
A Bayesian Discretizer for Real-ValuedAttributesXindong WuDepartment of Software DevelopmentMonash University900 Dandenong Road, Melbourne 3145, Australiaxindong@insect.sd.monash.edu.auAbstractDiscretization of real-valued attributes into nominal intervals hasbeen an important area for symbolic induction systems because manyreal world classi�cation tasks involve both symbolic and numerical at-tributes. Among various supervised and unsupervised discretizationmethods, the information gain based methods have been widely usedand cited. This paper designs a new discretization method, called theBayesian discretizer, and compares its performance with some othermethods including the information gain methods implemented in C4.5and HCV (Version 2.0). Over the 7 tested datasets, the Bayesian dis-cretizer has the best results for 3 in terms of predictive accuracy.1 IntroductionIn the context of rule induction and decision tree construction, dealing witha continuous attribute means discretization of the numerical attribute intoa number of intervals. The discretized intervals can be treated in a similarway to nominal values during induction and deduction. The essential aspectof discretization is to �nd the right places to set up interval borders. In su-pervised discretization methods, such as the information gain based methodsimplemented in C4.5 [Quinlan 93] and HCV (Version 2.0) [Wu 95], the classinformation of examples in a training set is used. In unsupervised (or class-blind) discretization methods, such as equal-width discretization and equal-frequency discretization [Chiu et al. 91], training examples are grouped into1



intervals without taking into account the respective classes of the training ex-amples. Discretization can be performed at induction time (such as in C4.5) orbefore induction takes place (see [Dougherty et al. 95] and [Pfahringer 95]).Among various discretization methods, the information gain based meth-ods have been widely used and cited ([Dougherty et al. 95]). C4.5 providesonly binary discretization at induction time based on an information gainapproach for real-valued attributes. In HCV (Version 2.0), an informationgain based method is the default discretization method for processing nu-merical attributes before induction takes place. In this paper, we present anew discretization method, called the Bayesian discretizer, which has beenimplemented in HCV (Version 2.0) as a counterpart to the information gainmethod, and compare its performance with some other methods includingthe information gain method also implemented in HCV (Version 2.0). Theresults of C4.5 with its binary discretization method are also included forcomparison although this inclusion might not be very relevant because C4.5and HCV (Version 2.0) have di�erent induction strategies.2 The Bayesian Discretizer and OtherDiscretization Methods2.1 The simplest class-separating methodThe simplest discretization method is to place interval borders between eachadjacent pair of examples that are not classi�ed into the same class. Supposethe pair of adjacent values on attribute X are x1 and x2, x = (x1+x2)=2 canbe taken as an interval border.If the continuous attribute in question is very informative, which meansthat positive and negative examples take di�erent value intervals on the at-tribute, this method is very e�cient and useful. You can �nd, for example,that Professors and Lecturers at Australian universities have distinctive salaryranges, and the continuous attribute salary is very informative in distinguish-ing academic positions. However, this method tends to produce too manyintervals on those attributes which are not very informative. These intervalscan also easily confuse algorithms like HCV because a 0:16 di�erence betweena positive example and a negative one on a numerical attribute makes onemore interval.2.2 Bayesian discretizersAccording to Bayes formula, 2



P (cj jx) = P (xjcj)P (cj)Pmk=1 P (xjck)P (ck) (1)where P (cj jx) is the probability of an example belonging to class cj if theexample takes value x on the continuous attribute in question, and P (xjcj) isthe probability of the example taking value x on the attribute if it is classi�edin the class cj.P (cj) can be approximated by using one of the following three probabilityestimation methods, and P (cj jx) can take the frequency of cj under x overall the examples in the training set.� The frequency method. Given that an event has occurred n times outof N attempts, the simplest method for estimating the probability of e,p(e), is to use its relative frequency, n=N .� Laplace's Law of Succession. If the data set is representative, theLaplace's Law of Succession [Niblett & Bratko 87] uses the followingformula rather than the relative frequency to estimate the probabilityof an event e under the same assumption as the frequency method:p(e) = n+ 1N + 2 : (2)The Laplace's Law of Succession is designed as the default method forprobability estimation in HCV (Version 2.0).� m estimate. Them estimate method [Lavrac & Dzeroski 94] generalizesthe Laplace's formula to the following form:p(e) = n+m� pa(+)N +m (3)Given P (cj) and P (cjjx), we can construct a probability curve,fj(x) = P (xjcj)P (cj) (4)for each class cj. When the curves for every class have been constructed,interval borders are placed on each of those points where the leading curvesare di�erent on its two sides. Between each pair of those points including thetwo open ends, -1 and +1, the leading curve is the same.We call a discretization implemented by the above method a Bayesiandiscretizer. 3



2.3 The information gain heuristicWhen the examples in a training set have taken values of x1; :::; xn in ascend-ing order on a continuous attribute, we can use the information gain heuristicadopted in ID3 [Quinlan 86] to �nd a most informative border to split thevalue domain of the continuous attribute. [Fayyad & Irani 92] has shownthat the maximum information gain by the heuristic is always achieved at acut point (say, the mid-point) between the values taken by two examples ofdi�erent classes.We adopt the information gain heuristic in HCV (Version 2.0) in thefollowing way. Each x = (xi + xi+1)=2 (i = 1; :::; n � 1) is a possible cutpoint if xi and xi+1 have been taken by examples of di�erent classes in thetraining set. Use the information gain heuristic to check each of the possiblecut points and �nd the best split point. Run the same process on the left andright halves of the splitting to split them further. The number of intervalsproduced this way may be very large if the attribute is not very informative.[Catlett 91] has proposed some criteria to stop the recursive splitting whichhave been adopted in HCV (Version 2.0):� Stop if the information gain on all cut points is the same,� Stop if the number of examples to split is less than a certain number(e.g. fourteen in HCV (Version 2.0)), and� Limit the number of intervals to be produced to a certain number (e.g.eight in HCV (Version 2.0)).In C4.5 [Quinlan 93], the information gain approach is revised in the fol-lowing ways. Firstly, each of the possible cut points is not the midpointbetween the two nearest values, but rather the greatest value in the entiretraining set that does not exceed the midpoint. This ensures that all bordervalues occur in the training data. Each border value in this case is not neces-sarily the same as the lower of the two neighbouring values since all trainingexamples are examined for the selection. Secondly, C4.5 adopts the informa-tion gain ratio rather than the information gain heuristic. Finally, C4.5 doesbinarization of continuous attributes, which means only one interval borderis found for each continuous attribute at each decision node.2.4 Other methodsIn addition to the methods mentioned above, the HCV (Version 2.0) softwarehas implemented a few unsupervised methods, such as the equal distance4



division and the k-nearest neighbours discretization below which will also beused in the experiments in Section 3.� Equal distance discretization. This method divides the value domain ofa real-valued attribute between the smallest value (x1) and the largest(xn) into a user speci�ed number (say B) of equally long intervals.Interval borders are placed at bi = x1+ ixn�x1B (for all i 2 f1; 2; : : : ; n�1g). B is 5 for the experiments in Section 3.� k-nearest neighbors discretization (knn). Given a speci�c attributevalue, the k-nearest neighbors method tries to estimate which class thevalue most likely belongs to. knn places a border between two values xiand xi+1 if the estimate is di�erent for them. The estimate is based onthe assumption that the most probable class is the most common classamong the k nearest examples. k is speci�ed by the -k switch, with 3as default.3 Experiment ResultsTable 1 shows accuracy results by HCV (Version 2.0) with di�erent discretiza-tion techniques on 7 di�erent data sets, all of which contain noise and con-tinuous attributes. These data sets are all available from the University ofCalifornia at Irvine Repository of Machine Learning Databases. Bayes in Ta-ble 1 indicates the Bayesian discretizer designed in Section 2.2. Itp refers tothe information gain heuristic in HCV (Version 2.0) mentioned in Section 2.3.Split refers to the class-separating method in Section 2.1. Eqdist and Knnrefer to the equal distance division and the k-nearest neighbors discretizationrespectively mentioned in Section 2.4. In addition to HCV (Version 2.0) withthese di�erent discretization strategies, we have also chosen C4.5 from theID3-like algorithms to compete with HCV (Version 2.0) in this section. C4.5is the most recent successor of ID3-like algorithms. It provides facilities todeal with real-valued and nominal attributes, and the discretization methodis based on an information gain heuristic (see Section 2.3).Apart from the discretization strategy mentioned above for HCV (Ver-sion 2.0), the results were produced by using the default parameters of HCV(Version 2.0) and C4.5. The results shown for C4.5 are the pruned ones. Thebest result for each problem is highlighted with boldface font in the table.Of the 7 di�erent problems, HCV with the Bayesian discretizer (Bayes)and C4.5 both get the best results for 3, but Bayes performs better thanC4.5 on 3 data sets and worse on only 2. Surperisingly, all the unsuperviseddiscretization methods have performed pretty well on these problems. Split5



Table 1: Accuracy Comparison with Continuous DomainsDomain Bayes Itp C4.5 Split Eqdist KnnBupa 58.5% 57.6% 61.0% 58.5% 50.8% 58.5%Cleveland 2 72.5% 78.0% 76.9% 72.5% 82.4% 72.5%Cleveland 5 56.0% 56.0% 56.0% 56.0% 52.7% 56.0%Crx 83.0% 82.5% 80.0% 83.0% 81.5% 83.0%LaborNeg 82.4% 76.5% 82.4% 82.4% 76.5% 82.4%Swiss 5 37.5% 28.1% 31.2% 37.5% 50.0% 37.5%Va 2 71.8% 78.9% 70.4% 71.8% 76.1% 71.8%and Knn have the same results as Bayes does on the 7 data sets. Eqdist getsthe best results for 2 data sets.From these experiments, we have found that it is not fair to say that su-pervised discretization methods generally perform better than unsupervisedones. Also, the information gain heuristic based methods do not seem toperform better than the Bayesian discretizer designed in this paper. Actu-ally, the experiments in this section support the opposite conclusion: theBayesian method performs better than the information gain based methodsimplemented in both HCV (Version 2.0) and C4.5 on more example sets.4 ConclusionsWe have designed a new discretization method, the Bayesian discretizer inthis paper, which discretizes real-valued attributes before induction takesplace. Experiment results have shown that the performance of the Bayesiandiscretizer is competitive with the information gain based methods in termsof predictive accuracy.In addition to the discretization methods mentioned in Section 2, thereare quite a number of other discretization methods (such as [Holte 93] and[Pfahringer 95]) available in the literature. Since the information gain basedmethods have been widely used and cited among various supervised and un-supervised discretization methods, we have compared the Bayesian discretizermainly with the information gain based methods implemented in HCV (Ver-sion 2.0) and C4.5. Future research will take more methods especially thenewly developed ones on board, and will also address the issues of inductioncomplexity and rule compactness with di�erent discretization methods.6
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