
Generating Rule Sets from Model TreesGeo�rey Holmes, Mark Hall and Eibe FrankDepartment of Computer SieneUniversity of Waikato, New Zealandfgeo�,mhall,eibeg�s.waikato.a.nzPh. +64 7 838-4405Abstrat. Model trees|deision trees with linear models at the leaf nodes|have reently emerged asan aurate method for numeri predition that produes understandable models. However, it is knownthat deision lists|ordered sets of If-Then rules|have the potential to be more ompat and thereforemore understandable than their tree ounterparts.We present an algorithm for induing simple, aurate deision lists from model trees. Model trees arebuilt repeatedly and the best rule is seleted at eah iteration. This method produes rule sets that areas aurate but smaller than the model tree onstruted from the entire dataset. Experimental resultsfor various heuristis whih attempt to �nd a ompromise between rule auray and rule overageare reported. We show that our method produes omparably aurate and smaller rule sets than theommerial state-of-the-art rule learning system Cubist.1 IntrodutionReent work in knowledge disovery on time series data (DLRS98), indiates that the sope of appliationof mahine learning algorithms has gone beyond the relatively \straightforward" lassi�ation of nominalattributes in data. These appliations are important to business, mediine, engineering and the soial sienes,partiularly in areas onerned with understanding data from sensors (KP98).Of equal importane, partiularly for business appliations is the predition, and onsequent interpretation, ofnumeri values. For example, the 1998 KDD-Cup onentrated on prediting whether or not someone woulddonate to a harity. It is arguable that the harity would like to know both the amount someone is likely todonate and the fators whih determine this donation from historial data so that they an produe a moree�etive marketing ampaign.Prediting numeri values usually involves ompliated regression formulae. However, in mahine learning it isimportant to present results that an be easily interpreted. Deision lists presented in the If-Then rule formatare one of the most popular desription languages used in mahine learning. They have the potential to be moreompat and more preditive than their tree ounterparts (WI95). In any appliation, the desired outome isa small desriptive model whih has strong preditive apability. It has to be small to be interpretable andunderstandable, and it has to be aurate so that generalization apabilities an be attributed to the model.In this paper we present a proedure for generating rules from model trees (Qui92), based on the basistrategy of the PART algorithm (FW98), that produes aurate and ompat rule sets. Setion 2 disussesthe motivation for PART and alternative approahes to ontinuous lass predition. Setion 3 desribes theadaptation of PART to model trees. Setion 4 presents an experimental evaluation on standard datasets. Weompare the auray and size of the rule sets of our proedure with model trees and the rule-based regressionlearner Cubist1, the ommerial suessor of M5 (Qui92). Setion 5 onludes with a disussion of the resultsand areas for further researh on this problem.2 Related WorkRule learning for lassi�ation systems normally operates in two-stages. Rules are indued initially and thenre�ned at a later stage using a omplex global optimization proedure. This is usually aomplished in one of1 A test version of Cubist is available from http://www.rulequest.om



two ways; either by generating a deision tree, mapping the tree to a rule set and then re�ning the rule set basedon boundary onsiderations of the overage ahieved by eah rule, or by employing the separate-and-onquerparadigm. As with deision trees this strategy usually employs a rule optimization stage.Frank and Witten (1998) ombined these two approahes in an algorithm alled PART (for partial deisiontrees) in order to irumvent problems that an arise with both these tehniques. Rules indued from deisiontrees are omputationally expensive and this expense an grow alarmingly in the presene of noise (Coh95),while separate-and-onquer methods su�er from a form of overpruning alled \hasty generalization" (FW98).PART works by building a rule and removing its over, as in the separate-and-onquer tehnique, repeatedlyuntil all the instanes are overed. The rule onstrution stage di�ers from standard separate-and-onquermethods beause a partial pruned deision tree is built for a set of instanes, the leaf with the largest overageis made into a rule, and the tree is disarded. The pruned deision tree helps to avoid the overpruning problemof methods that immediately prune an individual rule after onstrution. Also, the expensive rule optimizationstages assoiated with deision tree rule learning are not performed. Results on standard data sets show smallerrule sizes with no loss in auray when ompared with the deision tree learner C4.5 (Qui93) and greaterauray when ompared with the separate-and-onquer rule learner RIPPER (Coh95). In this paper we adaptthe basi proedure of PART to ontinuous lass predition to examine whether similar results an be obtained,namely smaller rule sets with no loss in auray.Although the literature is light in the area of rule-based ontinuous lass predition, a taxonomy an be found.A �rst split an be made on whether a tehnique generates interpretable results. Those that do not inludeneural networks, and various statistial approahes at dealing with non-linear regression, suh as MARS (Fre91)and projetion pursuit (FS81). Those that do produe readable output are further split on whether or notthey are based on the two major paradigms for rule generation|rule sets represented as regression or modeltrees, and the separate-and-onquer rule-learning approah. Examples from the regression tree family inlude:CART (BOS84), RETIS (Kar92) and M5 (Qui92). Separate-and-onquer methods inlude a system that mapsa regression problem into a lassi�ation problem (WI95), and a propositional learning system (Tor95).3 Generating Rules From Model TreesModel trees (Qui92) are a tehnique for dealing with ontinuous lass problems that provide a struturalrepresentation of the data and a pieewise linear �t of the lass. They have a onventional deision treestruture but use linear funtions at the leaves instead of disrete lass labels. The �rst implementation ofmodel trees, M5, was rather abstratly de�ned in (Qui92) and the idea was reonstruted and improved in asystem alled M50 (WW97). Like onventional deision tree learners, M50 builds a tree by splitting the databased on the values of preditive attributes. Instead of seleting attributes by an information theoreti metri,M50 hooses attributes that minimise intra-subset variation in the lass values of instanes that go down eahbranh.After onstruting a tree, M50 omputes a linear model for eah node; the tree is then pruned bak fromthe leaves, so long as the expeted estimated error dereases. The expeted error for eah node is alulatedby averaging the absolute di�erene between the predited value and the atual lass value of eah trainingexample that reahes the node. To ompensate for an optimisti expeted error from the training data, thisaverage is multiplied by a fator that takes into aount the number of training examples that reah the nodeand the number of parameters in the model that represent the lass value at that node.This proess of tree onstrution an lead to sharp disontinuities ourring between adjaent linear models atthe leaves of the pruned tree. A proedure alled smoothing is used to ompensate for these di�erenes. Thesmoothing proedure omputes a predition using the leaf model, and then passes that value along the pathbak to the root, smoothing it at eah node by ombining it with the value predited by the linear model forthat node.3.1 Rule GenerationThe method for generating rules from model trees, whih we all M50Rules, is straightforward and works asfollows: a tree learner (in this ase model trees) is applied to the full training dataset and a pruned tree islearned. Next, the best leaf (aording to some heuristi) is made into a rule and the tree is disarded. All



instanes overed by the rule are removed from the dataset. The proess is applied reursively to the remaininginstanes and terminates when all instanes are overed by one or more rules. This is the basi separate-and-onquer strategy for learning rules; however, instead of building a single rule, as it is done usually, we builda full model tree at eah stage, and make its \best" leaf into a rule. This avoids potential for over-pruningalled hasty generalization (FW98). In ontrast to PART, whih employs the same strategy for ategorialpredition, M50Rules builds full trees instead of partially explored trees. Building partial trees leads to greateromputational eÆieny, and does not a�et the size and auray of the resulting rules.This paper onentrates on generating rules using unsmoothed linear models. Beause the tree from whih arule is generated is disarded at eah stage, smoothing for rules would have to be done as a post proessingstage after the full set of rules has been produed. This proess is more ompliated than smoothing modeltrees|it would involve determining the boundaries between rules and then installing linear models to smoothover them.
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LM3: T20Bolt = 74.9 Fig. 1. Model tree and rules for the bolts dataset.3.2 Rule Seletion HeuristisSo far we have desribed a general approah to extrating rules from trees, appliable to either lassi�ation orregression. It remains to determine, at eah stage, whih leaf in the tree is the best andidate for addition tothe rule set. The most obvious approah (FW98) is to hoose the leaf whih overs the most examples. Figure1 shows a tree produed by M50 and the rules generated by M50Rules using the overage heuristi for thedataset bolts (Sta99). The values at the leaves of the tree and on the onsequent of the rules are the overageand perent root mean squared error respetively for instanes that reah those leaves (satisfy those rules).Note that the �rst rule will always map diretly to one branh of the tree, however, subsequent rules often donot. In Figure 1, Rule 1 and LM2 are idential as are Rule 2 and LM1, however, Rule 3 and LM3 are verydi�erent.We have experimented with three other heuristis, designed to identify aurate rules and to trade o� au-ray against overage. These measures are similar to those used in the separate-and-onquer proedure whenevaluating the speialization of one rule from another (Tor95).The �rst of these alulates the perent root mean squared error as shown in Equation 1:% RMS = qPNri=1(Yi � yi)2=NrqPNi=1(Yi � Y )2=N ; (1)



Table 1. Continuous lass datasets used in the experimentsDataset Instanes Missing Numeri Nominalvalues (%) attributes attributesauto93 93 0.7 16 6autoHorse 205 1.1 17 8autoMpg 398 0.2 4 3autoPrie 159 0.0 15 0baskball 96 0.0 4 0bodyfat 252 0.0 14 0breastTumor 286 0.3 1 8holesterol 303 0.1 6 7leveland 303 0.1 6 7loud 108 0.0 4 2pu 209 0.0 6 1ehoMonths 131 7.5 6 3elusage 55 0.0 1 1�shath 158 6.9 5 2housing 506 0.0 12 1hungarian 294 19.0 6 7lowbwt 189 0.0 2 7mbagrade 61 0.0 1 1meta 528 4.3 19 2pb 418 15.6 10 8pharynx 195 0.1 1 10pollution 60 0.0 15 0pwLinear 200 0.0 10 0quake 2178 0.0 3 0sensory 576 0.0 0 11servo 167 0.0 0 4sleep 62 2.4 7 0strike 625 0.0 5 1veteran 137 0.0 3 4vineyard 52 0.0 3 0where Yi is the atual lass value for example i, yi is the lass value predited by the linear model at a leaf,Nr is the number of examples overed by leaf, Y is the mean of the lass values, and N is the total number ofexamples. In this ase, small values of % RMS (less than 1) indiate that the model at a leaf is doing betterthan simply prediting the mean of the lass values.One potential problem with perent root mean squared error is that it may favour auray at the expense ofoverage. Equations 2 and 3 show two heuristi measures designed to trade o� auray against overage. The�rst, simply normalises the mean absolute error at a leaf using the number of examples it overs; the seond,multiplies the orrelation between the predited and atual lass values for instanes at a leaf by the numberof instanes that reah the leaf. MAE / Cover = PNri=1 jYi � yij2Nr ; (2)CC � Cover = PNri=1 YiyiNr�Y �y �Nr: (3)In Equation 3, Yi and yi are the atual value and predited value for instane i expressed as deviations fromtheir respetive means.4 Experimental ResultsIn order to evaluate the performane of M50Rules on a diverse set of mahine learning problems, experimentswere performed using thirty ontinuous lass datasets. The datasets and their properties are listed in Table 1,and an be obtained from the authors upon request. Nineteen of these datasets were used by Kilpatrik andCameron-Jones (KCJ98), six are from the StatLib repository (Sta99), and the remaining �ve were olletedby Simono� (Sim96).



Table 2. Experimental results: omparing M50Rules with M50. The values are mean absolute error averagedover ten ten-fold ross-validation runs. Results are marked with a Æ if they show a signi�ant improvementover M50 unsmoothed, and with a � if they show a signi�ant degradation. Results marked with a p showwhere M50 Rules has produed signi�antly fewer rules than M50; those marked with a � show where M50Rules has produed signi�antly more rules than M50.Dataset M50 M50R M50R M50R M50RUnsmoothed % RMS MAE/Cover CC�Cover Coverauto93 3.66�0.2 3.66�0.2 3.66�0.2 3.66�0.2 3.66�0.2autoHorse 8.97�0.5 9.44�0.5 p 9.36�0.5 p 9.40�0.5 �p 9.32�0.5 pautoMpg 2.08�0.0 2.10�0.1 p 2.08�0.1 p 2.08�0.0 p 2.08�0.0 pautoPrie 1522.96�53.2 1636.90�96.6 �p 1655.50�109.9 �p 1650.81�129.0 p 1637.44�124.7 �pbaskball 0.07�0.0 0.07�0.0 0.07�0.0 0.07�0.0 0.07�0.0bodyfat 0.37�0.1 0.40�0.0 � 0.38�0.1 � 0.37�0.1 0.36�0.1breastTumor 8.06�0.1 8.06�0.1 8.06�0.1 8.06�0.1 8.06�0.1holesterol 40.98�1.4 40.91�1.4 40.99�1.4 40.77�1.4 40.98�1.4leveland 0.66�0.0 0.65�0.0 0.66�0.0 0.66�0.0 0.66�0.0loud 0.29�0.0 0.28�0.0 0.28�0.0 0.29�0.0 0.29�0.0pu 13.40�1.2 13.31�1.3 13.33�1.3 13.18�1.5 13.27�1.4ehoMonths 8.90�0.1 8.90�0.1 8.90�0.1 8.90�0.1 8.90�0.1elusage 9.57�0.6 9.57�0.6 9.57�0.6 9.57�0.6 9.57�0.6�shath 38.70�1.6 39.47�1.5 p 41.55�1.5 �p 38.53�1.9 p 38.61�1.8 phousing 2.75�0.2 2.64�0.1 p 2.71�0.2 p 2.71�0.1 p 2.77�0.1 phungarian 0.28�0.0 0.28�0.0 p 0.28�0.0 p 0.28�0.0 0.28�0.0lowbwt 370.93�6.7 370.93�6.7 370.93�6.7 370.93�6.7 370.57�6.4mbagrade 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0meta 115.73�13.3 123.82�24.5 p 135.33�22.8 p 131.29�12.8 p 127.72�25.1 ppb 716.13�12.8 715.67�12.2 716.13�12.8 716.13�12.8 716.13�12.8pharynx 352.85�5.8 352.66�6.1 351.82�7.5 352.76�7.9 353.24�5.9pollution 35.15�2.0 35.15�2.0 35.03�2.1 34.99�2.1 35.03�2.1pwLinear 1.15�0.0 1.15�0.0 1.15�0.0 1.15�0.0 1.15�0.0quake 0.15�0.0 0.15�0.0 p 0.15�0.0 0.15�0.0 �p 0.15�0.0sensory 0.58�0.0 0.58�0.0 p 0.58�0.0 p 0.59�0.0 p 0.58�0.0 pservo 0.31�0.0 0.32�0.0 p 0.32�0.0 p 0.32�0.0 p 0.32�0.0 psleep 2.56�0.1 2.56�0.1 2.56�0.1 2.56�0.1 2.56�0.1strike 215.87�7.1 231.12�9.7 �p 220.14�4.9 p 222.95�6.4 p 214.91�7.4 pveteran 92.06�4.3 90.48�4.8 90.49�4.8 90.91�4.5 91.52�4.7vineyard 2.48�0.1 2.51�0.2 p 2.51�0.1 p 2.43�0.1 p 2.51�0.1 pÆ,�(p ,�) statistially signi�ant improvement or degradationAs well as M50Rules using eah of the rule-seletion heuristis desribed above, M50 (with unsmoothed linearmodels) and the ommerial regression rule learning system Cubist were run on all the datasets. Defaultparameter settings were used for all algorithms. The mean absolute error, averaged over ten ten-fold ross-validation runs and the standard deviations of these ten error estimates were alulated for eah algorithm-dataset ombination. The same folds were used for eah algorithm.Table 2 ompares the results for M50Rules with those for M50 unsmoothed. Results for M50Rules are markedwith a Æ if they show a signi�ant improvement over the orresponding results for M50, and with a � if theyshow a signi�ant degradation. Results marked with a p show where M50Rules has produed signi�antlyfewer rules than M50; those marked with a � show where M50Rules has produed signi�antly more rules thanM50. Results are onsidered \signi�ant" if the di�erene is statistially signi�ant at the 1% level aordingto a paired two-sided t-test, eah pair of data points onsisting of the estimates obtained in one ten-foldross-validation run for the two learning algorithms being ompared.From Table 2 it an be seen that all four heuristi methods for hoosing rules give results that are rarelysigni�antly worse than M50. In fat, hoosing rules simply by overage gives an exellent result|aurayon only one dataset is signi�antly degraded. Eah of the remaining three heuristis degrade auray on twodatasets.As well as auray, the size of the rule set is important beause it has a strong inuene on omprehensibility.Correlation times overage and plain overage never result in a larger rule set than M50. These two heuristisredue the size of the rule set on eleven, and ten datasets respetively. Both perent root mean squared errorand mean absolute error over over inrease the size of the rule set on one dataset, while dereasing size ontwelve and eleven datasets respetively.Table 3 ompares auray for M50Rules with those for Cubist. Table 4 and Table 5 ompare the averagenumber of rules produed and average number of onditions per rule set respetively. The results for both



Table 3. Experimental results: omparing auray of M50Rules with Cubist. The values are mean absoluteerror averaged over ten ten-fold ross-validation runs. Results are marked with a Æ if they show a signi�antimprovement over Cubist, and with a � if they show a signi�ant degradation (the preision of the resultsshown in the table is suh that some appear idential but in fat are signi�antly di�erent, e.g. baskball).Dataset Cubist M50R M50R M50R M50R% RMS MAE/Cover CC�Cover Coverauto93 4.07�0.2 3.66�0.2 Æ 3.66�0.2 Æ 3.66�0.2 Æ 3.66�0.2 ÆautoHorse 9.27�0.5 9.44�0.5 9.36�0.5 9.40�0.5 9.32�0.5autoMpg 2.24�0.1 2.10�0.1 Æ 2.08�0.1 Æ 2.08�0.0 Æ 2.08�0.0 ÆautoPrie 1639.12�63.8 1636.90�96.6 1655.50�109.9 1650.81�129.0 1637.4�124.74baskball 0.07�0.0 0.07�0.0 Æ 0.07�0.0 Æ 0.07�0.0 Æ 0.07�0.0 Æbodyfat 0.33�0.0 0.40�0.0 � 0.38�0.1 0.37�0.1 0.36�0.1breastTumor 8.97�0.1 8.06�0.1 Æ 8.06�0.1 Æ 8.06�0.1 Æ 8.06�0.1 Æholesterol 43.02�1.5 40.91�1.4 Æ 40.99�1.4 40.77�1.4 Æ 40.98�1.4leveland 0.65�0.0 0.65�0.0 0.66�0.0 0.66�0.0 0.66�0.0loud 0.26�0.0 0.28�0.0 � 0.28�0.0 � 0.29�0.0 � 0.29�0.0 �pu 10.96�1.1 13.31�1.3 � 13.33�1.3 � 13.18�1.5 � 13.27�1.4 �ehoMonths 9.41�0.2 8.90�0.1 Æ 8.90�0.1 Æ 8.90�0.1 Æ 8.90�0.1 Æelusage 7.59�0.2 9.57�0.6 � 9.57�0.6 � 9.57�0.6 � 9.57�0.6 ��shath 41.66�0.8 39.47�1.5 Æ 41.55�1.5 38.53�1.9 Æ 38.61�1.8 Æhousing 2.37�0.1 2.64�0.1 � 2.71�0.2 � 2.71�0.1 � 2.77�0.1 �hungarian 0.23�0.0 0.28�0.0 � 0.28�0.0 � 0.28�0.0 � 0.28�0.0 �lowbwt 340.29�7.2 370.93�6.7 � 370.93�6.7 � 370.93�6.7 � 370.57�6.4 �mbagrade 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0meta 107.26�9.8 123.82�24.5 135.33�22.8 � 131.29�12.8 � 127.72�25.1 �pb 774.76�16.3 715.67�12.2 Æ 716.13�12.8 Æ 716.13�12.8 Æ 716.13�12.8 Æpharynx 448.93�2.7 352.66�6.1 Æ 351.82�7.5 Æ 352.76�7.9 Æ 353.24�5.9 Æpollution 34.68�2.4 35.15�2.0 35.03�2.1 34.99�2.1 35.03�2.1pwLinear 1.14�0.0 1.15�0.0 1.15�0.0 1.15�0.0 1.15�0.0quake 0.15�0.0 0.15�0.0 0.15�0.0 0.15�0.0 0.15�0.0sensory 0.61�0.0 0.58�0.0 Æ 0.58�0.0 Æ 0.59�0.0 Æ 0.58�0.0 Æservo 0.38�0.0 0.32�0.0 Æ 0.32�0.0 Æ 0.32�0.0 Æ 0.32�0.0 Æsleep 2.84�0.2 2.56�0.1 Æ 2.56�0.1 Æ 2.56�0.1 Æ 2.56�0.1 Æstrike 201.31�5.0 231.12�9.7 � 220.14�4.9 � 222.95�6.4 � 214.91�7.4 �veteran 88.76�5.5 90.48�4.8 90.49�4.8 90.91�4.5 91.52�4.7vineyard 2.28�0.1 2.51�0.2 � 2.51�0.1 � 2.43�0.1 � 2.51�0.1 �Æ,� statistially signi�ant improvement or degradationauray and number of rules|as well as Table 2|are summarised for quik omparison in Table 6. Eahentry in Table 6 has two values: the �rst indiates the number of datasets for whih the method assoiatedwith its olumn is signi�antly more aurate than the method assoiated with its row; the seond (in braes)indiates the number of datasets for whih the method assoiated with its olumn produes signi�antly smallerrule sets than the method assoiated with its row.From the �rst row and the �rst olumn of Table 6 it an be noted that all four versions of M50Rules|as wellas (perhaps surprisingly) M50|outperform Cubist on more datasets than they are outperformed by Cubist.% RMS and CC � Cover are more aurate than Cubist on twelve datasets, Cover on eleven datasets andMAE / Cover on ten datasets. By omparison, Cubist does better than all four M50Rules variants on ninedatasets, eight of whih are the same for all variants. When rule set sizes are ompared, it an be seen thatM50Rules produes smaller rule sets than Cubist more often than not. % RMS and CC � Cover produesmaller rule sets than Cubist on twenty-three datasets, and MAE / Cover and Cover produe smaller ones ontwenty-two datasets. Cubist, on the other hand, produes smaller rule sets than all variants of M50Rules ononly six datasets. From Table 4, it an be seen that in many ases M50Rules produes far fewer rules thanCubist. For example, on the sensory dataset Cubist produes just over forty-�ve rules, while M50Rules is moreaurate with approximately four rules. Furthermore, from Table 5 it an be seen that M50Rules generatesfewer onditions per rule set than Cubist|it is signi�antly better on twenty-four and worse on at most �ve.For some datasets (sensory, pb, breastTumor, holesterol) the di�erenes are dramati.5 ConlusionWe have presented an algorithm for generating rules for numeri predition by applying the separate-and-onquer tehnique to generate a sequene of model trees, reading one rule o� eah of the trees. The algorithm



Table 4. Experimental results: number of rules produed byM50Rules ompared with number of rules produedby Cubist Dataset Cubist M50R M50R M50R M50R% RMS MAE/Cover CC�Cover Coverauto93 2.92�0.2 1.08�0.1 Æ 1.08�0.1 Æ 1.08�0.1 Æ 1.08�0.1 ÆautoHorse 5.31�0.3 2.12�0.6 Æ 2.20�0.6 Æ 2.83�0.7 Æ 2.79�0.5 ÆautoMpg 6.21�0.5 3.41�0.4 Æ 3.87�0.4 Æ 3.94�0.4 Æ 3.91�0.4 ÆautoPrie 3.28�0.2 4.88�0.5 � 4.70�0.4 � 4.75�0.5 � 4.24�0.4 �baskball 5.17�0.2 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æbodyfat 1.38�0.2 3.97�0.6 � 3.73�0.4 � 3.58�0.4 � 3.51�0.4 �breastTumor 22.19�0.6 1.06�0.1 Æ 1.06�0.1 Æ 1.06�0.1 Æ 1.06�0.1 Æholesterol 18.63�0.8 2.33�0.4 Æ 2.45�0.5 Æ 2.08�0.4 Æ 2.46�0.5 Æleveland 8.27�0.8 1.07�0.1 Æ 1.06�0.1 Æ 1.16�0.3 Æ 1.18�0.3 Æloud 1.09�0.1 2.62�0.5 � 2.55�0.4 � 2.60�0.4 � 2.63�0.4 �pu 2.00�0.0 2.74�0.2 � 2.72�0.2 � 2.70�0.2 � 2.71�0.2 �ehoMonths 6.24�0.4 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æelusage 2.00�0.0 1.62�0.2 Æ 1.62�0.2 Æ 1.62�0.2 Æ 1.62�0.2 Æ�shath 2.00�0.0 3.47�0.3 � 2.87�0.4 � 3.63�0.3 � 3.63�0.3 �housing 6.90�0.4 9.61�1.6 � 8.44�0.8 � 8.32�0.8 � 8.57�0.7 �hungarian 9.15�0.5 1.56�0.2 Æ 1.56�0.2 Æ 1.65�0.2 Æ 1.69�0.3 Ælowbwt 6.45�0.2 1.05�0.1 Æ 1.05�0.1 Æ 1.05�0.1 Æ 1.04�0.1 Æmbagrade 3.57�0.1 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æmeta 12.90�0.3 5.40�0.4 Æ 5.00�0.4 Æ 5.40�0.6 Æ 4.66�0.5 Æpb 21.63�0.9 1.63�0.1 Æ 1.64�0.1 Æ 1.65�0.1 Æ 1.64�0.1 Æpharynx 7.96�0.1 2.07�0.5 Æ 2.20�0.5 Æ 2.16�0.4 Æ 2.18�0.4 Æpollution 1.53�0.2 1.22�0.1 Æ 1.19�0.1 Æ 1.20�0.1 Æ 1.21�0.1 ÆpwLinear 2.00�0.0 2.00�0.0 2.00�0.0 2.00�0.0 2.00�0.0quake 4.53�0.9 2.45�0.3 Æ 3.61�0.4 1.98�0.2 Æ 3.66�0.4sensory 45.31�1.1 4.19�0.5 Æ 4.04�0.4 Æ 3.97�0.3 Æ 4.13�0.5 Æservo 5.77�0.1 5.05�0.3 Æ 5.20�0.4 Æ 4.18�0.3 Æ 4.09�0.3 Æsleep 2.17�0.2 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æstrike 16.65�1.5 4.68�0.9 Æ 4.78�0.9 Æ 4.95�1.0 Æ 4.86�1.1 Æveteran 6.48�0.6 1.26�0.3 Æ 1.27�0.3 Æ 1.29�0.2 Æ 1.36�0.3 Ævineyard 2.77�0.1 2.27�0.2 Æ 2.07�0.2 Æ 2.18�0.2 Æ 2.07�0.2 ÆÆ,� statistially signi�ant improvement or degradationis straightforward to implement and relatively insensitive to the heuristi used to selet ompeting rules fromthe tree at eah iteration. M50Rules using the overage heuristi is signi�antly worse, in terms of auray,on only one (autoPrie) of the thirty benh mark datasets when ompared with M50. In terms of ompatness,M50Rules never produes larger rule sets and produes smaller sets on ten datasets. When ompared to theommerial system Cubist, M50Rules outperforms it on size and is omparable on auray. When based onthe number of leaves it is more than three times more likely to produe signi�antly fewer rules. When thenumber of onditions per rule are used to estimate rule size M50Rules is eight times more likely to produerules with fewer onditions than Cubist.Published results with smoothed trees (WW97) indiate that the smoothing proedure substantially inreasesthe auray of preditions. Smoothing annot be applied to rules in the same way as for trees beause the treeontaining the relevant adjaent models is disarded at eah iteration of the rule generation proess. It seemsmore likely that improvements to M50Rules will have to be made as a post-proessing optimization stage. Thisis unfortunate beause generation of aurate rule sets without global optimization is a ompelling aspet ofthe basi PART proedure, on whih M50Rules is based. However, smoothing usually inreases the omplexityof the linear models at the leaf nodes, making the resulting preditor more diÆult to analyze.6 AknowledgementsWe would like to thank Gordon Paynter for suggesting the problem and Yong Wang for helpful disussions onmodel trees.



Table 5. Experimental results: average number of onditions per rule set produed by M50Rules omparedwith average number of onditions per rule set produed by CubistDataset Cubist M50R M50R M50R M50R% RMS MAE/Cover CC�Cover Coverauto93 4.37�0.6 0.08�0.1 Æ 0.08�0.1 Æ 0.09�0.1 Æ 0.09�0.1 ÆautoHorse 11.60�1.1 4.47�2.2 Æ 3.89�1.5 Æ 3.96�2.2 Æ 3.63�1.3 ÆautoMpg 14.13�1.6 5.17�1.1 Æ 3.50�0.4 Æ 3.53�0.5 Æ 3.49�0.5 ÆautoPrie 5.63�0.6 8.61�1.7 � 7.64�1.4 � 7.19�1.0 � 5.98�0.7baskball 11.75�0.7 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æbodyfat 0.76�0.5 6.86�1.7 � 4.07�0.8 � 3.00�0.6 � 3.08�0.6 �breastTumor 81.32�3.9 0.06�0.1 Æ 0.06�0.1 Æ 0.06�0.1 Æ 0.06�0.1 Æholesterol 81.86�4.7 1.78�0.8 Æ 1.48�0.6 Æ 1.58�0.6 Æ 1.47�0.5 Æleveland 27.37�4.3 0.19�0.3 Æ 0.15�0.3 Æ 0.24�0.4 Æ 0.21�0.4 Æloud 0.18�0.1 2.23�0.7 � 1.59�0.4 � 1.79�0.6 � 1.76�0.6 �pu 2.00�0.0 1.91�0.2 1.86�0.3 1.82�0.2 1.82�0.2ehoMonths 16.53�1.7 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æelusage 2.00�0.0 0.64�0.2 Æ 0.63�0.2 Æ 0.62�0.2 Æ 0.62�0.2 Æ�shath 2.00�0.0 4.43�1.1 � 3.66�0.9 � 3.40�0.6 � 3.40�0.6 �housing 18.28�1.6 30.44�6.9 � 18.28�2.7 16.30�2.6 15.73�2.1hungarian 33.04�3.3 0.88�0.3 Æ 0.79�0.3 Æ 0.81�0.3 Æ 0.84�0.4 Ælowbwt 21.19�0.9 0.06�0.1 Æ 0.05�0.1 Æ 0.06�0.1 Æ 0.06�0.1 Æmbagrade 6.61�0.4 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æmeta 25.87�0.6 8.81�1.0 Æ 7.34�0.7 Æ 10.53�1.8 Æ 6.49�0.9 Æpb 100.86�5.6 0.65�0.1 Æ 0.65�0.1 Æ 0.65�0.1 Æ 0.65�0.1 Æpharynx 7.96�0.1 2.70�1.5 Æ 1.86�0.9 Æ 1.60�0.6 Æ 1.79�0.7 Æpollution 1.18�0.5 0.28�0.2 Æ 0.25�0.1 Æ 0.25�0.1 Æ 0.25�0.1 ÆpwLinear 2.00�0.0 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æquake 9.64�3.0 3.04�0.5 Æ 2.66�0.4 Æ 3.62�0.9 Æ 2.69�0.5 Æsensory 218.80�6.8 8.88�1.6 Æ 5.43�1.1 Æ 5.70�0.9 Æ 5.40�1.2 Æservo 13.33�0.2 7.42�0.9 Æ 7.15�0.9 Æ 5.19�0.6 Æ 5.05�0.5 Æsleep 2.38�0.8 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æstrike 46.55�5.2 9.27�2.9 Æ 4.98�1.2 Æ 7.40�2.1 Æ 5.25�1.6 Æveteran 19.63�2.5 0.50�0.5 Æ 0.42�0.3 Æ 0.41�0.3 Æ 0.41�0.4 Ævineyard 4.13�0.4 1.90�0.2 Æ 1.56�0.2 Æ 1.53�0.2 Æ 1.56�0.2 ÆÆ,� statistially signi�ant improvement or degradation
Table 6. Results of paired t-tests (p = 0:01): number indiates how often method in olumn signi�antlyoutperforms method in row; number in braes indiates how often method in olumn produes signi�antlyfewer rules than method in row.Cubist M50 % RMS MAE / Cover CC � Cover CoverCubist - 12 f20g 12 f23g 10 f22g 12 f23g 11 f22gM50 8 f6g - 0 f12g 0 f11g 0 f11g 0 f10g% RMS 9 f6g 2 f1g - 1 f2g 0 f4g 1 f5gMAE / Cover 9 f6g 2 f1g 1 f2g - 1 f4g 1 f2gCC � Cover 9 f6g 2 f0g 1 f2g 1 f1g - 1 f2gCover 9 f6g 1 f0g 0 f3g 0 f1g 0 f2g -
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