECTIVELY

with the central pixel in each neighborhood [16]. The aim is to iden-
tify regions with different soils and crops. There are two sets, one for
training with 4435 samples and one for testing with 2000 samples,
which are partitioned into six classes of 36-dimensional data.

The edited training set withk = 8 (4018 samples) was selected in
this case as the input for the different merging schemes. The error rates
were estimated on the test set by using the 1-NN rule with the con-
densed sets of prototypes. Table III lists the condensing results on the
edited training set including the estimated error rates. As a reference,
the classification results on the test set using the 1-NN, theedited1-NN,
and the 4-NN (bestk-NN classifier) rules with the original training set
were 10.55%, 9.40%, and 9.25%, respectively.

The same results (error rates and number of prototypes) along with
the ones obtained with the LVQ approach using the original (unedited)
set are shown in Fig. 7. In this experiment, less significant differences
with regard to the final number of prototypes is obtained. Nevertheless,
it is worth noting that the GMCA approaches generally give better re-
sults in performance to those of the LVQ classifiers.

With the only exception of Ward’s method, GMCA merging schemes
were superior to MCA, achieving better sets of prototypes and remark-
ably faster speed than MCA. This suggests that GMCA approaches
using distances CO, RA, and AV lead to clusters which adapt to the
data in a better way. The fact that GMCA was generally superior to LVQ
(with regard to error rates obtained) using a limited number of proto-
types, can be considered as a very good result for this experiment, even
though these results stem from the combination of editing and GMCA.

Fig. 7. Error rates and the corresponding standard deviations for different
numbers of codevectors obtained with LVQ1 and LVQ2 algorithms, along with
MCA and GMCA (with the intercluster dissimilarities: ME, CO, WA, RA, and
AV) results using the Landsat satellite image data set.

VI. CONCLUSIONS ANDFURTHER WORK

A generalized condensing scheme based on class-conditional hier-
archical clustering (GMCA) is proposed. The basic idea is to replace a
group of prototypes by a representative while keeping the consistency
property. The algorithm improves and generalizes previous works by
explicitly introducing the concept of cluster and cluster consistency.
The use of geometric cluster properties produces an efficient merging
scheme based on local consistency verification, guaranteeing the entire
system consistency while minimizing the computation needed.

MCA was experimentally compared with merging schemes induced
by GMCA taking into account five different intercluster dissimilarity
measures. In the particular case of the GMCA with the median inter-
cluster distance (GMCA+ ME), which yields identical sets of pro-
totypes as MCA, a notable reduction in the time and the computed
distances required was achieved in all experiments. When other inter-
cluster measures were used, smaller and better sets of prototypes (in
the sense of classification power) were built, reducing the condensing
time even more.

The GMCA approach is able to obtain results which are similar to or
even better than the well-known LVQ approach which is supposed to
obtain close-to-optimal results when initialized properly. This suggests
that GMCA is able to adapt to the underlying distribution of the data
while significantly maintaining discriminating power. An obvious ex-
tension of the present work would consist of relaxing the consistency
requirement and obtaining a hybrid approach by combining the “ag-
glomerative” strategy of GMCA and the “adaptive” one from LVQ.
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A Reduction Approach for Fuzzy Rule Bases
of Fuzzy Controllers

C. W. Tao

Abstract—In this paper, a new approach to reducing the number of
rules in a given fuzzy rule base of a fuzzy controller is presented. The
fuzzy mechanism of the fuzzy controller under consideration consists of
the product-sum inference, singleton output consequents and centroid
defuzzification. The output consequents in the cells of the rule table are
collected and represented as an output consequent matrix. The feature
of the output consequent matrix is extracted by the singular values of
the matrix. The output consequent matrix is reasonably approximated
with a dominant consequent matrix. Also, the elements of the dominant
consequent matrix is determined to minimize the approximation error
function. Then the size of the dominant consequent matrix (the size of
the fuzzy rule base) is reduced through the rule combination approach.
The scaling factors for the fuzzy controller with the reduced rule table
are adjusted to have the control system satisfy the performance indexes.
The effectiveness of the proposed approach is shown using simulation and
experiment results.

Index Terms—Fuzzy controllers, reduction of rule bases, singular value
decomposition.

I. INTRODUCTION

Fuzzy logic techniques [2], [14] implementing the experts’ knowl-
edge and experiences have been widely applied to many complex con-
trol systems with unknown dynamics [1], [10]. To apply the rules with
linguistic predicates [4], [5], [7]–[9] from experts, a fuzzy mechanism
is usually designed to have a rule base with fuzzy if–then rules [6].
Since, it is possible to include redundant rules, the complex fuzzy rule
bases may suffer from the disadvantages like heavy computation load
and large memory space. Thus, to refine the set of fuzzy rules to form a
concise fuzzy rule base is a desirable process. Recently, Yamet al.[11]
provided a singular value decomposition (SVD) approach for reduc-
tion of fuzzy rule bases. However, the number of active rules for each
input of the fuzzy mechanism is increased due to the new membership
functions generated from the reduction process [11]. The increase in
the number of active rules makes the computation load heavier when
the output of the fuzzy controller is calculated. Moreover, although the
output error of the fuzzy controller is bounded [11], the performance
of the system output can be further improved.

To make improvement from the work in [11], a new approach for re-
ducing a given fuzzy rule base of a fuzzy controller is designed based on
the idea of reduction of fuzzy rule base in [11]. As in Yam’s paper [11],
the output consequents in the cells of a fuzzy rule table are collected
and represented as an output consequent matrix. The characteristics of
the output consequent matrix are featured by the singular values of the
matrix. Unlike the reduction approach in [11], the output consequent
matrix is reasonably approximated with a dominant consequent ma-
trix in this paper. The elements of the dominant consequent matrix are
determined by minimizing the approximation error function. With the
rule combination approach, the size of the dominant output consequent
matrix is reduced. Therefore, the size of the fuzzy rule base is reduced.
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