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t. Model trees|de
ision trees with linear models at the leaf nodes|have re
ently emerged asan a

urate method for numeri
 predi
tion that produ
es understandable models. However, it is knownthat de
ision lists|ordered sets of If-Then rules|have the potential to be more 
ompa
t and thereforemore understandable than their tree 
ounterparts.We present an algorithm for indu
ing simple, a

urate de
ision lists from model trees. Model trees arebuilt repeatedly and the best rule is sele
ted at ea
h iteration. This method produ
es rule sets that areas a

urate but smaller than the model tree 
onstru
ted from the entire dataset. Experimental resultsfor various heuristi
s whi
h attempt to �nd a 
ompromise between rule a

ura
y and rule 
overageare reported. We show that our method produ
es 
omparably a

urate and smaller rule sets than the
ommer
ial state-of-the-art rule learning system Cubist.1 Introdu
tionRe
ent work in knowledge dis
overy on time series data (DLRS98), indi
ates that the s
ope of appli
ationof ma
hine learning algorithms has gone beyond the relatively \straightforward" 
lassi�
ation of nominalattributes in data. These appli
ations are important to business, medi
ine, engineering and the so
ial s
ien
es,parti
ularly in areas 
on
erned with understanding data from sensors (KP98).Of equal importan
e, parti
ularly for business appli
ations is the predi
tion, and 
onsequent interpretation, ofnumeri
 values. For example, the 1998 KDD-Cup 
on
entrated on predi
ting whether or not someone woulddonate to a 
harity. It is arguable that the 
harity would like to know both the amount someone is likely todonate and the fa
tors whi
h determine this donation from histori
al data so that they 
an produ
e a moree�e
tive marketing 
ampaign.Predi
ting numeri
 values usually involves 
ompli
ated regression formulae. However, in ma
hine learning it isimportant to present results that 
an be easily interpreted. De
ision lists presented in the If-Then rule formatare one of the most popular des
ription languages used in ma
hine learning. They have the potential to be more
ompa
t and more predi
tive than their tree 
ounterparts (WI95). In any appli
ation, the desired out
ome isa small des
riptive model whi
h has strong predi
tive 
apability. It has to be small to be interpretable andunderstandable, and it has to be a

urate so that generalization 
apabilities 
an be attributed to the model.In this paper we present a pro
edure for generating rules from model trees (Qui92), based on the basi
strategy of the PART algorithm (FW98), that produ
es a

urate and 
ompa
t rule sets. Se
tion 2 dis
ussesthe motivation for PART and alternative approa
hes to 
ontinuous 
lass predi
tion. Se
tion 3 des
ribes theadaptation of PART to model trees. Se
tion 4 presents an experimental evaluation on standard datasets. We
ompare the a

ura
y and size of the rule sets of our pro
edure with model trees and the rule-based regressionlearner Cubist1, the 
ommer
ial su

essor of M5 (Qui92). Se
tion 5 
on
ludes with a dis
ussion of the resultsand areas for further resear
h on this problem.2 Related WorkRule learning for 
lassi�
ation systems normally operates in two-stages. Rules are indu
ed initially and thenre�ned at a later stage using a 
omplex global optimization pro
edure. This is usually a

omplished in one of1 A test version of Cubist is available from http://www.rulequest.
om



two ways; either by generating a de
ision tree, mapping the tree to a rule set and then re�ning the rule set basedon boundary 
onsiderations of the 
overage a
hieved by ea
h rule, or by employing the separate-and-
onquerparadigm. As with de
ision trees this strategy usually employs a rule optimization stage.Frank and Witten (1998) 
ombined these two approa
hes in an algorithm 
alled PART (for partial de
isiontrees) in order to 
ir
umvent problems that 
an arise with both these te
hniques. Rules indu
ed from de
isiontrees are 
omputationally expensive and this expense 
an grow alarmingly in the presen
e of noise (Coh95),while separate-and-
onquer methods su�er from a form of overpruning 
alled \hasty generalization" (FW98).PART works by building a rule and removing its 
over, as in the separate-and-
onquer te
hnique, repeatedlyuntil all the instan
es are 
overed. The rule 
onstru
tion stage di�ers from standard separate-and-
onquermethods be
ause a partial pruned de
ision tree is built for a set of instan
es, the leaf with the largest 
overageis made into a rule, and the tree is dis
arded. The pruned de
ision tree helps to avoid the overpruning problemof methods that immediately prune an individual rule after 
onstru
tion. Also, the expensive rule optimizationstages asso
iated with de
ision tree rule learning are not performed. Results on standard data sets show smallerrule sizes with no loss in a

ura
y when 
ompared with the de
ision tree learner C4.5 (Qui93) and greatera

ura
y when 
ompared with the separate-and-
onquer rule learner RIPPER (Coh95). In this paper we adaptthe basi
 pro
edure of PART to 
ontinuous 
lass predi
tion to examine whether similar results 
an be obtained,namely smaller rule sets with no loss in a

ura
y.Although the literature is light in the area of rule-based 
ontinuous 
lass predi
tion, a taxonomy 
an be found.A �rst split 
an be made on whether a te
hnique generates interpretable results. Those that do not in
ludeneural networks, and various statisti
al approa
hes at dealing with non-linear regression, su
h as MARS (Fre91)and proje
tion pursuit (FS81). Those that do produ
e readable output are further split on whether or notthey are based on the two major paradigms for rule generation|rule sets represented as regression or modeltrees, and the separate-and-
onquer rule-learning approa
h. Examples from the regression tree family in
lude:CART (BOS84), RETIS (Kar92) and M5 (Qui92). Separate-and-
onquer methods in
lude a system that mapsa regression problem into a 
lassi�
ation problem (WI95), and a propositional learning system (Tor95).3 Generating Rules From Model TreesModel trees (Qui92) are a te
hnique for dealing with 
ontinuous 
lass problems that provide a stru
turalrepresentation of the data and a pie
ewise linear �t of the 
lass. They have a 
onventional de
ision treestru
ture but use linear fun
tions at the leaves instead of dis
rete 
lass labels. The �rst implementation ofmodel trees, M5, was rather abstra
tly de�ned in (Qui92) and the idea was re
onstru
ted and improved in asystem 
alled M50 (WW97). Like 
onventional de
ision tree learners, M50 builds a tree by splitting the databased on the values of predi
tive attributes. Instead of sele
ting attributes by an information theoreti
 metri
,M50 
hooses attributes that minimise intra-subset variation in the 
lass values of instan
es that go down ea
hbran
h.After 
onstru
ting a tree, M50 
omputes a linear model for ea
h node; the tree is then pruned ba
k fromthe leaves, so long as the expe
ted estimated error de
reases. The expe
ted error for ea
h node is 
al
ulatedby averaging the absolute di�eren
e between the predi
ted value and the a
tual 
lass value of ea
h trainingexample that rea
hes the node. To 
ompensate for an optimisti
 expe
ted error from the training data, thisaverage is multiplied by a fa
tor that takes into a

ount the number of training examples that rea
h the nodeand the number of parameters in the model that represent the 
lass value at that node.This pro
ess of tree 
onstru
tion 
an lead to sharp dis
ontinuities o

urring between adja
ent linear models atthe leaves of the pruned tree. A pro
edure 
alled smoothing is used to 
ompensate for these di�eren
es. Thesmoothing pro
edure 
omputes a predi
tion using the leaf model, and then passes that value along the pathba
k to the root, smoothing it at ea
h node by 
ombining it with the value predi
ted by the linear model forthat node.3.1 Rule GenerationThe method for generating rules from model trees, whi
h we 
all M50Rules, is straightforward and works asfollows: a tree learner (in this 
ase model trees) is applied to the full training dataset and a pruned tree islearned. Next, the best leaf (a

ording to some heuristi
) is made into a rule and the tree is dis
arded. All



instan
es 
overed by the rule are removed from the dataset. The pro
ess is applied re
ursively to the remaininginstan
es and terminates when all instan
es are 
overed by one or more rules. This is the basi
 separate-and-
onquer strategy for learning rules; however, instead of building a single rule, as it is done usually, we builda full model tree at ea
h stage, and make its \best" leaf into a rule. This avoids potential for over-pruning
alled hasty generalization (FW98). In 
ontrast to PART, whi
h employs the same strategy for 
ategori
alpredi
tion, M50Rules builds full trees instead of partially explored trees. Building partial trees leads to greater
omputational eÆ
ien
y, and does not a�e
t the size and a

ura
y of the resulting rules.This paper 
on
entrates on generating rules using unsmoothed linear models. Be
ause the tree from whi
h arule is generated is dis
arded at ea
h stage, smoothing for rules would have to be done as a post pro
essingstage after the full set of rules has been produ
ed. This pro
ess is more 
ompli
ated than smoothing modeltrees|it would involve determining the boundaries between rules and then installing linear models to smoothover them.
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LM3: T20Bolt = 74.9 Fig. 1. Model tree and rules for the bolts dataset.3.2 Rule Sele
tion Heuristi
sSo far we have des
ribed a general approa
h to extra
ting rules from trees, appli
able to either 
lassi�
ation orregression. It remains to determine, at ea
h stage, whi
h leaf in the tree is the best 
andidate for addition tothe rule set. The most obvious approa
h (FW98) is to 
hoose the leaf whi
h 
overs the most examples. Figure1 shows a tree produ
ed by M50 and the rules generated by M50Rules using the 
overage heuristi
 for thedataset bolts (Sta99). The values at the leaves of the tree and on the 
onsequent of the rules are the 
overageand per
ent root mean squared error respe
tively for instan
es that rea
h those leaves (satisfy those rules).Note that the �rst rule will always map dire
tly to one bran
h of the tree, however, subsequent rules often donot. In Figure 1, Rule 1 and LM2 are identi
al as are Rule 2 and LM1, however, Rule 3 and LM3 are verydi�erent.We have experimented with three other heuristi
s, designed to identify a

urate rules and to trade o� a

u-ra
y against 
overage. These measures are similar to those used in the separate-and-
onquer pro
edure whenevaluating the spe
ialization of one rule from another (Tor95).The �rst of these 
al
ulates the per
ent root mean squared error as shown in Equation 1:% RMS = qPNri=1(Yi � yi)2=NrqPNi=1(Yi � Y )2=N ; (1)



Table 1. Continuous 
lass datasets used in the experimentsDataset Instan
es Missing Numeri
 Nominalvalues (%) attributes attributesauto93 93 0.7 16 6autoHorse 205 1.1 17 8autoMpg 398 0.2 4 3autoPri
e 159 0.0 15 0baskball 96 0.0 4 0bodyfat 252 0.0 14 0breastTumor 286 0.3 1 8
holesterol 303 0.1 6 7
leveland 303 0.1 6 7
loud 108 0.0 4 2
pu 209 0.0 6 1e
hoMonths 131 7.5 6 3elusage 55 0.0 1 1�sh
at
h 158 6.9 5 2housing 506 0.0 12 1hungarian 294 19.0 6 7lowbwt 189 0.0 2 7mbagrade 61 0.0 1 1meta 528 4.3 19 2pb
 418 15.6 10 8pharynx 195 0.1 1 10pollution 60 0.0 15 0pwLinear 200 0.0 10 0quake 2178 0.0 3 0sensory 576 0.0 0 11servo 167 0.0 0 4sleep 62 2.4 7 0strike 625 0.0 5 1veteran 137 0.0 3 4vineyard 52 0.0 3 0where Yi is the a
tual 
lass value for example i, yi is the 
lass value predi
ted by the linear model at a leaf,Nr is the number of examples 
overed by leaf, Y is the mean of the 
lass values, and N is the total number ofexamples. In this 
ase, small values of % RMS (less than 1) indi
ate that the model at a leaf is doing betterthan simply predi
ting the mean of the 
lass values.One potential problem with per
ent root mean squared error is that it may favour a

ura
y at the expense of
overage. Equations 2 and 3 show two heuristi
 measures designed to trade o� a

ura
y against 
overage. The�rst, simply normalises the mean absolute error at a leaf using the number of examples it 
overs; the se
ond,multiplies the 
orrelation between the predi
ted and a
tual 
lass values for instan
es at a leaf by the numberof instan
es that rea
h the leaf. MAE / Cover = PNri=1 jYi � yij2Nr ; (2)CC � Cover = PNri=1 YiyiNr�Y �y �Nr: (3)In Equation 3, Yi and yi are the a
tual value and predi
ted value for instan
e i expressed as deviations fromtheir respe
tive means.4 Experimental ResultsIn order to evaluate the performan
e of M50Rules on a diverse set of ma
hine learning problems, experimentswere performed using thirty 
ontinuous 
lass datasets. The datasets and their properties are listed in Table 1,and 
an be obtained from the authors upon request. Nineteen of these datasets were used by Kilpatri
k andCameron-Jones (KCJ98), six are from the StatLib repository (Sta99), and the remaining �ve were 
olle
tedby Simono� (Sim96).



Table 2. Experimental results: 
omparing M50Rules with M50. The values are mean absolute error averagedover ten ten-fold 
ross-validation runs. Results are marked with a Æ if they show a signi�
ant improvementover M50 unsmoothed, and with a � if they show a signi�
ant degradation. Results marked with a p showwhere M50 Rules has produ
ed signi�
antly fewer rules than M50; those marked with a � show where M50Rules has produ
ed signi�
antly more rules than M50.Dataset M50 M50R M50R M50R M50RUnsmoothed % RMS MAE/Cover CC�Cover Coverauto93 3.66�0.2 3.66�0.2 3.66�0.2 3.66�0.2 3.66�0.2autoHorse 8.97�0.5 9.44�0.5 p 9.36�0.5 p 9.40�0.5 �p 9.32�0.5 pautoMpg 2.08�0.0 2.10�0.1 p 2.08�0.1 p 2.08�0.0 p 2.08�0.0 pautoPri
e 1522.96�53.2 1636.90�96.6 �p 1655.50�109.9 �p 1650.81�129.0 p 1637.44�124.7 �pbaskball 0.07�0.0 0.07�0.0 0.07�0.0 0.07�0.0 0.07�0.0bodyfat 0.37�0.1 0.40�0.0 � 0.38�0.1 � 0.37�0.1 0.36�0.1breastTumor 8.06�0.1 8.06�0.1 8.06�0.1 8.06�0.1 8.06�0.1
holesterol 40.98�1.4 40.91�1.4 40.99�1.4 40.77�1.4 40.98�1.4
leveland 0.66�0.0 0.65�0.0 0.66�0.0 0.66�0.0 0.66�0.0
loud 0.29�0.0 0.28�0.0 0.28�0.0 0.29�0.0 0.29�0.0
pu 13.40�1.2 13.31�1.3 13.33�1.3 13.18�1.5 13.27�1.4e
hoMonths 8.90�0.1 8.90�0.1 8.90�0.1 8.90�0.1 8.90�0.1elusage 9.57�0.6 9.57�0.6 9.57�0.6 9.57�0.6 9.57�0.6�sh
at
h 38.70�1.6 39.47�1.5 p 41.55�1.5 �p 38.53�1.9 p 38.61�1.8 phousing 2.75�0.2 2.64�0.1 p 2.71�0.2 p 2.71�0.1 p 2.77�0.1 phungarian 0.28�0.0 0.28�0.0 p 0.28�0.0 p 0.28�0.0 0.28�0.0lowbwt 370.93�6.7 370.93�6.7 370.93�6.7 370.93�6.7 370.57�6.4mbagrade 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0meta 115.73�13.3 123.82�24.5 p 135.33�22.8 p 131.29�12.8 p 127.72�25.1 ppb
 716.13�12.8 715.67�12.2 716.13�12.8 716.13�12.8 716.13�12.8pharynx 352.85�5.8 352.66�6.1 351.82�7.5 352.76�7.9 353.24�5.9pollution 35.15�2.0 35.15�2.0 35.03�2.1 34.99�2.1 35.03�2.1pwLinear 1.15�0.0 1.15�0.0 1.15�0.0 1.15�0.0 1.15�0.0quake 0.15�0.0 0.15�0.0 p 0.15�0.0 0.15�0.0 �p 0.15�0.0sensory 0.58�0.0 0.58�0.0 p 0.58�0.0 p 0.59�0.0 p 0.58�0.0 pservo 0.31�0.0 0.32�0.0 p 0.32�0.0 p 0.32�0.0 p 0.32�0.0 psleep 2.56�0.1 2.56�0.1 2.56�0.1 2.56�0.1 2.56�0.1strike 215.87�7.1 231.12�9.7 �p 220.14�4.9 p 222.95�6.4 p 214.91�7.4 pveteran 92.06�4.3 90.48�4.8 90.49�4.8 90.91�4.5 91.52�4.7vineyard 2.48�0.1 2.51�0.2 p 2.51�0.1 p 2.43�0.1 p 2.51�0.1 pÆ,�(p ,�) statisti
ally signi�
ant improvement or degradationAs well as M50Rules using ea
h of the rule-sele
tion heuristi
s des
ribed above, M50 (with unsmoothed linearmodels) and the 
ommer
ial regression rule learning system Cubist were run on all the datasets. Defaultparameter settings were used for all algorithms. The mean absolute error, averaged over ten ten-fold 
ross-validation runs and the standard deviations of these ten error estimates were 
al
ulated for ea
h algorithm-dataset 
ombination. The same folds were used for ea
h algorithm.Table 2 
ompares the results for M50Rules with those for M50 unsmoothed. Results for M50Rules are markedwith a Æ if they show a signi�
ant improvement over the 
orresponding results for M50, and with a � if theyshow a signi�
ant degradation. Results marked with a p show where M50Rules has produ
ed signi�
antlyfewer rules than M50; those marked with a � show where M50Rules has produ
ed signi�
antly more rules thanM50. Results are 
onsidered \signi�
ant" if the di�eren
e is statisti
ally signi�
ant at the 1% level a

ordingto a paired two-sided t-test, ea
h pair of data points 
onsisting of the estimates obtained in one ten-fold
ross-validation run for the two learning algorithms being 
ompared.From Table 2 it 
an be seen that all four heuristi
 methods for 
hoosing rules give results that are rarelysigni�
antly worse than M50. In fa
t, 
hoosing rules simply by 
overage gives an ex
ellent result|a

ura
yon only one dataset is signi�
antly degraded. Ea
h of the remaining three heuristi
s degrade a

ura
y on twodatasets.As well as a

ura
y, the size of the rule set is important be
ause it has a strong in
uen
e on 
omprehensibility.Correlation times 
overage and plain 
overage never result in a larger rule set than M50. These two heuristi
sredu
e the size of the rule set on eleven, and ten datasets respe
tively. Both per
ent root mean squared errorand mean absolute error over 
over in
rease the size of the rule set on one dataset, while de
reasing size ontwelve and eleven datasets respe
tively.Table 3 
ompares a

ura
y for M50Rules with those for Cubist. Table 4 and Table 5 
ompare the averagenumber of rules produ
ed and average number of 
onditions per rule set respe
tively. The results for both



Table 3. Experimental results: 
omparing a

ura
y of M50Rules with Cubist. The values are mean absoluteerror averaged over ten ten-fold 
ross-validation runs. Results are marked with a Æ if they show a signi�
antimprovement over Cubist, and with a � if they show a signi�
ant degradation (the pre
ision of the resultsshown in the table is su
h that some appear identi
al but in fa
t are signi�
antly di�erent, e.g. baskball).Dataset Cubist M50R M50R M50R M50R% RMS MAE/Cover CC�Cover Coverauto93 4.07�0.2 3.66�0.2 Æ 3.66�0.2 Æ 3.66�0.2 Æ 3.66�0.2 ÆautoHorse 9.27�0.5 9.44�0.5 9.36�0.5 9.40�0.5 9.32�0.5autoMpg 2.24�0.1 2.10�0.1 Æ 2.08�0.1 Æ 2.08�0.0 Æ 2.08�0.0 ÆautoPri
e 1639.12�63.8 1636.90�96.6 1655.50�109.9 1650.81�129.0 1637.4�124.74baskball 0.07�0.0 0.07�0.0 Æ 0.07�0.0 Æ 0.07�0.0 Æ 0.07�0.0 Æbodyfat 0.33�0.0 0.40�0.0 � 0.38�0.1 0.37�0.1 0.36�0.1breastTumor 8.97�0.1 8.06�0.1 Æ 8.06�0.1 Æ 8.06�0.1 Æ 8.06�0.1 Æ
holesterol 43.02�1.5 40.91�1.4 Æ 40.99�1.4 40.77�1.4 Æ 40.98�1.4
leveland 0.65�0.0 0.65�0.0 0.66�0.0 0.66�0.0 0.66�0.0
loud 0.26�0.0 0.28�0.0 � 0.28�0.0 � 0.29�0.0 � 0.29�0.0 �
pu 10.96�1.1 13.31�1.3 � 13.33�1.3 � 13.18�1.5 � 13.27�1.4 �e
hoMonths 9.41�0.2 8.90�0.1 Æ 8.90�0.1 Æ 8.90�0.1 Æ 8.90�0.1 Æelusage 7.59�0.2 9.57�0.6 � 9.57�0.6 � 9.57�0.6 � 9.57�0.6 ��sh
at
h 41.66�0.8 39.47�1.5 Æ 41.55�1.5 38.53�1.9 Æ 38.61�1.8 Æhousing 2.37�0.1 2.64�0.1 � 2.71�0.2 � 2.71�0.1 � 2.77�0.1 �hungarian 0.23�0.0 0.28�0.0 � 0.28�0.0 � 0.28�0.0 � 0.28�0.0 �lowbwt 340.29�7.2 370.93�6.7 � 370.93�6.7 � 370.93�6.7 � 370.57�6.4 �mbagrade 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0 0.23�0.0meta 107.26�9.8 123.82�24.5 135.33�22.8 � 131.29�12.8 � 127.72�25.1 �pb
 774.76�16.3 715.67�12.2 Æ 716.13�12.8 Æ 716.13�12.8 Æ 716.13�12.8 Æpharynx 448.93�2.7 352.66�6.1 Æ 351.82�7.5 Æ 352.76�7.9 Æ 353.24�5.9 Æpollution 34.68�2.4 35.15�2.0 35.03�2.1 34.99�2.1 35.03�2.1pwLinear 1.14�0.0 1.15�0.0 1.15�0.0 1.15�0.0 1.15�0.0quake 0.15�0.0 0.15�0.0 0.15�0.0 0.15�0.0 0.15�0.0sensory 0.61�0.0 0.58�0.0 Æ 0.58�0.0 Æ 0.59�0.0 Æ 0.58�0.0 Æservo 0.38�0.0 0.32�0.0 Æ 0.32�0.0 Æ 0.32�0.0 Æ 0.32�0.0 Æsleep 2.84�0.2 2.56�0.1 Æ 2.56�0.1 Æ 2.56�0.1 Æ 2.56�0.1 Æstrike 201.31�5.0 231.12�9.7 � 220.14�4.9 � 222.95�6.4 � 214.91�7.4 �veteran 88.76�5.5 90.48�4.8 90.49�4.8 90.91�4.5 91.52�4.7vineyard 2.28�0.1 2.51�0.2 � 2.51�0.1 � 2.43�0.1 � 2.51�0.1 �Æ,� statisti
ally signi�
ant improvement or degradationa

ura
y and number of rules|as well as Table 2|are summarised for qui
k 
omparison in Table 6. Ea
hentry in Table 6 has two values: the �rst indi
ates the number of datasets for whi
h the method asso
iatedwith its 
olumn is signi�
antly more a

urate than the method asso
iated with its row; the se
ond (in bra
es)indi
ates the number of datasets for whi
h the method asso
iated with its 
olumn produ
es signi�
antly smallerrule sets than the method asso
iated with its row.From the �rst row and the �rst 
olumn of Table 6 it 
an be noted that all four versions of M50Rules|as wellas (perhaps surprisingly) M50|outperform Cubist on more datasets than they are outperformed by Cubist.% RMS and CC � Cover are more a

urate than Cubist on twelve datasets, Cover on eleven datasets andMAE / Cover on ten datasets. By 
omparison, Cubist does better than all four M50Rules variants on ninedatasets, eight of whi
h are the same for all variants. When rule set sizes are 
ompared, it 
an be seen thatM50Rules produ
es smaller rule sets than Cubist more often than not. % RMS and CC � Cover produ
esmaller rule sets than Cubist on twenty-three datasets, and MAE / Cover and Cover produ
e smaller ones ontwenty-two datasets. Cubist, on the other hand, produ
es smaller rule sets than all variants of M50Rules ononly six datasets. From Table 4, it 
an be seen that in many 
ases M50Rules produ
es far fewer rules thanCubist. For example, on the sensory dataset Cubist produ
es just over forty-�ve rules, while M50Rules is morea

urate with approximately four rules. Furthermore, from Table 5 it 
an be seen that M50Rules generatesfewer 
onditions per rule set than Cubist|it is signi�
antly better on twenty-four and worse on at most �ve.For some datasets (sensory, pb
, breastTumor, 
holesterol) the di�eren
es are dramati
.5 Con
lusionWe have presented an algorithm for generating rules for numeri
 predi
tion by applying the separate-and-
onquer te
hnique to generate a sequen
e of model trees, reading one rule o� ea
h of the trees. The algorithm



Table 4. Experimental results: number of rules produ
ed byM50Rules 
ompared with number of rules produ
edby Cubist Dataset Cubist M50R M50R M50R M50R% RMS MAE/Cover CC�Cover Coverauto93 2.92�0.2 1.08�0.1 Æ 1.08�0.1 Æ 1.08�0.1 Æ 1.08�0.1 ÆautoHorse 5.31�0.3 2.12�0.6 Æ 2.20�0.6 Æ 2.83�0.7 Æ 2.79�0.5 ÆautoMpg 6.21�0.5 3.41�0.4 Æ 3.87�0.4 Æ 3.94�0.4 Æ 3.91�0.4 ÆautoPri
e 3.28�0.2 4.88�0.5 � 4.70�0.4 � 4.75�0.5 � 4.24�0.4 �baskball 5.17�0.2 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æbodyfat 1.38�0.2 3.97�0.6 � 3.73�0.4 � 3.58�0.4 � 3.51�0.4 �breastTumor 22.19�0.6 1.06�0.1 Æ 1.06�0.1 Æ 1.06�0.1 Æ 1.06�0.1 Æ
holesterol 18.63�0.8 2.33�0.4 Æ 2.45�0.5 Æ 2.08�0.4 Æ 2.46�0.5 Æ
leveland 8.27�0.8 1.07�0.1 Æ 1.06�0.1 Æ 1.16�0.3 Æ 1.18�0.3 Æ
loud 1.09�0.1 2.62�0.5 � 2.55�0.4 � 2.60�0.4 � 2.63�0.4 �
pu 2.00�0.0 2.74�0.2 � 2.72�0.2 � 2.70�0.2 � 2.71�0.2 �e
hoMonths 6.24�0.4 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æelusage 2.00�0.0 1.62�0.2 Æ 1.62�0.2 Æ 1.62�0.2 Æ 1.62�0.2 Æ�sh
at
h 2.00�0.0 3.47�0.3 � 2.87�0.4 � 3.63�0.3 � 3.63�0.3 �housing 6.90�0.4 9.61�1.6 � 8.44�0.8 � 8.32�0.8 � 8.57�0.7 �hungarian 9.15�0.5 1.56�0.2 Æ 1.56�0.2 Æ 1.65�0.2 Æ 1.69�0.3 Ælowbwt 6.45�0.2 1.05�0.1 Æ 1.05�0.1 Æ 1.05�0.1 Æ 1.04�0.1 Æmbagrade 3.57�0.1 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æmeta 12.90�0.3 5.40�0.4 Æ 5.00�0.4 Æ 5.40�0.6 Æ 4.66�0.5 Æpb
 21.63�0.9 1.63�0.1 Æ 1.64�0.1 Æ 1.65�0.1 Æ 1.64�0.1 Æpharynx 7.96�0.1 2.07�0.5 Æ 2.20�0.5 Æ 2.16�0.4 Æ 2.18�0.4 Æpollution 1.53�0.2 1.22�0.1 Æ 1.19�0.1 Æ 1.20�0.1 Æ 1.21�0.1 ÆpwLinear 2.00�0.0 2.00�0.0 2.00�0.0 2.00�0.0 2.00�0.0quake 4.53�0.9 2.45�0.3 Æ 3.61�0.4 1.98�0.2 Æ 3.66�0.4sensory 45.31�1.1 4.19�0.5 Æ 4.04�0.4 Æ 3.97�0.3 Æ 4.13�0.5 Æservo 5.77�0.1 5.05�0.3 Æ 5.20�0.4 Æ 4.18�0.3 Æ 4.09�0.3 Æsleep 2.17�0.2 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æstrike 16.65�1.5 4.68�0.9 Æ 4.78�0.9 Æ 4.95�1.0 Æ 4.86�1.1 Æveteran 6.48�0.6 1.26�0.3 Æ 1.27�0.3 Æ 1.29�0.2 Æ 1.36�0.3 Ævineyard 2.77�0.1 2.27�0.2 Æ 2.07�0.2 Æ 2.18�0.2 Æ 2.07�0.2 ÆÆ,� statisti
ally signi�
ant improvement or degradationis straightforward to implement and relatively insensitive to the heuristi
 used to sele
t 
ompeting rules fromthe tree at ea
h iteration. M50Rules using the 
overage heuristi
 is signi�
antly worse, in terms of a

ura
y,on only one (autoPri
e) of the thirty ben
h mark datasets when 
ompared with M50. In terms of 
ompa
tness,M50Rules never produ
es larger rule sets and produ
es smaller sets on ten datasets. When 
ompared to the
ommer
ial system Cubist, M50Rules outperforms it on size and is 
omparable on a

ura
y. When based onthe number of leaves it is more than three times more likely to produ
e signi�
antly fewer rules. When thenumber of 
onditions per rule are used to estimate rule size M50Rules is eight times more likely to produ
erules with fewer 
onditions than Cubist.Published results with smoothed trees (WW97) indi
ate that the smoothing pro
edure substantially in
reasesthe a

ura
y of predi
tions. Smoothing 
annot be applied to rules in the same way as for trees be
ause the tree
ontaining the relevant adja
ent models is dis
arded at ea
h iteration of the rule generation pro
ess. It seemsmore likely that improvements to M50Rules will have to be made as a post-pro
essing optimization stage. Thisis unfortunate be
ause generation of a

urate rule sets without global optimization is a 
ompelling aspe
t ofthe basi
 PART pro
edure, on whi
h M50Rules is based. However, smoothing usually in
reases the 
omplexityof the linear models at the leaf nodes, making the resulting predi
tor more diÆ
ult to analyze.6 A
knowledgementsWe would like to thank Gordon Paynter for suggesting the problem and Yong Wang for helpful dis
ussions onmodel trees.



Table 5. Experimental results: average number of 
onditions per rule set produ
ed by M50Rules 
omparedwith average number of 
onditions per rule set produ
ed by CubistDataset Cubist M50R M50R M50R M50R% RMS MAE/Cover CC�Cover Coverauto93 4.37�0.6 0.08�0.1 Æ 0.08�0.1 Æ 0.09�0.1 Æ 0.09�0.1 ÆautoHorse 11.60�1.1 4.47�2.2 Æ 3.89�1.5 Æ 3.96�2.2 Æ 3.63�1.3 ÆautoMpg 14.13�1.6 5.17�1.1 Æ 3.50�0.4 Æ 3.53�0.5 Æ 3.49�0.5 ÆautoPri
e 5.63�0.6 8.61�1.7 � 7.64�1.4 � 7.19�1.0 � 5.98�0.7baskball 11.75�0.7 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æbodyfat 0.76�0.5 6.86�1.7 � 4.07�0.8 � 3.00�0.6 � 3.08�0.6 �breastTumor 81.32�3.9 0.06�0.1 Æ 0.06�0.1 Æ 0.06�0.1 Æ 0.06�0.1 Æ
holesterol 81.86�4.7 1.78�0.8 Æ 1.48�0.6 Æ 1.58�0.6 Æ 1.47�0.5 Æ
leveland 27.37�4.3 0.19�0.3 Æ 0.15�0.3 Æ 0.24�0.4 Æ 0.21�0.4 Æ
loud 0.18�0.1 2.23�0.7 � 1.59�0.4 � 1.79�0.6 � 1.76�0.6 �
pu 2.00�0.0 1.91�0.2 1.86�0.3 1.82�0.2 1.82�0.2e
hoMonths 16.53�1.7 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æelusage 2.00�0.0 0.64�0.2 Æ 0.63�0.2 Æ 0.62�0.2 Æ 0.62�0.2 Æ�sh
at
h 2.00�0.0 4.43�1.1 � 3.66�0.9 � 3.40�0.6 � 3.40�0.6 �housing 18.28�1.6 30.44�6.9 � 18.28�2.7 16.30�2.6 15.73�2.1hungarian 33.04�3.3 0.88�0.3 Æ 0.79�0.3 Æ 0.81�0.3 Æ 0.84�0.4 Ælowbwt 21.19�0.9 0.06�0.1 Æ 0.05�0.1 Æ 0.06�0.1 Æ 0.06�0.1 Æmbagrade 6.61�0.4 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æmeta 25.87�0.6 8.81�1.0 Æ 7.34�0.7 Æ 10.53�1.8 Æ 6.49�0.9 Æpb
 100.86�5.6 0.65�0.1 Æ 0.65�0.1 Æ 0.65�0.1 Æ 0.65�0.1 Æpharynx 7.96�0.1 2.70�1.5 Æ 1.86�0.9 Æ 1.60�0.6 Æ 1.79�0.7 Æpollution 1.18�0.5 0.28�0.2 Æ 0.25�0.1 Æ 0.25�0.1 Æ 0.25�0.1 ÆpwLinear 2.00�0.0 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æ 1.00�0.0 Æquake 9.64�3.0 3.04�0.5 Æ 2.66�0.4 Æ 3.62�0.9 Æ 2.69�0.5 Æsensory 218.80�6.8 8.88�1.6 Æ 5.43�1.1 Æ 5.70�0.9 Æ 5.40�1.2 Æservo 13.33�0.2 7.42�0.9 Æ 7.15�0.9 Æ 5.19�0.6 Æ 5.05�0.5 Æsleep 2.38�0.8 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æ 0.00�0.0 Æstrike 46.55�5.2 9.27�2.9 Æ 4.98�1.2 Æ 7.40�2.1 Æ 5.25�1.6 Æveteran 19.63�2.5 0.50�0.5 Æ 0.42�0.3 Æ 0.41�0.3 Æ 0.41�0.4 Ævineyard 4.13�0.4 1.90�0.2 Æ 1.56�0.2 Æ 1.53�0.2 Æ 1.56�0.2 ÆÆ,� statisti
ally signi�
ant improvement or degradation
Table 6. Results of paired t-tests (p = 0:01): number indi
ates how often method in 
olumn signi�
antlyoutperforms method in row; number in bra
es indi
ates how often method in 
olumn produ
es signi�
antlyfewer rules than method in row.Cubist M50 % RMS MAE / Cover CC � Cover CoverCubist - 12 f20g 12 f23g 10 f22g 12 f23g 11 f22gM50 8 f6g - 0 f12g 0 f11g 0 f11g 0 f10g% RMS 9 f6g 2 f1g - 1 f2g 0 f4g 1 f5gMAE / Cover 9 f6g 2 f1g 1 f2g - 1 f4g 1 f2gCC � Cover 9 f6g 2 f0g 1 f2g 1 f1g - 1 f2gCover 9 f6g 1 f0g 0 f3g 0 f1g 0 f2g -
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