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Abstract. In this paper, some new approaches to training set size re-
duction are presented. These schemes basically consist of defining a small
number of prototypes that represent all the original instances. Although
the ultimate aim of the algorithms proposed here is to obtain a strongly
reduced training set, the performance is empirically evaluated over nine
real datasets by comparing the reduction rate and the classification ac-
curacy with those of other condensing techniques.

1 Introduction

Currently, in many domains (e.g., in multispectral images, text categorisation,
and retrieval of multimedia databases) the size of the datasets is so extremely
large that real-time systems cannot afford the time and storage requirements to
process them. Under these conditions, classifying, understanding or compressing
the available information can become a very problematic task. This problem is
specially dramatic in the case of using some distance-based learning algorithm,
such as the Nearest Neighbour (NN) rule [7]. The basic NN scheme must search
through all the available training instances (large memory requirements) to clas-
sify a new input sample (slow during classification). On the other hand, since
the NN rule stores every prototype in the training set (TS), noisy instances are
stored as well, which can considerably degrade the classification accuracy.
Among the many proposals to tackle this problem, a traditional method con-
sists of removing some of the training prototypes. In the Pattern Recognition
literature, those methods leading to reduce the TS size are generally referred
to as prototype selection [9]. Two different families of prototype selection meth-
ods can be defined. First, the editing approaches eliminate erroneously labelled
prototypes from the original T'S and ”clean” possible overlapping among regions
from different classes. Second, the condensing algorithms aim at selecting a small
subset of prototypes without a significant degradation of classification accuracy.
Wilson introduced the first editing method [15]. Briefly, it consists of using
the k-NN rule to estimate the class of each prototype in the TS, and removing
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those whose class label does not agree with that of the majority of its k-NN. This
algorithm tries to eliminate mislabelled prototypes from the TS as well as those
close to the decision boundaries. Subsequently, many researchers have addressed
the problem of editing by proposing alternative schemes [1,7,9, 16].

Within the condensing perspective, the many existing proposals can be cate-
gorised into two main groups. First, those schemes that merely select a subset of
the original prototypes [1,8,10,13,14] and second, those that modify them [2,
3,6]. One problem related with using the original instances is that there may
not be any vector located at the precise point that would make the most accu-
rate learning algorithm. Thus, prototypes can be artificially generated to exist
exactly where they are needed.

This paper focuses on the problem of appropriately reducing the TS size
by selecting a subset of prototypes. The primary aim of the proposal presented
in this paper is to obtain a considerable size reduction rate, but without an
important decrease in classification accuracy.

The structure of the rest of this paper is as follows. Section 2 briefly reviews
a set of TS size reduction techniques. The condensing algorithms proposed here
are introduced in Section 3. The databases used and the experiments carried out
are described in Section 4. Results are shown and discussed in Section 5. Finally,
the main conclusions along with further extensions are depicted in Section 6.

2 Prototype Selection

The problem of prototype selection is primarily related to prototype deletion as
irrelevant and harmful prototypes are removed. This is the case, e.g., of Hart’s
condensing [10], Tomek’s condensing [13], proximity graph-based condensing [14]
and MCS scheme of Dasarathy [8], in which only critical prototypes are retained.
Some other algorithms artificially generate prototypes in locations accurately
determined in order to reduce the TS size. Within this category, we can find the
algorithms presented by Chang [3] and by Chen and Jézwik [6].

Hart’s algorithm [10] is based on reducing the set size by eliminating proto-
types. It is the earliest attempt at minimising the size set by retaining only a
consistent subset. A consistent subset, S, of a TS, T', is a subset that correctly
classifies every prototype in T using the 1-NN rule. The minimal consistent sub-
set is the most interesting to minimise the cost of storage and the computing
time. Hart’s condensing does not guarantee finding the minimal subset.

Tomek’s condensing [13] consists of Hart’s condensing, adding an appropriate
selection strategy. It consists of selecting a subset with the boundary prototypes
(the closest to the decision boundaries). Some negative aspects are its computa-
tional cost O(N?) and that the boundary subset chosen is not consistent.

The Voronoi’s condensing [14] is the only scheme able to obtain a reduced set
that satisfies the consistency criteria with respect to a) the decision boundaries,
and b) the TS. Despite this, the Voronoi condensing presents two important
problems. First its high computational cost, since the calculation of the Voronoi
Diagram associated to the prototypes set is required. And second, it deals with
every representation space region in the same way.
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In [14] an alternative similar to Voronoi condensing is proposed, with the aim
of solving these two important drawbacks. This new alternative is based on two
proximity graph models: the Gabriel Graph and the Relative Neighbourhood
Graph. The main advantages of this algorithm are that a) it ignores the TS
prototypes that maintain the decision boundaries out of the interest region, and
b) it reduces the computational cost (O(dN?)). Both condensed sets are not
consistent with respect to the decision boundaries and therefore, they are not
consistent with respect to the TS either.

Aha et al. [1] presented the incremental learning schemes IBI-1B4. In partic-
ular, IB3 addresses the problem of keeping noisy prototypes by retaining only
acceptable misclassified cases.

Within the group of condensing proposals that are based on generating new
prototypes, Chang’s algorithm [3] consists of repeatedly attempting to merge
the nearest two existing prototypes into a new single one. Two prototypes p and
q are merged only if they are from the same class and, after replacing them with
prototype z, the consistency property can be guaranteed.

Chen and Jézwik [6] proposed an algorithm which consists of dividing the
TS into some subsets using the concept of diameter of a set (distance between
the two farthest points). It starts by partitioning the TS into two subsets by
the middle point between the two farthest cases. The next division is performed
for the subset that contains prototypes from different classes. If more than one
subset satisfies this condition, then that with the largest diameter is divided. The
number of partitions will be equal to the number of instances initially defined.
Finally, each resulting subset is replaced by its centroide, which will assume the
same class label as the majority of instances in the corresponding subset.

Recently, Ainslie and Sdnchez introduced the family of IRSP [2], which are
based on the idea of Chen’s algorithm. The main difference is that by Chen’s
any subset containing prototypes from different classes could be chosen to be di-
vided. On the contrary, by IRSP/, the subset with the highest overlapping degree
(ratio of the average distance between prototypes from different classes, and the
average distance between instances from the same class) is split. Furthermore,
with IRSP4 the splitting process continues until every subset is homogeneous.

3 New Condensing Algorithms

The geometrical distribution among prototypes in a TS can become even more
important than just the distance between them. In this sense, the surrounding
neighbourhood-based rules [12] try to obtain more suitable information about
prototypes in the TS and specially, for those being close to decision boundaries.
This can be achieved by taking into account not only the proximity of prototypes
to a given input sample but also their symmetrical distribution around it.

Chaudhuri [5] proposed a neighbourhood concept, the Nearest Centroide
Neighbourhood (NCN), a particular realization of the surrounding neighbour-
hood. Let p be a given point whose k& NCN should be found in a TS, X={x1, ..,
%, }. These k neighbours can be searched for by an iterative procedure like the
next:
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Fig. 1. Example of the NCN concept.

1. The first NCN of p corresponds to its NN, ¢;.
2. The i-th NCN, ¢;, ¢« > 2, is such that the centroide of this and previously
selected NCN, ¢, .., ¢; is the closest to p.

The neighbourhood obtained satisfies some interesting properties that can
be used to reduce the TS size: the NCN search method is incremental and the
prototypes around a given sample have a geometrical distribution that tends to
surround the sample. It is also important to note that in general, the region of
influence of the NCN results bigger than that of the NN, as can be seen in Fig. 1.

3.1 The Basic Algorithm

The TS size reduction technique here proposed rests upon the NCN algorithm.
NCN search is used as an exploratory tool to bring out how prototypes in the
data set are geometrically distributed. The use of the NCN of a given sample
can provide local information about what is the shape of the probability class
distribution depending on the nature and class of its NCN. The rationale behind
it is that prototypes belonging to the same class are located in a neighbouring
area and could be replaced by a single representative without significantly affect-
ing the original boundaries. The main reason to use the NCN instead of the NN
is to benefit from the aforementioned properties: that the NCN covers a bigger
region, and that these neighbours are located in an area of influence around a
given sample which is compensated in terms of their geometrical distribution.
The algorithm attempts to replace a group of neighbouring prototypes from
the same class by a representative. In order to decide which group of prototypes
is to be replaced, the NCN of each prototype p in the TS is computed until reach-
ing a neighbour from a different class than that of p. The prototype with the
largest number of neighbours is defined as the representative of its correspond-
ing group, which lies in the area of influence defined by the NCN distribution
and consequently, all its members can be now removed from the TS. Another
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possibility is to replace the group by its centroide. In this case, the reduction
of the data set is done by introducing new samples. For each prototype remain-
ing in the set, we update the number of its neighbours if some were previously
eliminated as belonging to the group of an already chosen representative.

This is repeated until there is no group of prototypes to be replaced. The basic
scheme has been named MazNCN. A further extension consists of iterating the
general process until no more prototypes are removed from the T'S. The iterative
version can be written as follows:

Algorithm 1 IterativeMazNCN

while eliminated_prototypes > 0 do
for i = eachprototype(TS) do
neighbours_number[i] = 0
neighbour = next_neighbour (i)
while neitghbour.class == i.class do
neighbours_vector[i] = Id(neighbour)
neighbours_number[i]| = neighbours_number[i] + 1
neighbour = next_neighbour(7)
end while
end for
while Max_neighbours() > 0 do
EliminateNeighbours(id_-Max_neighbours)
end while
end while

Apart from the basic MaxNCN and its iterative version, other alternatives
have been implemented and tested: IterativekNeighbours, Centroide and Weight-
edCentroide among others. IterativekNeighbours is similar to Algorithm 1. The
main difference relies on the number of neighbours allowed to be represented by
a prototype: k. One of its main properties is that the limit of neighbours can be
selected, depending on the TS size (here k is a percentage of the TS size).

In Centroide, the main difference to Algorithm 1 is that instead of using
an original prototype as a representative, it computes the respective centroide
of the NCN. The rationale behind this is that a new artificial prototype could
represent better a neighbourhood because it can be placed in the best location.

WeightedCentroide uses the same idea, but each centroide is calculated
weighting each prototype by the number of neighbours that it represents.

3.2 The Consistent Algorithm

Over the basic algorithm described in the previous subsection, we tried to do
an important modification. The aim is to obtain a consistent condensed subset.
The primary idea is that if the subset is consistent with the TS, a better clas-
sification should be obtained. Using the MaxNCN algorithm, some prototypes
in the decision boundaries are removed because of the condensing order. We
try to solve this problem by a new consistent approach. Other alternatives have
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been implemented. Two of them are presented here. The simplest one consists
of applying MazNCN and, after that, estimating the class of each prototype in
the TS by NN, using the reduced set obtained. Every prototype misestimated is
added to the reduced set. This algorithm has been here named Consistent.

Reconsistent is based on the same idea as Consistent. In this case, the new
prototypes to be added will previously be condensed using as reference the orig-
inal TS. Algorithmically, it can be written as it is shown in Algorithm 2.

Algorithm 2 Reconsistent

for i = eachprototype(T'S) do
neighbours_numberl[i] = 0
neighbour = next_neighbour(i)
while neighbour.class == i.class do
neighbours_vector[i] = Id(neighbour)
neighbours_number[i] = neighbours_number[i] + 1
neighbour = next_neighbour (i)
end while
end for
while Max_neighbours() > 0 do
EliminateN eighbours(id_-Max_neighbours)
end while
count = 0
for i = eachprototype(TS) do
if Classify(i)! = i.class then
count = count + 1
incorrect_class[count] = i
end if
end for
for i = eachprototype(incorrect_class||) do
neighbours_number_inc[i] = 0
neighbour sinc = next_neighbour _inc(1)
while neighbour _inc.class == i.class do
neighbours_vector_incli] = Id(neighbour _inc)
neighbours_number _inc[i] = neighbours_number_inc[i] + 1
neighbour inc = next_neighbour _inc(i)
end while
end for
while Max_neighbours_inc() > 0 do
EliminateN eighbours_inc(id_Max -neighbours_inc)
end while
AddCondensedIncToCondensedT'S()

4 Description of Databases and Experiments

Nine real data sets (Table 1) have been taken from the UCI Repository [11] to
assess the behaviour of the algorithms introduced in this paper. The experiments
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Table 1. Data sets used in the experiments.

Data set No. classes No. features TS size Test set size

Cancer 2 9 546 137
Pima 2 6 615 153
Glass 6 9 174 40
Heart 2 13 216 54
Liver 2 6 276 69
Vehicle 4 18 678 168
Vowel 11 10 429 99
Wine 3 13 144 34
Phoneme 2 5 4324 1080

have been conducted to compare MazNCN, IterativeMazNCN, IterativekNeigh-
bours, Centroide, WeightedCentroide, Consistent and Reconsistent, among other
algorithms to Chen’s scheme, IRSP/ and Hart’s condensing, in terms of both T'S
size reduction and classification accuracy (using 1-NN rule) for the condensed
set.

The algorithms proposed in this paper, as in the case of Chen’s, IRSP/,
MaxNCN and IterativeMazNCN need to be applied in practice to overlap-free
(no overlapping among different class regions) data sets. Thus, as a general rule
and according to previously published results [2,16], the Wilson’s editing has
been considered to properly remove possible overlapping between classes. The
parameter involved (k) has been obtained in our experiments by performing
a five-fold cross-validation experiment using only the TS and computing the
average classification accuracies for different values of k and comparing them
with the “no editing” option. The best edited set (including the non-edited TS)
is thus selected as input for the different condensing schemes.

5 Experimental Results and Discussion

Table 2 reports the 1-NN accuracy results obtained by using the best edited T'S
and the different condensed sets. Values in brackets correspond to the standard
deviation. Analogously, the reduction rates with respect to the edited TS are pro-
vided in Table 3. The average values for each method are also included. Several
comments can be made from the results in these tables. As expected, classifi-
cation accuracy strongly depends on the condensed set size. Correspondingly,
IRSP/4, Hart’s algorithm, Consistent and Reconsistent obtain the highest classi-
fication accuracy almost without exception for all the data sets, but they also
retain more prototypes than Chen’s scheme, MaxNCN and IterativeMazNCN.
It is important to note that, in terms of reduction rate, IterativeMaxNCN
is the best. Nevertheless, it also obtains the worst accuracy. On the contrary,
IRSP/4 shows the highest accuracy but the lowest reduction rate. Thus, looking
for a balance between accuracy and reduction, one can observe that the best op-
tions are Hart’s, Chen’s, the plain MazNCN and the Reconsistent approach. In
particular, MazNCN provides an average accuracy of 69,52% (only 4 points less
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Table 2. Experimental results: 1-NN classification accuracy.

Edited Chen IRSP4 Hart Iterat. MaxNCN Cons. Recons.

Cancer 95.61 96.78 93,55 94,61 68,60 89,92 9414 92,39
(248) (1.25) (3,70) (2,94) (342)  (4,61)  (2,64) (4,36)
Pima 67.32 73.64 7201 7331 5326 67,71 7305 71,74
(4.64) (2.85) (4,52) (3,69) (580)  (545)  (3,62) (5,93)
Glass 7140 6718 7146 6791 57,09 66,65 69,08 69,08
(3.78) (3.90) (3,13) (4,60) (9,69)  (6,28)  (3,90) (3,90)
Heart 58.17 6193 63,01 62,87 5816 5992 63,96 63,59
(5.93) (5.22) (511) (4,27) (7,26)  (553)  (687) (5,98)
Liver 65.79 59.58 63,89 6240 53,31 60,65 6323 62,13
(8.72) (5.15) (7,73) (5,76) (8,55)  (6,74)  (3,55) (6,76)
Vehicle 64.41 5856 6347 62,17 5520 5933 6276 62,65
(211)  (246) (1,96) (2,16) (4,42)  (2,17)  (1,04) (1,88)
Vowel 97.90 60.16 96,02 90,74 78,63 90,73 94,93 94,73
(1.23)  (9.27) (1,77) (2,30) (5,18)  (1,78)  (1,63) (1,53)
Wine 73.05 69.31 69,66 71,71 62,50 60,77 69,05 68,56

(2.96) (7.31) (347) (6,72) (6,65)  (6,19)  (6,40) (6,18)
Phoneme  70.26 70.03 71,60 71,04 6506 70,00 7217 70,96
(7.52)  (9.14) (8,74) (7,90) (7,57)  (8,05) (7,72) (7,13)
Average 7307 6857 7385 72,07 6132 6952 73,60 72,87
(4.38)  (5.17) (4,46) (4,48) (9,95)  (5,20)  (4,15)  (4,85)

Table 3. Experimental results: set size reduction rate.

Chen IRSP4 Hart Iterat. MaxNCN Cons. Recons.

Cancer  98.79 93,72 93,00 99,11 96,10 86,91 94,09

Pima 90.61 70,03 79,04 9599 8535 73,01 80,19
Glass 67.58 32,71 51,33 73,13 62,15 47,43 50,00
Heart 85.18 55,80 67,22 92,53 78,35 64,18 69,59
Liver 82.97 4541 63,20 91,21 74,83 57,85 65,65

Vehicle  65.79 35,60 4598 74,85 56,59 40,28 44,71
Vowel 79.64 39,54 7597 84,23 7500 72,21 73,11
Wine 86.75 73,13 78,79 89,03 84,83 6563 79,71
Phoneme 94.51 69,90 87,91 98,16 90,88 83,06 88,26
Average 8354 57,32 71,39 88,69 7824 65,62 71,70

than TRSP4, which is the best option in accuracy) with an average reduction of
78,24% (approximately 20 points higher than IRSP/). Results given by Chen’s
algorithm are similar to those of the MaxNCN procedure in accuracy, but 5
points higher in reduction percentage. The Reconsistent approach provides sim-
ilar results to Hart’s algorithm: an average accuracy of 72,87% (only 0,93 less
than IRSP4) with an average reduction rate of 71,70% (around 14 points higher).

In order to assess the performance of these two competing goals simultane-
ously, Fig. 2 represents the normalised Euclidean distance between each pair
(accuracy, reduction) and the ideal case (1, 1), in such a way that the “best” ap-
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Fig. 2. Averaged accuracy and reduction rates.

proach can be deemed as the one that is nearer (1, 1). This technique is usually
referred to as Data Envelopment Analysis [4] Among approaches with similar
distances to (1, 1), the best ones are those nearer the diagonal, because they get
a good balance between accuracy and reduction. Thus, it is possible to see that
the proposed Reconsistent, along with MaxNCN, Hart’s and Chen’s algorithms
represent a good trade-off between accuracy and reduction.

With respect to the other algorithms exposed here, as they are not considered
so important as the ones compared until now, they are not drawn in Fig. 2, in
order to obtain a more comprehensible representation. Anyway, their results are
commented here. [terativekNeighbours obtains a good reduction rate but not
the best accuracy rate (similar to IterativeMazNCN). Anyway, comparing it to
Hart, the positive difference in reduction is bigger than the negative difference
in accuracy.

Centroide obtains more or less the same reduction as IterativekNeighbours,
but its accuracy rate is a little bit higher. WeightedCentroide obtains more or
less the same reduction rate as IterativekNeighbours and Centroide, and also a
little bit higher accuracy rate than them.

Finally, it is to be noted that several alternatives to the algorithms here intro-
duced have also been analysed, although some of them had a behaviour similar
to that of MaxNCN. Other alternatives, as for example MaxNN, consisting of
using the NN instead of the NCN, have a performance systematically worst.

Many algorithms have been tested. In Fig. 2 an imaginary curve formed by
the results for some of them can be observed. It seems that when the classi-
fication accuracy increases, the reduction percentage decreases; and when the
reduction percentage increases, the classification accuracy decreases. It makes
sense because there should be some limit to the reduction. That is, a set can not
be reduced as much as we want without influencing the classification accuracy.
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Concluding Remarks

In this paper, some new approaches to TS size reduction have been introduced.
These algorithms primarily consist of replacing a group of neighbouring pro-
totypes that belong to a same class by a single representative. This group of
prototypes is built by using the NCN, instead of the NN, of a given sample
because in general, those cover a bigger region.

From the experiments carried out, it seems that Reconsistent and MaxNCN

provide a well balanced trade-off between accuracy and TS size reduction rate.
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