
Mach Learn (2010) 78: 381–420
DOI 10.1007/s10994-009-5161-3

A cooperative coevolutionary algorithm for instance
selection for instance-based learning

Nicolás García-Pedrajas · Juan Antonio Romero del
Castillo · Domingo Ortiz-Boyer

Received: 30 October 2006 / Revised: 10 August 2009 / Accepted: 24 October 2009 /
Published online: 8 December 2009
© The Author(s) 2009

Abstract This paper presents a cooperative evolutionary approach for the problem of in-
stance selection for instance based learning. The model presented takes advantage of one
of the recent paradigms in the field of evolutionary computation: cooperative coevolution.
This paradigm is based on a similar approach to the philosophy of divide and conquer. In
our method, the training set is divided into several subsets that are searched independently.
A population of global solutions relates the search in different subsets and keeps track of the
best combinations obtained. The proposed model has the advantage over standard methods
in that it does not rely on any specific distance metric or classifier algorithm. Additionally,
the fitness function of the individuals considers both storage requirements and classifica-
tion accuracy, and the user can balance both objectives depending on his/her specific needs,
assigning different weights to each one of these two terms. The method also shows good
scalability when applied to large datasets.

The proposed model is favorably compared with some of the most successful standard
algorithms, IB3, ICF and DROP3, with a genetic algorithm using CHC method, and with
four recent methods of instance selection, MSS, entropy-based instance selection, IMOEA
and LVQPRU. The comparison shows a clear advantage of the proposed algorithm in terms
of storage requirements, and is, at least, as good as any of the other methods in terms of
testing error. A large set of 50 problems from the UCI Machine Learning Repository is used
for the comparison. Additionally, a study of the effect of instance label noise is carried out,
showing the robustness of the proposed algorithm.

The major contribution of our work is showing that cooperative coevolution can be used
to tackle large problems taking advantage of its inherently modular nature. We show that a

Editor: Risto Miikkulainen.

N. García-Pedrajas (�) · J.A. Romero del Castillo · D. Ortiz-Boyer
Department of Computing and Numerical Analysis, University of Córdoba, Campus Universitario de
Rabanales, 14071 Córdoba, Spain
e-mail: npedrajas@uco.es

J.A. Romero del Castillo
e-mail: aromero@uco.es

D. Ortiz-Boyer
e-mail: dortiz@uco.es

mailto:npedrajas@uco.es
mailto:aromero@uco.es
mailto:dortiz@uco.es

382 Mach Learn (2010) 78: 381–420

combination of cooperative coevolution together with the principle of divide-and-conquer
can be very effective both in terms of improving performance and in reducing computational
cost.

Keywords Instance selection · Evolutionary algorithms

1 Introduction

The overwhelming amount of data that is available nowadays in any field of research poses
new problems for data mining and knowledge discovery methods. This huge amount of data
makes most of the existing algorithms inapplicable to many real-world problems. Two ap-
proaches have been used to face this problem: scaling up data mining algorithms (Provost
and Kolluri 1999) and data reduction. Nevertheless, scaling up a certain algorithm is not
always feasible. Data reduction consists of removing from the data missing, redundant,
information-poor data and/or erroneous data to get a tractable problem size. Data reduction
techniques use different approaches: feature selection (Liu and Motoda 1998), feature-value
discretization (Hussain et al. 1999), and instance selection (Blum and Langley 1997). This
paper deals with instance selection for instance based learning.

Instance selection (Liu and Motoda 2002) consists of choosing a subset of the total avail-
able data to achieve the original purpose of the data mining application as if the whole data
is used. Different variants of instance selection exist. Many of the approaches are based on
some form of sampling (Cochran 1977; Kivinen and Mannila 1994). However, there are
other methods that are based on different principles.

Our aim is focused on instance selection for instance-based learning. We can distinguish
two main models (Cano et al. 2003): instance selection as a method for prototype selection
for algorithms based on prototypes (such as k-Nearest Neighbors) and instance selection
for obtaining the training set for a learning algorithm that uses this training set (such as
classification trees or neural networks). Although the proposed model is used for the former
approach, it can be used for the latter without any significant modification.

The problem of instance selection for instance based learning can be defined as Brighton
and Mellish (2002) “the isolation of the smallest set of instances that enable us to predict
the class of a query instance with the same (or higher) accuracy than the original set”.

It has been shown that different groups of learning algorithms need different instance
selectors in order to suit their learning/search bias (Brodley 1995). This may render many
instance selection algorithms useless, if their philosophy of design is not suitable for the
problem at hand. Our algorithm does not assume any structure of the data or any behavior
of the classifier, adapting the instance selection to the performance of the classifier.

Evolutionary Computation (EC) (Holland 1975; Goldberg 1989; Michalewicz 1994) is a
set of global optimization techniques that have been widely used in the last few years for
almost every problem within the field of Artificial Intelligence. In evolutionary computation
a population (set) of individuals (solutions to the problem faced) are codified following
a code similar to the genetic code of plants and animals. This population of solutions is
evolved (modified) over a certain number of generations (iterations) until the defined stop
criterion is fulfilled. Each individual is assigned a real value that measures its ability to solve
the problem, which is called its fitness.

In each iteration new solutions are obtained combining two or more individuals
(crossover operator) or randomly modifying one individual (mutation operator). After apply-
ing these two operators a subset of individuals is selected to survive to the next generation,

Mach Learn (2010) 78: 381–420 383

either by sampling the current individuals with a probability proportional to their fitness,
or by selecting the best ones (elitism). The repeated processes of crossover, mutation and
selection are able to obtain increasingly better solutions for many problems of Artificial
Intelligence.

Brighton and Mellish (2002) argued that the structure of the classes formed by the in-
stances can be very different, thus, an instance selection algorithm can have a good perfor-
mance in one problem and be very inefficient in another. They state that the instance selec-
tion algorithm must gain some insight into the structure of the classes to perform an efficient
instance selection. However, this insight is usually not available or very difficult to acquire,
especially in real-world problems with many variables and complex boundaries between the
classes. In such a situation, an approach based on EC may be of help. The approaches based
on EC do not assume any special form of the space, the classes or the boundaries between
the classes, they are only guided by the ability of each solution to solve the task. In this way,
the algorithm learns the relevant instances from the data without imposing any constraint in
the form of classes or boundaries between them.

Within the field of EC there is a paradigm that focuses on approaching complex tasks
by dividing them into simpler subproblems: Cooperative Coevolution (CC). The term was
introduced by Potter and De Jong (1994). The basic idea underlying CC is the evolution of
partial solutions to complex problems that can cooperate to make up a global solution (Potter
and De Jong 1994, 2000; Moriarty and Miikkulainen 1996). In CC each individual is not
the solution to a problem, but just a partial solution. Different individuals must be combined
to obtain a solution. In this way, modularity is an intrinsic aspect of the methodology. The
proposed method for instance selection for instance based learning is based on cooperative
coevolution. In this way, our model divides the problem of instance selection into different
subproblems, easier to be efficiently solved.

In a first approach our method shares some of the ideas underlying stratified random
sampling (Liu and Motoda 2002). In stratified random sampling a set of n instances is di-
vided into k non-overlapping subsets of sizes n1, n2, . . . , nk , where

∑
i ni = n. Each subset

is called a stratum. Then a random sample is extracted from each stratum. In our approach
the set of instances is stratified and each stratum is assigned to evolve following a genetic
algorithm. In this way, the initial populations are constructed by stratified random sampling.
The evolution of the individuals in each population optimizes the classification and storage
requirements within the stratum. The main contribution of our method is the use of cooper-
ative coevolution to promote collaboration among the strata. In this way, another population
is created that keeps track of the best combination of individuals so far and enforces co-
operation among the individuals that evolve using instances of each stratum. The model
allows interaction among the simpler searches that are carried out in each stratum, instead
of performing a large search in the whole set.

One of the ways of solving complex problems is decomposing them into several simpler
tasks, that can be dealt with separately. In instance selection this is problematic. Although
we can divide the training set into several subsets, it is difficult to achieve a real problem
decomposition, as in order to obtain the nearest neighbor of a given instance, the whole
training set must be considered. We can use a stratified approach (Cano et al. 2003) divid-
ing the dataset into several disjoint subsets, and then apply a instance selection algorithm to
each subset. However, in such a method, the solution obtained by each algorithm is conta-
minated by the partial view of the dataset it has. Our model is a way of achieving at least a
partial problem decomposition. Several subpopulations evolve taking only into account the
instances of a certain subset. The use of another population that combines the results of each
subpopulation is able to give the model the necessary global view to accomplish its task.

384 Mach Learn (2010) 78: 381–420

As in any other field of application, a new algorithm is aimed at improving the results of
the existing methods. Thus, our first objective is to obtain better results than state-of-the-art
instance selection methods. However, within the field of instance selection, scalability is an
important issue. Thus, the proposed model is also intended to be more scalable than other
proposals based on genetic algorithms. Our way of approaching scalability is by means of
the cooperative coevolution paradigm, as we have stated. So, one of the primary concerns of
this work is to study the viability of cooperative coevolution in the field of instance selection.
As this paradigm has proven useful for cases where the decomposition of a problem in
simpler tasks is interesting, it can be useful in instance selection. This paradigm presents
the advantage of offering the possibility of a distributed implementation as a way to achieve
scalability for large problems. Due to the computational cost of evolutionary algorithms,
it is difficult to apply evolutionary based instance selection algorithms to large problems.
We think that the most straightforward way of achieving scalability is through the design
of algorithms that can be distributed. In this way, as our basic algorithm can be parallelized
but not efficiently distributed, we present a second version that can be both parallelized
and distributed. This second version is shown to have similar performance to the original
algorithm.

In fact, we are trying to achieve problem decomposition using cooperative coevolution.
This problem decomposition is partial, because the problem itself is global, the usefulness
of an instance cannot be fully assured without taking into account the whole training set.
Here is where cooperative coevolution becomes relevant. The evolution of subcomponents
allows for partial problem decomposition, and the possibility of facing simpler problems.
The evolution of combinations of subcomponents allows the global view that is needed for
an effective instance selection method.

Finally, to avoid confusion, we must remark that the term coevolution alone is usually
used for both competitive and cooperative coevolution. However, the two paradigms are
quite different. Our model is based on cooperative coevolution, that is, the use of cooper-
ative subcomponents that must work together to solve a complex task. On the other hand,
competitive coevolution works with individuals that evolve together and compete for the
resources. These individuals usually represent views of the problem and the solution. They
can take the form of host/parasites (Hillis 1991), predators/preys (Rosin and Belew 1997),
antibodies/antigens (García-Pedrajas and Fyfe 2007), or some more recent methods (Bon-
gard and Lipson 2005a, 2005b). It is also commonly used in the evolution of game players
(Moriarty and Miikkulainen 1995; Chellapilla and Fogel 1999). This work is only concerned
with cooperative coevolution.

This paper is organized as follows: Section 2 reviews some related work; Section 3
presents the proposed model for instance selection based on cooperative coevolution; Sec-
tion 4 states the experimental setup; Section 5 shows the results of the experiments; Sec-
tion 6 shows an additional comparison with some recent algorithms; Section 7 studies the
behavior of our method in large datasets; Section 8 discusses the results of our experiments;
Section 9 summarizes future research lines; and finally Sect. 10 states the main conclusions
of our work.

2 Related work

Instance selection methods have been being developed for many years (Cochran 1977;
Kivinen and Mannila 1994). Revisions of most current standard methods can be found in Liu
and Motoda (2002) and Brighton and Mellish (2002). These methods are usually designed
for nearest neighbors classifiers, taking into account the behavior of these classifiers.

Mach Learn (2010) 78: 381–420 385

As an alternative to these standard methods, genetic algorithms have been applied for
instance selection, considering this task to be a search problem. The application is easy
and straightforward. Each individual is a binary vector that codes a certain sample of the
training set. The evaluation is usually made considering both data reduction and classifica-
tion accuracy. Examples of applications of genetic algorithms to instance selection can be
found in Kuncheva (1995), Ishibuchi and Nakashima (2000) and Reeves and Bush (2001).
We can also mention a first attempt of using competitive coevolution by Hillis (1991), who
used a parasite model to reduce the number of instances needed to test a sorting network.
That method was able to discard easily solved problems allowing a faster evaluation of the
individuals in a genetic algorithm.

One of the most interesting advantages of the application of evolutionary computation to
instance selection is that evolutionary approaches do not depend on specific classifiers, and
can be used with any instance based classifier. This is in contrast with most standard instance
selection algorithms that are specifically designed for k-NN classifiers. For instance, Reeves
and Bush (2001) used a genetic algorithm to select instances for RBF neural networks.

Cano et al. (2003) performed a comprehensive comparison of the performance of dif-
ferent evolutionary algorithms for instance selection. They compared a generational genetic
algorithm (Goldberg 1989), a steady-state genetic algorithm (Whitley 1989), a CHC ge-
netic algorithm (Eshelman 1990), and a population based incremental learning algorithm
(Baluja 1994). They found that evolutionary based methods were able to outperform clas-
sical algorithms in both classification accuracy and data reduction. Among the evolutionary
algorithms, CHC was able to achieve the best overall performance.

The major problem addressed when applying genetic algorithms to instance selection
is the scaling of the algorithm. As the number of instances grows, the time needed for the
genetic algorithm to reach a good solution increases exponentially, making it totally useless
for large problems. Recently, Cano et al. (2005, 2007) have proposed a stratified approach
to alleviate this difficulty.

To the best of our knowledge there is no previous application of cooperative coevolution
to instance selection for instance based learning.

3 Instance selection by cooperative coevolution

In cooperative coevolution a number of species are evolved together. Cooperation among
individuals is encouraged by rewarding the individuals for their joint effort to solve a tar-
get problem. The work in this paradigm has shown that cooperative coevolutionary models
present many interesting features, such as specialization through genetic isolation, testing
and efficiency (Potter and De Jong 2000). Cooperative coevolution approaches the design
of modular systems in a natural way, as the modularity is part of the model. Other models
need some a priori knowledge to decompose the problem by hand. In many cases, either this
knowledge is not available or it is not clear how to decompose the problem. The cooperative
coevolutionary model offers a very natural way for modeling the evolution of cooperative
parts.

Our model is inspired on a stratified approach. It is obvious that if we could perform
independent searches within each stratum, the task would be simplified. However, this is
not possible as the nearest neighbors of each instance can be in any stratum. Considering
only the instances in the stratum will yield to erroneous evaluation of the neighbors. So,
we develop a model that combines a search in independent strata together with a method of
combining those independent searches in such a way that the results are useful and efficient.

386 Mach Learn (2010) 78: 381–420

Fig. 1 Distribution of the dataset among the different subpopulations of instances and representation of an
individual

Our cooperative model, called COOPERATIVE COEVOLUTIONARY INSTANCE SELEC-
TION (CCIS) algorithm, is based on two separate populations that evolve cooperatively.1

These two populations are:

– Population of selectors. This population is made up of s independent subpopulations. The
whole training set is divided into s approximately equal parts and each part is assigned
to a subpopulation. Each individual of a subpopulation is a subset of instances for the
corresponding subset of training instances (see Fig. 1). Every subpopulation is evolved
using a standard genetic algorithm. The individuals of these subpopulations will be called
throughout the paper selectors. We will use the term population of selectors when refer-
ring to all the subpopulations of selectors as a whole.

The subpopulations in the population of selectors are also evolved separately, without
exchanging genetic material. Thus, we can consider that our proposal evolves s + 1 sep-
arate populations. To avoid confusion, as the two populations have different individuals,
we will consider in the following that we evolve two separate populations, one of them
made up of s independent subpopulations of selectors.

– Population of combinations of instances sets. Each member of the population of combi-
nations is the combination of an individual from every subpopulation.

The population of combinations keeps track of the best combinations of selectors for
different subsets of instances, selecting the combinations that are promising for the final
global selector selection of the whole dataset. The individuals of this population will be
called throughout the paper combinations.

The individuals of the populations of selectors are subject to two operations: crossover
and mutation. The crossover operator is the Half Uniform Crossover (HUX) (Eshelman
1990). This operator generates two offspring from two parents. Each offspring inherits the
matching bits of the two parents, and half of the non-matching bits from each parent alter-
nately.

1A model sharing some of these basic ideas has already been successfully applied to the evolution of modular
neural networks (García-Pedrajas et al. 2002) and ensembles of neural networks (García-Pedrajas et al. 2005).

Mach Learn (2010) 78: 381–420 387

Fig. 2 Populations of selectors and combinations. Each element of the population of combinations is a
reference to an individual of the corresponding subpopulation of selectors

Mutation operator takes two forms: random mutation and local search mutation. Random
mutation randomly modifies some of the bits of an individual. Local search mutation per-
forms a local search algorithm to help the genetic algorithm to fine tune a good solution.2

The local search algorithm is a Reduced Nearest Neighbor (RNN) (Gates 1972) algorithm
considering only the patterns in the stratum assigned to the subpopulation. This algorithm is
fast and greatly improves the performance of CCIS.

The two populations evolve cooperatively. Each generation of the whole system consists
of N generations of the combination population followed by M generations of the selector
population. The relationship between the two populations can be seen in Fig. 2. The fig-
ure shows the basic scheme of the architecture of our cooperative model. First, we divide
the whole dataset in as many disjoint equal sized subsets as subpopulations of selectors.
Each subset is assigned to a subpopulation, which disregards the rest of the instances. Each
subpopulation evolves considering only this subset as the problem to solve. In this way, if
we have n training instances and s subpopulations, each subpopulation deals with n/s in-
stances. A member of a subpopulation is a selection of instances in the subset assigned to
the subpopulation and is represented by means of a string of 1’s and 0’s. At a higher level, to
accomplish the global view we need to solve the instance selection problem efficiently, we
have the population of combinations. Each individual of this population is a selection in the
complete dataset. This selection is formed taking a member of every subpopulation. Thus,
an individual of this population is made up of an individual of subpopulation 1, an individ-
ual of subpopulation 2, and so on. The individuals of the population of combinations are
represented as a string of integers, each one indicating the selector from the corresponding
subpopulation that belongs to the individual.

The second basis of our model is the use of multiple criteria in the evaluation of the
fitness of the individuals of the population of selectors and combinations. The evaluation of

2The use of a local search algorithm is common in evolutionary computation as these kinds of algorithms
usually find it difficult to converge to an optimal solution.

388 Mach Learn (2010) 78: 381–420

several objectives for each selector allows the model to encourage cooperation, rewarding
the selectors not only for their performance in solving the given problem, but also for other
aspects, such as whether they are different from other selectors, whether they are useful in
the combinations or anything else considered relevant by the designer.

Each individual in the population of selectors is evaluated combining three different cri-
teria. Each criterion is intended to evaluate the individual in a different aspect. We must note
that the fitness of the selectors is not directly measurable within the problem framework as
they constitute only a partial solution. These three criteria are:

Error. (ε) Training accuracy when applying a 1-NN learning rule3 using the instances se-
lected by the individual, and only considering the instances in the subset assigned to the
subpopulation. It is only an estimation of the ability of the individual as the instances of
the other subpopulations are not considered.

Reduction. (ρ) Percentage of reduction represented by the individual. It is measured as the
number of instances of the individual, that is, the number of bits set to 1, divided by the
size of the instance subset.

Difference. (δ) The individual is removed from all the combinations where it is present, and
the performance of such combinations with the individual removed is measured. The value
of this criterion is measured as the difference in performance of these combinations with
and without the individual. This criterion enforces competition among subpopulations of
selectors preventing subpopulations with few useful instances to harm the storage reduction
of the algorithm. If a subpopulation does not contain useful instances, the value of this
criterion in the fitness of their individuals will be near 0 and only a few instances will be
included in the final solution.

The fitness of the individuals is measured using a weighted sum of these three criteria. In
this way, the fitness of individual i, fi , is given by:

fi = wε(1 − ε) + wρρ + wδδ, (1)

where wε , wρ , and wδ , must be fixed by the user. We chose these weights with the constraint
wε + wρ + wδ = 1.

The evaluation of the combinations is made considering two criteria: reduction of storage,
ρ, and classification error, ε, using a 1-NN learning rule. The fitness of individual j , Fj , is
given by:

Fj = w(1 − ε) + (1 − w)ρ, (2)

where 0 ≤ w ≤ 1. The weight w is needed to avoid an undesirable effect that may occur due
to the asymmetry of the two values of the fitness function: the reduction value can be made
arbitrarily high, until the maximum value 1, by just removing more instances. To avoid this
effect w must be large, so that if the reduction is too large, the accuracy will be negatively
affected and the fitness of the individual penalized.

This fitness function for the combinations is the usual one when evolutionary compu-
tation is applied to instance selection (Cano et al. 2003). As we are interested in reducing
instances while keeping the performance, the fitness of each individual must take both fac-
tors into account. Regarding the fitness function for the population of selectors, we first

3By modifying the classifier used in this criterion we can use our model in any learning environment, not just
for a k-NN learning rule.

Mach Learn (2010) 78: 381–420 389

considered a larger set of 14 terms in the fitness function.4 By means of a stepwise process
we removed useless terms until reaching the fitness function given in the equation. The un-
derlying idea is combining the two usual terms in evolutionary instance selection, accuracy
and reduction, with a third term that measures the ability of the individual for improving the
fitness of the combinations where it participates.

The generation of a new population of combinations is made using a steady-state genetic
algorithm (Whitley and Kauth 1988; Whitley 1989).5 This algorithm is chosen due to the
fact that we need a population of combinations that evolves more slowly than the population
of selectors, as the changes in the population of combinations have a major impact on the
fitness of the selectors. The steady-state genetic algorithm avoids the negative effect that this
drastic modification of the population of combinations may have over the subpopulations of
selectors. It has also been shown by some papers in the area (Whitley and Starkweather
1990; Syswerda and Study 1991) that the steady-state genetic algorithm produces better
solutions than the standard genetic algorithm.

The steady-state algorithm has several features that are different from the standard ge-
netic algorithm. From our point of view, the most interesting is the fact that in each genera-
tion only one new individual is created by crossover, and it substitutes the worst individual
of the population.

The algorithm also allows adding mutation to the model, always at very low rates. Usu-
ally mutation rate ranges from 1% to 5%. In our model we have modified this standard
algorithm allowing the replacement of the n worst individuals instead of replacing just the
worst one. In our experiments n = 2. We also selected the two offspring of the crossover
operator, instead of just one.

Crossover is made at selector level, using a standard two-point crossover. Thus the par-
ents exchange their selectors to generate their offspring. Mutation is also carried out at se-
lector level. When a combination is mutated, one of its selectors is randomly chosen and
substituted by another one of the same subpopulation selected by means of a roulette algo-
rithm.

During the generation of the new selector subpopulation, some selectors of every subpop-
ulation are removed and substituted by new ones. The removed selectors are also substituted
in the combinations. This substitution has two advantages: first, poor performing selectors
are removed from the combinations and substituted by potentially better ones; second, new
selectors have the opportunity to participate in the combinations immediately after their
creation.

The complete algorithm is detailed in Algorithm 1. Mutation in the population of combi-
nations is performed with probability Pmutation. In the subpopulations of instance sets random
mutation is performed with probability Prandom. Once a selector is chosen for mutation, each
bit is flipped with a probability Pbit. RNN mutation is performed with probability Prnn.

The key aspect of our work is the use of two separate populations that cooperate in
solving the instance selection problem. This architecture has the following advantages over
other approaches:

– The cooperative method approaches the problem of instance selection by means of an
automatic decomposition in simpler problems. The cooperation among the individuals
that solve those simple problems provides a global solution to the problem.

4Many of these terms are common to the ones used for evolving artificial neural networks in a previous work
(García-Pedrajas and Ortiz-Boyer 2007).
5It is important to note that the specific evolution of both populations is not relevant to the success of the
model. It is the cooperative coevolution of the two populations that is the key aspect of the method.

390 Mach Learn (2010) 78: 381–420

Algorithm 1: Cooperative coevolutionary instance selection (CCIS)
Data: A training set S = {(x1, y1), . . . , (xn, yn)}, a number of nearest neighbors k, and the number of

iterations N,M .
Result: The reduced training set: S′ ⊂ S.

1 Initialize population of combinations
2 Initialize subpopulations of selectors

while Stopping criterion not met do
for N iterations do

3 Evaluate population of combinations
4 Select two individuals by roulette selection and perform two point crossover
5 Offspring substitutes two worst individuals
6 Perform mutation with probability Pmutation

end
for M iterations do

foreach subpopulation i do
7 Evaluate selectors of subpopulations i

8 Copy Elitism% to new subpopulation i

9 Fill (1-Elitism)% of subpopulation i by HUX crossover
10 Apply random mutation with probability Prandom
11 Apply RNN mutation with probability Prnn

end
12 Evaluate population of combinations

end
end

– Unlike other approaches that are specifically designed for k-NN classifiers, our algorithm
can be used with any classifier. In this way, the model can be used for any instance based
classifier, such as a neural network, a tree or a support vector machine.

– The flexibility of the weight of classification accuracy and storage requirements in the
fitness of the individuals provides a way to adjust the algorithm to the special needs of
any task. Therefore, if we are interested either in a large storage reduction or in a good
classification accuracy we can adjust the weights accordingly.

– The proposed method can be distributed with a few modifications. Then next section
shows how the distribution can be carried out. Section 5.2 shows the performance of
the decoupled version of the algorithm that can be implemented in a distributed/parallel
architecture.

One important aspect of any instance selection algorithm is its computational cost. Our
algorithm is competitive in this matter with standard genetic algorithms such as CHC. In fact
its computational cost is smaller for medium to large problems. In order to study the cost
of the algorithm, we must consider the two inner loops of Algorithm 1 separately. The first
one, lines 3 to 6, is similar in cost to a CHC algorithm as evaluating an individual will spend
the same amount of time. However, as this loop uses a steady-state genetic algorithm, only 2
individuals need to be evaluated per loop, which is a significantly smaller quantity than the
evaluation of the whole population needed by the CHC algorithm. This is precisely one of
the advantages of our method, as it does not need to evaluate a large number of individuals,
taking advantage of the evolution of the subpopulations of selectors.

The second loop consists of the evolution of each subpopulation of selectors. Due to the
distribution of the instances among the subpopulations the evolution of these subpopulations
is faster. If we have n instances in a dataset, for evaluating a population of a CHC algorithm
we need a number of operations proportional to n2. In our case, if we have s subpopulations,
each one deals with a subset of n/s instances, needing a number of operations proportional

Mach Learn (2010) 78: 381–420 391

to n2/s2. Thus, evaluating all s subpopulations will need a number of operations propor-
tional to n2/s, which is smaller than the number of operations needed by CHC. In fact, the
evaluation can be made in parallel if we have the appropriate architecture, of distributedly
with the modification shown in the next section, allowing the parallel evaluation of the sub-
populations with a number of operations proportional to n2/s2. Furthermore, as the number
of instances of each subpopulation is smaller, we can use a cache of distances, which can
greatly improve the execution time of the algorithm. As the final step of this loop, we must
reevaluate the population of combinations.

In principle, this evaluation is as costly as a generation of a CHC algorithm, with the
addition of the computation of difference criterion. However, there are several factors that
make it simpler. First, the neighbors obtained in the evaluation of the subspopulations can
be used in the evaluation of the individuals, decreasing the number of distances to calculate.
Also, as the convergence of the subpopulations is faster, the number of selected instances is
lower. And, finally, as we use elitism in the subpopulations of selectors, some of the indi-
viduals of the population of combinations keep all their selectors unchanged, making their
reevaluation unnecessary. Furthermore, the difference criterion can be evaluated efficiently
as only the instances which have as nearest neighbor one of the elements of the selector must
be reevaluated.

The last step that is responsible for a significant computational cost is the mutation op-
eration. For both, CCIS and CHC, we have used a RNN mutation as local search operator.
As it will be shown in Sect. 5.1, this mutation is important for a better performance of the
algorithms. However, the computational cost of this mutation is different depending on the
method. For CCIS, as the number of instances in each subpopulation is n/s the number of
operations for each mutation is proportional to n2/s2; for CHC the number of operations is
proportional to n2.

3.1 Distributed implementation

One of the most straightforward ways of scaling up an algorithm is running it in parallel. De-
pending on the available resources, we can consider the parallel execution of the algorithm in
a multiprocessor machine with shared memory (we will call this option parallel implemen-
tation), or we can run the algorithm using a cluster of independent computers which must
communicate with each other (we will call this distributed implementation). The parallel
implementation has the serious drawback that multiprocessor machines are very expensive.
On the other hand, clusters of personal computers are easily available due to their lower
cost.

Thus, one major problem of our proposed algorithm is that its implementation in a dis-
tributed architecture is problematic due to the coupled evolution of combinations and se-
lectors. Although the evaluation of selectors of different subpopulations can be performed
separately, the need to evaluate all the combinations after each modification of the subpop-
ulations (line 12 in Algorithm 1) prevents any efficient distributed implementation of the
algorithm. For a distributed implementation we will need to broadcast all the new subpop-
ulations to allow the evaluation of the population of combinations. After that evaluation the
new fitness vector will also be needed by all the subpopulations. In this way, the amount of
communication would prevent an efficient execution. Although this can be ameliorated by
the use of a parallel implementation, this will only be possible when a parallel architecture
is available. In contrast, the version we present in this section can be efficiently distributed.
As the requirements for a distributed implementation are more readily available, this version
of the algorithm is better for dealing with large problems.

392 Mach Learn (2010) 78: 381–420

Algorithm 2: Decoupled cooperative coevolutionary instance selection (D–CCIS)
Data: A training set S = {(x1, y1), . . . , (xn, yn)}, a number of nearest neighbors k, and the number of

iterations N,M .
Result: The reduced training set: S′ ⊂ S.

1 Initialize population of combinations
2 Initialize subpopulations of selectors

while Stopping criterion not met do
for N iterations do

3 Evaluate population of combinations
4 Select two individuals by roulette selection and perform two point crossover
5 Offspring substitutes two worst individuals
6 Perform mutation with probability Pmutation

end
for M iterations do

foreach subpopulation i do
7 Evaluate selectors of subpopulations i

8 Copy Elitism% to new subpopulation i

9 Fill (1-Elitism)% of subpopulation i by HUX crossover
10 Apply random mutation with probability Prandom
11 Apply RNN mutation with probability Prnn

end
end

12 Evaluate population of combinations

end

As stated, the main problem with a distributed implementation is the coupling of the
evolution of the M generations of the population of combinations and the N generations
of the subpopulations of selectors. We propose an alternative implementation where the
evaluation of the combinations is made only after the N generations of the subpopulations
of selectors. The general evolution is shown in Algorithm 2. We call this implementation the
decoupled version of the algorithm.

The main drawback of this version is that during the inner loop (lines 7 to 11) the eval-
uation of the selectors is only approximate, as the population of combinations is not reeval-
uated until line 12. Nevertheless, Sect. 3.1 presents results that show that this decoupled
implementation is able to achieve almost as good a performance as the original one in terms
of storage reduction.

This version allows the distribution of the evaluation and evolution of the different sub-
populations of selectors. This is the most computationally expensive part of the algorithm.
Additionally, the evaluation of the combinations can be made in parallel, without any mod-
ification of the algorithm.

3.2 Evaluating instance selection algorithms

The evaluation of a certain instance selection algorithm is not a trivial task. We can distin-
guish two basic approaches: direct and indirect evaluation (Liu and Motoda 2002). Direct
evaluation evaluates a certain algorithm based exclusively on the data. The objective is to
measure at which extent the selected instances reflect the information present in the origi-
nal data. Some proposed measures are entropy (Cover and Thomas 1991), moments (Smith
1998), and histograms (Chaudhuri et al. 1998). Indirect methods evaluate the effect of the
instance selection algorithm on the task at hand. So, if we are interested in classification we
evaluate the performance of the used classifier when using the reduced set obtained after
instance selection as learning set.

Mach Learn (2010) 78: 381–420 393

Therefore, when evaluating instance selection algorithms for instance learning, the most
usual way of evaluation is estimating the performance of the algorithms for a set of bench-
mark problems. For those problems several criteria can be considered, such as Wilson and
Martinez (2000): storage reduction, testing accuracy, noise tolerance, and learning speed.
Speed considerations are difficult to measure, as we are evaluating not only an algorithm
but also a certain implementation, so we do not consider speed in our evaluation. We will
test our algorithm and other eight algorithms on several datasets and evaluate their data re-
duction ability and testing accuracy. Section 5.3 is concerned with the study of the noise
tolerance of the algorithms.

4 Experimental setup

In order to make a fair comparison between the standard algorithms and our proposal we
have selected a large set of 50 problems from the UCI Machine Learning Repository (Het-
tich et al. 1998). For estimating the storage reduction and testing error we used k-fold cross-
validation method, with k = 10. In this method the available data is divided into k approx-
imately equal subsets. Then, the method is learned k times, using in turn each one of the k

subsets as testing set, and the remaining k − 1 subsets as training set. The estimated error is
the average testing error of the k subsets. A summary of these datasets is shown in Table 1.
The table shows the testing error of a 1-NN classifier, that can be considered as a baseline
measure of the error of each dataset. These datasets can be considered representative of
problems from small to medium size.

The use of t -tests (Anderson 1984) for the comparison of several classification methods
has been criticized in several papers (Dietterich 1998). This test can provide an accurate
evaluation of the probability of obtaining the observed outcomes by chance, but it has lim-
ited ability to predict relative performance even on further data set samples from the same
domain, let alone on other domains. Moreover, as more datasets and classification algo-
rithms are used, the probability of type I error, a true null hypothesis incorrectly rejected,
increases dramatically. Multiple comparison tests can be used in order to circumvent this last
problem, but these tests are usually not able to establish differences among the algorithms.

To avoid these problems we perform, in a first approach, a single significance test for
every pair of algorithms. This test is a sign test on the win/draw/loss record of the two
algorithms across all datasets. If the probability of obtaining the observed results by chance,
the p-value of the sign test, is below 5% we conclude that the observed performance is
indicative of a general underlying advantage to one of the algorithms with respect to the
type of learning task used in the experiments.

Nevertheless, the comparison using sign tests has two potential problems: Firstly, the
differences between the two algorithms compared must be very marked for the test to find
significant differences (Demšar 2006); secondly, on some occasions the p-value of the test
can be above or below the critical value due to a single modification of the outcome of one
experiment, making the result of the test less reliable. So, as an additional test we have used
the Wilcoxon test for comparing pairs of algorithms, for several reasons (Demšar 2006).
Wilcoxon test assumes limited commensurability. It is safer than parametric tests since it
does not assume normal distributions or homogeneity of variance. Thus, it can be applied to
error ratios and storage requirements. Furthermore, empirical results (Demšar 2006) show
that it is also stronger than other tests.

Our model is tested against three of the most successful state-of-the-art algorithms. We
have used the algorithms IB3 (Aha et al. 1991), DROP3 (Wilson and Martinez 2000), and

394 Mach Learn (2010) 78: 381–420

Table 1 Summary of datasets. The features of each data set can be C (continuous), B (binary) or N (nominal).
The Inputs column shows the number of inputs, as it depends not only on the number of input variables but
also on their type

Data set Cases Features Classes Inputs 1-NN error

C B N

abalone 4177 7 – 1 29 10 0.8034

anneal 898 6 14 18 5 59 0.0157

audiology 226 – 61 8 24 93 0.3273

autos 205 15 4 6 6 72 0.3300

balance 625 4 – – 3 4 0.2226

breast-cancer 286 – 3 6 2 15 0.3714

cancer 699 9 – – 2 9 0.0479

card 690 6 4 5 2 51 0.2174

dermatology 366 1 1 32 6 34 0.0472

ecoli 336 7 – – 8 7 0.2060

gene 3175 – – 60 3 120 0.2647

german 1000 6 3 11 2 61 0.3120

glass 214 9 – – 6 9 0.2952

glass-g2 163 9 – – 2 9 0.2000

heart 270 13 – – 2 13 0.2333

heart-c 302 6 3 4 2 22 0.2400

hepatitis 155 6 13 – 2 19 0.1933

horse 364 7 2 13 3 58 0.3667

hypothyroid 3772 7 20 2 4 29 0.0692

ionosphere 351 33 1 – 2 34 0.1314

iris 150 4 – – 3 4 0.0467

kr vs. kp 3196 – 34 2 2 38 0.0828

labor 57 8 3 5 2 29 0.0600

led24 200 – 24 – 10 24 0.5350

liver 345 6 – – 2 6 0.3794

ICF (Brighton and Mellish 2002). In IB3 algorithm, an instance is acceptable for the algo-
rithm if the lower bound on its accuracy is significantly higher than the upper bound on the
frequency of its class at a 90% confidence level (see Wilson and Martinez 2000 for details).
On the other hand, an instance is removed if the upper bound of its accuracy is lower (at a
70% confidence level) than the lower bound on the frequency of its class. Other instances
are kept during training, and then dropped at the end if they do not prove to be acceptable.
The formula for the upper and lower bounds of the confidence interval is:

p + z2/2n ± z

√
p(1−p)

n
+ z2

4n2

1 + z2/n
, (3)

where for the accuracy of an instance, n is the number of attempts since the introduction
of the instance, p is the accuracy of the attempts, and z is the confidence level (0.9 for
acceptance and 0.7 for dropping). For the frequency of a class, p is the frequency, n is the
number of processed instances, and z the confidence level (0.9 for acceptance and 0.7 for

Mach Learn (2010) 78: 381–420 395

Table 1 (Continued)

Data set Cases Features Classes Inputs 1-NN error

C B N

lrs 531 101 – – 10 101 0.1887

lymphography 148 3 9 6 4 38 0.1929

new-thyroid 215 5 – – 3 5 0.0333

optdigits 5620 64 – – 10 64 0.0256

page-blocks 5473 10 – – 5 10 0.0362

pendigits 10992 16 – – 10 16 0.0066

phoneme 5404 5 – – 2 5 0.0952

pima 768 8 – – 2 8 0.3013

post-operative 90 1 – 7 3 20 0.4889

primary-tumor 339 – 14 3 22 23 0.6515

promoters 106 – – 57 2 114 0.2500

satimage 6435 36 – – 6 36 0.0927

segment 2310 19 – – 7 19 0.0355

sick 3772 7 20 2 2 33 0.0430

sonar 208 60 – – 2 60 0.1550

soybean 683 – 16 19 19 82 0.0779

texture 5500 40 – – 11 40 0.0105

tic-tac-toe 958 – – 9 2 9 0.0779

vehicle 846 18 – – 4 18 0.2929

vote 435 – 16 – 2 16 0.0675

vowel 990 10 – – 11 10 0.2919

waveform 5000 40 – – 3 40 0.2860

wine 178 13 – – 3 13 0.0353

yeast 1484 8 – – 10 8 0.4689

zoo 101 1 15 – 7 16 0.0600

dropping). IB3 is one of the classic instance selection algorithms, and, as shown by the
experiments below, has a very good performance.

DROP3 (Decremental Reduction Optimization Procedure 3) represents one of the exam-
ples of a new generation of algorithms that were designed taking into account the effect of
the order of removal on the performance of the algorithm. So, this algorithm is designed to
be insensitive to the order of presentation of the instances. It includes a noise filtering step
using a method similar to Wilson’s Edited Nearest-Neighbor Rule (Wilson 1972). Then, the
instances are ordered by the distance to their nearest neighbor. The instances are removed
beginning with the instances furthest from its nearest neighbor. This tends to remove the
instances furthest from the boundaries first.

For ICF algorithm coverage and reachability are defined as follows:

Coverage(c) = {c′ ∈ T : LocalSet(c)} (4)

Reachable(c) = {c′ ∈ T : LocalSet(c′)}. (5)

The Local-set of a case c is defined as “the set of cases contained in the largest hyper-
sphere centered on c such that only cases in the same class as c are contained in the hyper-

396 Mach Learn (2010) 78: 381–420

sphere” (Brighton and Mellish 2002). In Case Base Reasoning (CBR) framework (Smyth
and Keane 1995) a case c can be adapted to a case c′ if c is relevant to the correct prediction
of c′. That means that c is a member of the neighborhood of c′, bounding the neighborhood
of c′ by the first instance of a different class (see Brighton and Mellish 2002 for details).
The algorithm is based on repeatedly applying a deleting rule to the set of retained instances
until no more instances fulfill the deleting rule.

The concept of reachable and coverage sets used by ICF are similar to the neighborhood
and associate sets used by RT algorithms (Wilson and Martinez 1997). The difference is that
the sets defined in ICF are not of fixed size, but bounded by the first instance belonging to
another class. This difference is considered crucial by the authors of ICF.

As our method is an evolutionary algorithm, comparing with other evolutionary ap-
proaches is a must. We have chosen as evolutionary method to compare with, a genetic
algorithm using CHC methodology (Eshelman 1990). The CHC algorithm was used be-
cause in Cano et al. (2003) several evolutionary algorithms were compared for instance
selection purposes and CHC was found to be the best alternative. CHC stands for Cross
generational elitist selection, Heterogeneous recombination and Cataclysmic mutation. The
non-traditional CHC genetic algorithm differs from traditional GAs in a number of ways
(Louis and Li 1997):

1. To obtain the next generation for a population of size N , the parents and the offspring are
put together and the N best individual are selected.

2. To avoid premature convergence, only different individuals, separated by a threshold
Hamming distance—in our implementation 4 bits—are allowed to mate.

3. During crossover, two parents exchange exactly half of their non-matching bits. This
operator is the Half Uniform Crossover (HUX) (Eshelman 1990) explained above.

4. Mutation is not used during the regular evolution. In order to avoid premature conver-
gence or stagnation of the search, the population is reinitialized when the individuals are
not diverse. In such a case only the best individual is kept in the new population.

The implementation of the genetic algorithm uses the most natural representation for
each individual. The chromosome of each individual has as many bits as instances in the
training set. A bit whose value is 1 means that the corresponding instance is selected, a 0
means that the corresponding instance is not selected. The fitness measure of an individual i,
fi is given by:

fi = w(1 − εi) + (1 − w)ρi, (6)

where w = 2
3 . Obviously, the objective of the genetic algorithm is to maximize the accuracy

and to minimize the storage requirements. The relative weights of storage and accuracy are
selected to avoid a large reduction with the side effect of a poor performance.

All the standard methods are based on distances and nearest neighbor classifiers, so our
cooperative algorithm uses 1-NN as classification rule to make the comparison as fair as
possible. The source code in C of the standard algorithms and CCIS is licensed under the
General Public License and freely available upon request to the authors.

5 Experimental results

In this section we show the results obtained with the different tested methods. Table 2 shows
the results in storage and testing error terms of the three standard algorithms and a genetic

Mach Learn (2010) 78: 381–420 397

Table 2 Testing error and storage requirements for the three standard algorithms, IB3, DROP3, and ICF, and
the CHC genetic algorithm

Dataset IB3 DROP3 ICF Gen. alg. (CHC)

Storage Error Storage Error Storage Error Storage Error

abalone 0.7438 0.8038 0.2450 0.7775 0.2818 0.7854 0.4483 0.8002

anneal 0.0969 0.0427 0.1265 0.0427 0.2197 0.0528 0.0745 0.0427

audiology 0.4706 0.3727 0.2745 0.5500 0.3245 0.5000 0.1784 0.4455

autos 0.4195 0.3750 0.4054 0.4700 0.4335 0.4500 0.1703 0.4400

balance 0.2426 0.2790 0.2179 0.1694 0.1862 0.2258 0.1277 0.2194

breast-cancer 0.1225 0.4214 0.1814 0.3036 0.2190 0.3250 0.0822 0.3607

cancer 0.0310 0.0464 0.0638 0.0507 0.0375 0.0464 0.0549 0.0421

card 0.1435 0.2594 0.2532 0.2319 0.2409 0.2087 0.0837 0.2667

dermatology 0.1294 0.0889 0.1385 0.0667 0.1982 0.0694 0.0979 0.0861

ecoli 0.2310 0.2363 0.1620 0.1636 0.1360 0.2000 0.1327 0.1909

gene 0.2874 0.3117 0.3770 0.2940 0.3265 0.3145 0.4320 0.2991

german 0.1461 0.3870 0.2559 0.2910 0.1880 0.3090 0.1447 0.3230

glass 0.3384 0.3381 0.2922 0.3238 0.2741 0.3333 0.1529 0.3762

glass-g2 0.1674 0.2313 0.3217 0.2313 0.2327 0.2438 0.1333 0.3000

heart 0.1214 0.2185 0.2111 0.2222 0.1745 0.2370 0.0802 0.2630

heart-c 0.1254 0.2467 0.2063 0.1800 0.2000 0.1867 0.1342 0.2567

hepatitis 0.1029 0.2667 0.1479 0.2000 0.1379 0.2133 0.0814 0.2067

horse 0.2271 0.4528 0.2128 0.3611 0.2235 0.3944 0.0875 0.3722

hypothyroid 0.0765 0.2430 0.0251 0.1064 0.0423 0.0793 0.2166 0.0804

ionosphere 0.1399 0.1086 0.0930 0.1457 0.0519 0.1514 0.1408 0.1371

iris 0.1385 0.0867 0.1652 0.0600 0.3526 0.0800 0.0859 0.1067

kr vs. kp 0.1408 0.1135 0.2377 0.0981 0.3185 0.0611 0.2074 0.1097

labor 0.1846 0.2200 0.3692 0.1600 0.1962 0.1800 0.1154 0.2400

led24 0.6178 0.5450 0.4417 0.5100 0.4356 0.5250 0.2106 0.6050

liver 0.1640 0.4265 0.4129 0.3971 0.3129 0.4265 0.0939 0.4471

lrs 0.2259 0.2132 0.1393 0.1924 0.1178 0.2038 0.1789 0.1868

lymph. 0.1911 0.2357 0.3313 0.2500 0.2575 0.2071 0.1679 0.2714

new-thyroid 0.1077 0.0619 0.1273 0.0619 0.1057 0.0619 0.1670 0.0571

optdigits 0.0817 0.0651 0.1003 0.0514 0.0797 0.0792 0.4419 0.0342

page-blocks 0.0368 0.0761 0.0438 0.0411 0.0448 0.0415 0.2260 0.0430

pendigits 0.0346 0.0219 0.0532 0.0160 0.0520 0.0196 0.4911 0.0089

phoneme 0.0748 0.1680 0.1809 0.1282 0.1777 0.1346 0.2738 0.1398

algorithm using CHC methodology. Table 3 shows the results of the cooperative algorithm
for 3, 5, and 10 subpopulations.

Figure 3 shows a plot summary of the results in Table 2, and Fig. 4 shows a plot summary
of the results in Table 3 together with the decoupled implementation of the next section. The
plots show in the x-axis the storage requirements and in the y-axis the testing error. Better
results are shown as points closer to the origin. In it, we can easily see that in terms of
testing error all methods achieved similar results, but that in terms of storage reduction, the
proposed cooperative method is significantly better than the other tested methods.

398 Mach Learn (2010) 78: 381–420

Table 2 (Continued)

Dataset IB3 DROP3 ICF Gen. alg. (CHC)

Storage Error Storage Error Storage Error Storage Error

pima 0.1280 0.3355 0.2225 0.2829 0.1942 0.2842 0.1292 0.3013

post-op 0.1086 0.5333 0.1210 0.3333 0.2543 0.4222 0.2148 0.4000

primary-t 0.6562 0.6819 0.2631 0.5940 0.3428 0.6213 0.1925 0.6879

promoters 0.1896 0.2900 0.3958 0.2800 0.3833 0.3100 0.1813 0.2300

satimage 0.1429 0.1287 0.1263 0.1129 0.0973 0.1330 0.4111 0.1098

segment 0.1003 0.0697 0.1352 0.0641 0.1839 0.0745 0.0951 0.0762

sick 0.0387 0.1369 0.0517 0.0536 0.0627 0.0610 0.2043 0.0525

sonar 0.1824 0.2150 0.3330 0.2750 0.2527 0.2750 0.1351 0.2300

soybean 0.1677 0.1059 0.1868 0.1118 0.4992 0.0853 0.0943 0.1265

texture 0.0685 0.0347 0.0985 0.0318 0.1393 0.0371 0.4870 0.0217

tic-tac-toe 0.1292 0.0495 0.2684 0.0105 0.5443 0.0179 0.1162 0.0569

vehicle 0.3002 0.3321 0.3192 0.3036 0.2869 0.3107 0.1845 0.3440

vote 0.0770 0.1047 0.0928 0.0907 0.1036 0.1070 0.0735 0.0884

vowel 0.2077 0.3192 0.4259 0.3222 0.5807 0.3050 0.1906 0.3394

waveform 0.2851 0.3208 0.2709 0.2876 0.1838 0.3118 0.4956 0.2990

wine 0.1379 0.0647 0.1702 0.0588 0.1441 0.0470 0.1199 0.0647

yeast 0.4142 0.5189 0.2718 0.4696 0.2474 0.4716 0.1626 0.0900

zoo 0.2110 0.0500 0.2319 0.1000 0.4736 0.0900 0.1626 0.0900

Average 0.1981 0.2451 0.2160 0.2186 0.2311 0.2262 0.1873 0.2273

Table 3 Summary of results for the cooperative method in terms of testing error and storage requirements.
The results of using 3, 5, and 10 subpopulations are shown

Dataset 3 subpopulations 5 subpopulations 10 subpopulations

Storage Error Storage Error Storage Error

abalone 0.2795 0.7950 0.4681 0.8055 0.4368 0.8036

anneal 0.1043 0.0528 0.0349 0.0292 0.0271 0.0506

audiology 0.2985 0.4500 0.1902 0.3682 0.1142 0.4045

autos 0.2887 0.3050 0.2108 0.3300 0.1108 0.4350

balance 0.1128 0.2016 0.0346 0.1274 0.0256 0.1306

breast-cancer 0.1120 0.3071 0.0434 0.2786 0.0217 0.2857

cancer 0.0405 0.0334 0.0111 0.0363 0.0138 0.0333

card 0.0703 0.2406 0.0277 0.1739 0.0201 0.1942

dermatology 0.0530 0.0389 0.0600 0.0583 0.0506 0.0583

ecoli 0.0416 0.1454 0.0521 0.1606 0.0455 0.1485

gene 0.1467 0.3363 0.1258 0.3372 0.1565 0.3372

german 0.1268 0.3240 0.0260 0.2560 0.0189 0.2700

glass 0.1870 0.3333 0.1316 0.3333 0.0679 0.3143

glass-g2 0.1258 0.2000 0.0966 0.2063 0.0721 0.2500

heart 0.0584 0.1963 0.0432 0.1741 0.0280 0.2185

heart-c 0.0438 0.1700 0.0312 0.1767 0.0243 0.1667

Mach Learn (2010) 78: 381–420 399

Table 3 (Continued)

Dataset 3 subpopulations 5 subpopulations 10 subpopulations

Storage Error Storage Error Storage Error

hepatitis 0.0614 0.2400 0.0514 0.2267 0.0250 0.2267

horse 0.1152 0.3667 0.0723 0.3611 0.0320 0.3667

hypothyroid 0.0418 0.0753 0.0607 0.0828 0.0731 0.0851

ionosphere 0.0864 0.1372 0.0471 0.0971 0.0380 0.0857

iris 0.1296 0.0667 0.0511 0.0467 0.0422 0.0733

kr vs. kp 0.2434 0.1182 0.0964 0.1787 0.1431 0.1649

labor 0.1596 0.2200 0.1231 0.1600 0.0789 0.1400

led24 0.2611 0.6250 0.1867 0.5550 0.1033 0.5950

liver 0.1183 0.4147 0.0733 0.3676 0.0476 0.3647

lrs 0.1270 0.1868 0.0573 0.1849 0.0398 0.1717

lymphography 0.1560 0.2286 0.0843 0.2214 0.0619 0.2143

new-thyroid 0.1139 0.0524 0.0402 0.0476 0.0402 0.0476

optdigits 0.1088 0.0512 0.2321 0.0391 0.1602 0.0452

page-blocks 0.0552 0.0472 0.0667 0.0442 0.0713 0.0457

pendigits 0.1058 0.0158 0.2348 0.0123 0.1712 0.0125

phoneme 0.3100 0.1406 0.2920 0.1409 0.2929 0.1426

pima 0.0382 0.2790 0.0276 0.2619 0.0157 0.2579

post-operative 0.0790 0.3000 0.0432 0.3333 0.0284 0.3444

primary-tumor 0.2399 0.6364 0.2530 0.6606 0.3219 0.6758

promoters 0.1229 0.1500 0.1708 0.2400 0.2083 0.3100

satimage 0.1323 0.1186 0.1770 0.1102 0.1906 0.1115

segment 0.1143 0.0939 0.1360 0.0779 0.1399 0.0853

sick 0.0420 0.0517 0.0651 0.0522 0.0724 0.0517

sonar 0.1511 0.1800 0.1165 0.1900 0.0739 0.2750

soybean 0.1867 0.1250 0.0775 0.0838 0.0655 0.0853

texture 0.0896 0.0369 0.1398 0.0343 0.1810 0.0275

tic-tac-toe 0.1337 0.0663 0.0593 0.0642 0.0400 0.0737

vehicle 0.1785 0.3345 0.0768 0.3452 0.0551 0.3298

vote 0.0623 0.0814 0.0219 0.0605 0.0161 0.0605

vowel 0.2328 0.3515 0.1598 0.3757 0.1308 0.3798

waveform 0.3702 0.2924 0.4061 0.2906 0.3634 0.3060

wine 0.0565 0.0353 0.0460 0.0529 0.0379 0.0235

yeast 0.1423 0.4851 0.0371 0.4358 0.0276 0.4007

zoo 0.1110 0.0600 0.1011 0.0700 0.0978 0.0800

Average 0.1353 0.2159 0.1094 0.2071 0.0944 0.2152

Table 4 shows the parameters used for the evolution of CCIS. The method is fairly stable
with respect to minor changes in these parameters. In this way, small modifications in the
number of individuals per population, the values for mutation rates or the rest of the pa-
rameters have little effect on the overall performance of the algorithm. The parameters are
common for all the experiments shown throughout the paper, unless changes are reported.

400 Mach Learn (2010) 78: 381–420

Fig. 3 Summary of results in terms of testing error and storage for the studied methods

The first noticeable result shown by the table is the large improvement on storage require-
ments achieved by the cooperative algorithm. There is a clear advantage over both the stan-
dard algorithms and the CHC algorithm. The improvement is more marked as the number of
subpopulations increases. This improvement is achieved without harming the performance,
as the testing ability is similar, and better in many problems, to the performance of the other
four algorithms. As the cooperative algorithm removes instances taking into account only
the effect of the removal on the classification accuracy, it is able to remove instances that
are not considered for removal by the standard algorithms. Additionally, dividing the prob-
lem into several subproblems that are optimized individually allows a more efficient search
for useful solutions. The overall population of combinations assures the collaboration of the
best selectors from each subpopulation. The whole system shows a very good performance,
both in testing error and storage requirements.

Tables 5 and 6 show the comparison of the different models as explained above in terms
of storage requirements and testing error respectively. As we have stated, our first compara-
tive descriptive statistic is the win/draw/loss record. In the table the win/draw/loss record is
labeled as s, the first value (the win record) is the number of datasets for which the algorithm
of the corresponding column (the evolutionary method) performs better than the algorithm
of the corresponding row (the standard method), the second value (the draw record) is the
number of datasets for which the two algorithms have the same error , and the third value
(the loss record) is the number of datasets for which the algorithm of the corresponding col-
umn performs worse than the algorithm of the corresponding row. The row labeled ps is the

Mach Learn (2010) 78: 381–420 401

Fig. 4 Summary of results in terms of testing error and storage for the studied methods

result of the two-tailed sign test on the win-loss record and the row labeled pw shows the
result of the Wilcoxon test.

The tables also present the mean of errors and storage across all datasets. This is a very
gross indication of the relative performance. Although this measure must be handled with
caution, a low mean error/storage can be considered indicative of a tendency toward low
error rates/storage requirements for individual domains.

Considering the standard algorithms, Table 5 shows that IB3 is able to outperform both
ICF and DROP3 in terms of storage requirements. At a confidence level of 95% the sign and
Wilcoxon tests show a significant difference between IB3 and the other two standard algo-
rithms. The performance of ICF and DROP3 is very similar, without significant differences
between them. Although the CHC algorithm is able to obtain better results than the standard
algorithms, the differences are not significant for the Wilcoxon test at a 95% confidence
level. The results for the cooperative algorithm are very good; CCIS is able to outperform
the three standard algorithms and CHC algorithm. The differences are significant for the two
tests, and the win/draw/loss record shows a clear advantage of the proposed method.

For the cooperative method, the increment in the number of subpopulations shows an
improvement in the storage requirements. In this way, the algorithm with 10 subpopulations
achieves significantly better results than the algorithm with 3 and 5 subpopulations, and the
algorithm with 5 subpopulations performs better than the algorithm with 3 subpopulations.

In terms of testing error, Table 6 shows a different behavior. In this case, DROP3 signif-
icantly outperforms the other two standard algorithms, and ICF performs better than IB3.
CHC achieves results similar to IB3 and ICF, and worse than DROP3. For cooperative algo-

402 Mach Learn (2010) 78: 381–420

Table 4 Parameters of the
cooperative algorithm used in all
the experiments

Parameter Value

General Individuals 100

Subpopulations {3,5,10}
Generations 100

M 10

N 10

Combinations w 0.9

Mutation rate 0.1

Selectors Subpopulation size 30

wε 0.25

wρ 0.15

wδ 0.60

Elitism 0.5

Prnn 0.1

Prandom 0.1

Pbit 0.1

Table 5 Comparison of results for the three standard methods, the genetic algorithm, and the three coopera-
tive methods in terms of storage requirements

IB3 ICF DROP3 GA(CHC) Cooperative algorithm

3 5 10

Mean all 0.1981 0.2311 0.2160 0.1873 0.1353 0.1094 0.0944

IB3 s 17/0/33 15/0/35 33/0/17 35/0/15 41/0/9 39/0/11

ps 0.0328 0.0066 0.0328 0.0066 0.0000 0.0001

pw 0.0421 0.0236 0.2184 0.0001 0.0000 0.0000

ICF s 21/0/29 35/0/15 40/0/10 40/0/10 40/0/10

ps 0.3222 0.0066 0.0000 0.0000 0.0000

pw 0.9807 0.0578 0.0000 0.0000 0.0000

DROP3 s 35/0/15 40/0/10 39/0/11 38/0/12

ps 0.0066 0.0000 0.0001 0.0003

pw 0.0718 0.0000 0.0000 0.0000

CHC s 32/0/18 43/0/7 46/0/4

ps 0.0649 0.0000 0.0000

pw 0.0169 0.0000 0.0000

CCIS 3 s 36/0/14 37/0/13

ps 0.0026 0.0009

pw 0.0017 0.0003

CCIS 5 s 37/1/12

ps 0.0005

pw 0.0004

Mach Learn (2010) 78: 381–420 403

Table 6 Comparison of results for the three standard methods, the genetic algorithm, and the three coopera-
tive methods in terms of testing error

IB3 ICF DROP3 GA(CHC) Cooperative algorithm

3 5 10

Mean all 0.2451 0.2262 0.2186 0.2273 0.2159 0.2071 0.2152

IB3 s 32/3/15 39/1/10 28/1/21 36/1/13 41/0/9 36/0/14

ps 0.0186 0.0000 0.3916 0.0014 0.0000 0.0026

pw 0.0023 0.0001 0.2711 0.0002 0.0000 0.0018

ICF s 38/1/11 23/1/26 32/0/18 34/1/15 32/3/15

ps 0.0001 0.7754 0.0649 0.0094 0.0186

pw 0.0077 0.2078 0.1975 0.0021 0.0129

DROP3 s 17/0/33 23/0/27 32/2/16 30/1/19

ps 0.0328 0.6718 0.0293 0.1524

pw 0.0047 0.6605 0.0436 0.3491

CHC s 31/2/17 33/0/17 31/0/19

ps 0.0595 0.0328 0.1189

pw 0.0065 0.0004 0.0076

CCIS 3 s 29/0/21 28/3/19

ps 0.3222 0.2430

pw 0.0978 0.2905

CCIS 5 s 17/5/28

ps 0.1352

pw 0.0940

rithms, only the algorithm with 5 subpopulations is able to outperform the three standard al-
gorithms and CHC. With 3 subpopulations the algorithm performs better than IB3 and CHC,
but does not improve the results of ICF and DROP3. With 10 subpopulations the algorithm
is able to improve the results of the standard algorithms with the exception of DROP3. There
are no significant differences among the cooperative algorithm with 3, 5, and 10 subpopula-
tions at a 95% level of confidence. However, the algorithm with 5 subpopulations is the best
one at a confidence level of 90% for the Wilcoxon test.

It is also interesting to compare our proposal with the other genetic algorithm used, CHC,
in terms of evolution time. Such comparison is plotted in Fig. 5. The figure shows the dif-
ference between the time spent by CHC algorithm on average for each problem and the
time spent by our method. A positive value means our algorithm is faster. The figure shows
that for small problems the time spent by both algorithms is similar with a small advan-
tage of CHC. For these problems the creation and evaluation of several subpopulations is an
overload that is not compensated due to the small number of instances. However, for larger
problems our algorithm shows a general advantage over CHC. When the number of sub-
populations is 3 the behavior is not better, as each subpopulation receives many instances.
For 5 and 10 subpopulations our method is faster for most of the larger problems. The aver-
age difference for all problems is favorable to our method for 5 and 10 subpopulations. We
must also notice that the method presented in Sect. 3.1 can be easily distributed for a faster
execution.

404 Mach Learn (2010) 78: 381–420

Fig. 5 Summary of average time spent by CCIS with 3, 5, and 10 subpopulations. The table shows the
difference in the time needed by CHC and our proposal

5.1 Control experiments

In this section we show several control experiments that test whether some components
of our model are responsible for the behavior of the method, or are just adding unneeded
complexity to the algorithm. Our model is based on the use of two populations that evolve
together. While the population of selectors is obviously a must, the population of combina-
tions can be subject to discussion. For instance, an alternative way would be the combination
of the best individual of each subpopulation (Potter and De Jong 2000). We can argue that
such architecture is not likely to obtain good results for two reasons: (i) the view that each
subpopulation has of the dataset is only partial, so the cooperation among individuals of the
different subpopulations introduced by the population of combinations is a must to account
for a global view of the problem; and (ii) removing the population of combinations results
in also removing the factor “Difference” from the fitness (see (1)) of the selectors. However,
we have performed a control experiment using the combination of the best individuals of
each subpopulation and removing the population of combinations. The algorithm was per-
formed using 5 subpopulations and the parameters shown in Table 4. The comparison with
the proposed method is shown in Table 7. The comparison in terms of testing error is fa-
vorable to our proposal with a difference that is statistically significant at a 99% confidence

Mach Learn (2010) 78: 381–420 405

Table 7 Comparison of results
for the cooperative algorithm
with 5 subpopulations and the
control experiments in terms of
testing error and storage
requirements

Storage requirements

5 subpops No combinations No RNN

Mean all 0.1094 0.2971 0.2400

Standard s 0/0/50 1/0/49

ps 0.0000 0.0000

pw 0.0000 0.0000

Testing error

5 subpops No combinations No RNN

Mean all 0.2071 0.2344 0.2116

Standard s 16/1/33 23/4/23

ps 0.0213 1.0000

pw 0.0002 0.3903

level. Furthermore, the difference is even more marked in storage requirements, where our
method is able to beat the control experiment for all datasets. The poor performance of the
control experiment is due to the less degree of cooperation among the subpopulations. In
our method, many instances can be removed by the selectors because there are instances
in other selectors that are able to make them useless. However, in the control experiment
that may not happen, as the collaboration among the subpopulations is no longer explicit,
but implicit. An individual will receive a higher fitness if it adds more value to the group
of individuals it is being evaluated with from the other populations, producing evolution-
ary pressure to collaborate. It seems that the explicit collaboration of our method is able to
improve the results of that implicit collaboration.

The second control experiment deals with the RNN algorithm performed as a mutation
operator. In general, genetic algorithms find problems in fine tuning the solutions obtained
after the global search. In the words of Michalewicz (p. 107 in Michalewicz 1994) “Genetic
algorithms display inherent difficulties in performing local search for numerical applica-
tions. Holland (1975) suggested that the genetic algorithm should be used as a preproces-
sor to perform the initial search, before turning the search process over to a system that
can apply domain knowledge to guide the local search”. The same problem is referred in
Grefenstette (1987): “Like natural genetic systems, genetic algorithms progress by virtue of
changing the distribution of high performance substructures in the overall population; indi-
vidual structures are not the focus of the attention. Once the high performance regions of the
search are identified by a genetic algorithm, it may be useful to invoke a local search routine
to optimize the members of the final population”. Thus, RNN was introduced as a mutation
operator to help the genetic algorithm to locally improve the solutions. Introducing RNN
as a mutation, instead of as a local optimization performed in all individuals, was intended
to avoid premature convergence of the evolution to local minima. So, although the use of
RNN is motivated by the previous facts, we have performed a second control experiment to
assure that the algorithm is actually helping the model. The control experiment uses 5 sub-
populations with the parameters shown in Table 4, with the exception that RNN mutation
probability is set to 0. The comparison is shown in Table 7.

In terms of testing error, both experiments, with and without RNN mutation obtain sim-
ilar results. As RNN only removes instances that do not cause a decrement in the accuracy,
its presence or absence should not affect the testing error of the method. On the other hand,

406 Mach Learn (2010) 78: 381–420

Table 8 Comparison of results
for the cooperative algorithm
with the standard and the
decoupled implementation with
10 subpopulations in terms of
testing error and storage
requirements

Storage Testing error

CCIS D–CCIS CCIS D–CCIS

Mean all 0.0944 0.0841 0.2152 0.2283

Standard s 25/0/25 14/2/34

ps 1.0000 0.0055

pw 0.3823 0.0013

the results for storage are greatly affected by removing RNN mutation. For all datasets, ex-
cept 1, the algorithm performs worse without RNN mutation, showing the utility of such a
mutation operator.

5.2 Distributed implementation

In Sect. 3.1 we offered a version of the algorithm that can be distributed. The possibility of
implementing these kinds of algorithms in parallel or distributedly is of great importance
due to the execution time requirements of the algorithm when facing large problems. In this
section we study whether the approximate implementation discussed achieves good enough
results to be used when the distributed implementation is a necessity due to the size of the
problems.

For testing the performance of the decoupled implementation we have run this version
of the algorithm with the same parameters shown in Table 4 and 10 subpopulations. These
results are compared with the standard version of the cooperative algorithm. The results are
shown in Table 9.

The comparison of the two versions of the algorithm is shown in Table 8. In terms of
storage requirements it is interesting to note that the decoupled algorithm is able to match
the performance of the standard implementation. The mean over all datasets is even better
than the mean of the standard version, although the differences between them are not sig-
nificant. On the other hand, the standard implementation performs significantly better than
the decoupled version in terms of testing error. This is an expected result, as the algorithm is
iterating with only an approximate knowledge of the classification error of the individuals.
Nevertheless, the differences are not dramatic, and the decoupled algorithm is an interesting
choice when the problem to be faced is large. This is a clear advantage over other algorithms
that cannot be implemented distributedly.

5.3 Noise tolerance

Real data is often affected by noise, which can occur in many forms and for many reasons
(Brighton and Mellish 2002). In this section we focus on the study of the effect on the
instance selection algorithm of noise in the form of mislabeled training instances. As most of
the standard algorithms implement some steps of noise filtering it is very interesting to know
the effectiveness of such noise filtering and how it compares with the cooperative process
presented here. We should note that the cooperative algorithm has no explicit treatment of
noisy instances, so the only way it can remove them is via the effect that noisy instances
have on the fitness function.

To add noise to the class labels we follow the method of Dietterich (2000). To add clas-
sification noise at a rate r , we chose a fraction r of the instances and changed their class
labels to be incorrect choosing uniformly from the set of incorrect labels. We chose all the

Mach Learn (2010) 78: 381–420 407

Table 9 Summary of results for the cooperative method with 10 subpopulations using the standard and the
decoupled implementations

Dataset CCIS D–CCIS

Storage Error Storage Error

abalone 0.4368 0.8036 0.3274 0.8134

anneal 0.0271 0.0506 0.1605 0.0640

audiology 0.1142 0.4045 0.0779 0.4682

autos 0.1108 0.4350 0.0627 0.5000

balance 0.0256 0.1306 0.0258 0.1355

breast-cancer 0.0217 0.2857 0.0237 0.2786

cancer 0.0138 0.0333 0.0168 0.0362

card 0.0201 0.1942 0.0188 0.1884

dermatology 0.0506 0.0583 0.0573 0.0583

ecoli 0.0455 0.1485 0.0578 0.1697

gene 0.1565 0.3372 0.1731 0.3486

german 0.0189 0.2700 0.0171 0.3000

glass 0.0679 0.3143 0.0736 0.4095

glass-g2 0.0721 0.2500 0.0673 0.2938

heart 0.0280 0.2185 0.0379 0.1889

heart-c 0.0243 0.1667 0.0287 0.1833

hepatitis 0.0250 0.2267 0.0257 0.2067

horse 0.0320 0.3667 0.0262 0.3528

hypothyroid 0.0731 0.0851 0.1107 0.0899

ionosphere 0.0380 0.0857 0.0491 0.1143

iris 0.0422 0.0733 0.0548 0.0533

kr vs. kp 0.1431 0.1649 0.1294 0.1643

labor 0.0789 0.1400 0.0962 0.1400

led24 0.1033 0.5950 0.0711 0.5850

liver 0.0476 0.3647 0.0335 0.3765

lrs 0.0398 0.1717 0.0341 0.1868

lymphography 0.0619 0.2143 0.0597 0.2500

new-thyroid 0.0402 0.0476 0.0418 0.0381

optdigits 0.1602 0.0452 0.1447 0.0445

page-blocks 0.0713 0.0457 0.0981 0.0448

pendigits 1 0.1712 0.0125 0.0896 0.0132

phoneme 0.2929 0.1426 0.1497 0.1697

pima 0.0157 0.2579 0.0144 0.2697

post-operative 0.0284 0.3444 0.0308 0.2889

primary-tumor 0.3219 0.6758 0.3026 0.6879

promoters 0.2083 0.3100 0.2281 0.2800

datasets and an intermediate rate of noise of 10%. With this level of noise we performed the
experiments using the same setup and parameters of the previous sections. The cooperative
method was run with 10 subpopulations as it was the best performing configuration. Table 10
shows the results in terms of testing error and storage requirements of all the algorithms.

408 Mach Learn (2010) 78: 381–420

Table 9 (Continued)

Dataset CCIS D–CCIS

Storage Error Storage Error

satimage 0.1906 0.1115 0.1346 0.1226

segment 0.1399 0.0853 0.1347 0.0887

sick 0.0724 0.0517 0.0856 0.0531

sonar 0.0739 0.2750 0.0474 0.2950

soybean 0.0655 0.0853 0.0785 0.1118

texture 0.1810 0.0275 0.1500 0.0335

tic-tac-toe 0.0400 0.0737 0.0833 0.1074

vehicle 0.0551 0.3298 0.0450 0.3560

vote 0.0161 0.0605 0.0255 0.0768

vowel 0.1308 0.3798 0.0777 0.4677

waveform 0.3634 0.3060 0.1625 0.2906

wine 0.0379 0.0235 0.0398 0.0765

yeast 0.0276 0.4007 0.0229 0.4405

zoo 0.0978 0.0800 0.1000 0.1000

Average 0.0944 0.2152 0.0841 0.2283

Table 10 Testing error and storage requirements are shown for the three standard algorithms, IB3, DROP3,
and ICF, the CHC genetic algorithm, and CCIS with 10 subpopulations, for a noise level of 10%

Dataset IB3 DROP3 ICF CHC CCIS 10

Stor. Error Stor. Error Stor. Error Stor. Error Stor. Error

abalone 0.8222 0.8350 0.2529 0.7995 0.1839 0.8072 0.4904 0.8554 0.4472 0.8321

anneal 0.2438 0.3326 0.1271 0.1551 0.1314 0.1831 0.0831 0.2056 0.1260 0.2023

audiology 0.5931 0.5046 0.2917 0.6046 0.1397 0.6091 0.2333 0.6046 0.1010 0.5182

autos 0.4860 0.4750 0.3935 0.5150 0.2184 0.5600 0.2189 0.4700 0.1043 0.4550

balance 0.3222 0.4129 0.2236 0.2920 0.1732 0.3145 0.0704 0.2903 0.0245 0.2371

breast-c. 0.2020 0.5107 0.2620 0.3429 0.1818 0.4214 0.1163 0.3964 0.0209 0.3000

cancer 0.0862 0.1957 0.0643 0.1348 0.0435 0.1580 0.0964 0.1565 0.0095 0.1130

card 0.1926 0.3594 0.2811 0.3174 0.1736 0.3116 0.1142 0.3551 0.0205 0.2652

derma. 0.2976 0.2612 0.1467 0.1167 0.0730 0.2889 0.0891 0.1972 0.0403 0.1389

ecoli 0.4184 0.4515 0.1650 0.2727 0.0904 0.3091 0.1165 0.3424 0.0416 0.2757

gene 0.3518 0.4025 0.3842 0.3552 0.2223 0.4104 0.4710 0.4025 0.1738 0.4117

german 0.2079 0.4390 0.3100 0.3590 0.1361 0.4080 0.0826 0.3830 0.0183 0.3350

glass 0.4182 0.4571 0.3145 0.4048 0.1446 0.4810 0.1254 0.4286 0.0829 0.3810

glass-g2 0.2238 0.2938 0.3340 0.2938 0.1531 0.3563 0.1211 0.3563 0.0571 0.3063

heart 0.1786 0.3296 0.2407 0.2889 0.1304 0.3259 0.1054 0.3185 0.0280 0.2296

heart-c 0.2048 0.3533 0.2397 0.2900 0.1552 0.2900 0.0662 0.2700 0.0268 0.2467

hepatitis 0.1393 0.3533 0.1750 0.2067 0.0936 0.2534 0.1079 0.2400 0.0322 0.2400

horse 0.2875 0.5250 0.2226 0.4194 0.1326 0.4167 0.1083 0.4556 0.0277 0.4472

hypo. 0.1882 0.5430 0.0393 0.1833 0.0271 0.2268 0.2764 0.2316 0.0776 0.2456

Mach Learn (2010) 78: 381–420 409

Table 10 (Continued)

Dataset IB3 DROP3 ICF CHC CCIS 10

Stor. Error Stor. Error Stor. Error Stor. Error Stor. Error

ionosph. 0.1740 0.3200 0.1592 0.2686 0.0370 0.2829 0.0877 0.2829 0.0376 0.2286

iris 0.2430 0.2667 0.1659 0.1200 0.1222 0.1533 0.0993 0.2133 0.0392 0.1533

kr vs. kp 0.2219 0.2762 0.2514 0.2022 0.2306 0.2204 0.2306 0.2423 0.1371 0.2677

labor 0.2019 0.2600 0.3481 0.2400 0.1269 0.3200 0.1423 0.4000 0.0885 0.3400

led24 0.7084 0.6300 0.4167 0.5550 0.2917 0.6150 0.2128 0.6500 0.0895 0.6350

liver 0.2061 0.4823 0.4357 0.4235 0.2164 0.4324 0.1031 0.4274 0.0428 0.4177

lrs 0.4226 0.4359 0.1555 0.2491 0.0826 0.2717 0.1086 0.3302 0.0370 0.2302

lymph. 0.3433 0.4643 0.3090 0.3214 0.1537 0.3000 0.1515 0.3357 0.0574 0.3357

new-th. 0.1995 0.2190 0.1278 0.0952 0.0706 0.1238 0.1665 0.1619 0.0356 0.0429

optdigits 0.3222 0.3338 0.0982 0.1505 0.0558 0.2080 0.4818 0.2153 0.3237 0.2139

page-bl. 0.2087 0.4731 0.0456 0.1468 0.0268 0.1658 0.3200 0.2108 0.0869 0.2230

pendigits 0.3052 0.3155 0.0540 0.1211 0.0330 0.1468 0.4985 0.1865 0.4067 0.1877

phoneme 0.1533 0.2965 0.1983 0.2267 0.1229 0.2622 0.3142 0.2561 0.3293 0.2624

pima 0.1789 0.3882 0.2552 0.3263 0.1406 0.3487 0.1030 0.3592 0.0173 0.3039

post-op 0.2198 0.6778 0.2605 0.5111 0.2296 0.4889 0.1667 0.3778 0.0197 0.3444

primary-t 0.7448 0.7515 0.2794 0.6667 0.2213 0.6819 0.2206 0.7212 0.3565 0.7394

promoters 0.2146 0.2900 0.4458 0.2700 0.2917 0.2600 0.2250 0.2600 0.2198 0.4100

satimage 0.3258 0.3417 0.1306 0.2040 0.0613 0.2417 0.4962 0.2603 0.1180 0.2628

segment 0.2913 0.2857 0.1348 0.1563 0.0957 0.1861 0.0850 0.2125 0.1362 0.2204

sick 0.1163 0.3769 0.0801 0.1722 0.0541 0.1899 0.3363 0.2180 0.0815 0.2008

sonar 0.1984 0.3100 0.3431 0.3200 0.1362 0.4400 0.0840 0.4150 0.0516 0.3350

soybean 0.3665 0.3941 0.1917 0.2485 0.1903 0.2794 0.1062 0.3191 0.0636 0.2338

texture 0.3193 0.3131 0.0973 0.1302 0.0649 0.1604 0.4231 0.1977 0.3217 0.2029

t-t-t 0.1751 0.2242 0.2564 0.1221 0.2672 0.1547 0.0820 0.1979 0.0348 0.2063

vehicle 0.3788 0.4417 0.3215 0.3714 0.2034 0.4203 0.1031 0.4274 0.0493 0.4072

vote 0.1263 0.2721 0.1281 0.2139 0.0947 0.2442 0.1332 0.2302 0.0189 0.1860

vowel 0.3596 0.4889 0.4112 0.4050 0.2844 0.4374 0.1945 0.5041 0.1223 0.5040

wavef. 0.3563 0.4168 0.2736 0.3488 0.1155 0.3826 0.4487 0.3902 0.3598 0.3930

wine 0.2311 0.2588 0.1721 0.1470 0.0932 0.1529 0.1006 0.2000 0.0367 0.1412

yeast 0.5559 0.6128 0.2942 0.5209 0.1611 0.5473 0.1407 0.3300 0.0252 0.5061

zoo 0.3385 0.2200 0.2341 0.2000 0.3033 0.2000 0.1407 0.3300 0.0879 0.1500

Average 0.3014 0.3975 0.2309 0.2961 0.1436 0.3290 0.1920 0.3365 0.1058 0.3093

Tables 11 and 12 show the comparison of the algorithms in terms of testing error and
storage requirements for the experiments with 10% noise level. In terms of storage require-
ments, ICF is able to improve its results, outperforming DROP3, whose performance dete-
riorates slightly, and IB3 that is clearly worse. It seems that the noise removing step that
is performed by both ICF and DROP3 is useful in noisy problems. The two evolutionary
algorithms maintain their results, showing the usual robustness of EC in presence of noise.
Although ICF and DROP3 perform well in this noisy environment, CCIS is still able to
outperform all algorithms with a difference that is statistically significant.

410 Mach Learn (2010) 78: 381–420

Table 11 Comparison of results for the three standard methods, the genetic algorithm, and the cooperative
method with 10 subpopulations in terms of storage requirements for a noise level of 10%

IB3 ICF DROP3 GA(CHC) CCIS10

Mean all 0.3014 0.1436 0.2309 0.1920 0.1058

IB3 s 45/0/5 31/0/19 36/0/14 44/0/6

ps 0.0000 0.1189 0.0026 0.0000

pw 0.0000 0.0060 0.0003 0.0000

ICF s 3/0/47 27/0/23 37/0/13

ps 0.0000 0.6718 0.0009

pw 0.0000 0.6328 0.0104

DROP3 s 36/0/14 39/0/11

ps 0.0026 0.0001

pw 0.0591 0.0000

CHC s 46/0/4

ps 0.0000

pw 0.0000

Table 12 Comparison of results for the three standard methods, the genetic algorithm, and the cooperative
method with 10 subpopulations in terms of testing error for a noise level of 10%

IB3 ICF DROP3 GA(CHC) CCIS10

Mean all 0.3975 0.3290 0.2961 0.3365 0.3093

IB3 s 42/0/8 46/1/3 41/1/8 42/0/8

ps 0.0000 0.0000 0.0000 0.0000

pw 0.0000 0.0000 0.0000 0.0000

ICF s 43/2/5 18/2/30 27/1/22

ps 0.0000 0.1114 0.5682

pw 0.0000 0.0362 0.0384

DROP3 s 7/0/43 21/0/29

ps 0.0000 0.3222

pw 0.0000 0.0659

CHC s 33/3/14

ps 0.0079

pw 0.0002

In terms of testing error, Table 12, all the algorithms suffer from noise in instance labels.
However, the effect is here more homogeneous, keeping the differences as in the original
case without noise. CHC is greatly affected, and it is now significantly worse that ICF.
CCIS, as in the case without noise, is significantly better than IB3, ICF, and CHC, and shows
a general performance worse than DROP3 which is statistically significant at a confidence
level of 90%.

Mach Learn (2010) 78: 381–420 411

6 Comparison with recent algorithms

In the previous sections we have compared our method with the most widely used algorithms
for instance selection. We can consider the methods used for comparison as “classical” as
they have been around for quite a long time and are widely used. In this section we compare
our algorithm with more recent methods that are designed following new ideas. In this way,
we want to show whether our method is also competitive with modern methods. We have
chosen four algorithms:

– Modified Selective Subset (MSS; Barandela et al. 2005) method. This method is a mod-
ification of the algorithm of Ritter et al. (1975) for finding a selective subset. A subset
is selective if it is consistent and all prototypes in the original training set are nearer to
a selective neighbor of the same class than to any member of the training set from a dif-
ferent class. MSS algorithm is aimed at obtaining a minimal consistent subset but using
the selective property. In this way the authors define the modified selective subset as that
subset of the training set which contains, for every instance xi in the training set, that
element of its neighborhood that is the nearest to a class other than that of xi . The authors
propose an iterative procedure to find this modified selective subset. As in other instance
selection algorithms the instances are ordered regarding the distance to its nearest enemy.

– Entropy-based instance selection (Son and Kim 2006). This method is based on a two
step procedure. First the original dataset is partitioned using the values of each variable in
increasing entropy value. The process is iterated until all the subsets have instances of only
one class. Variables that are not used for partitioning the data are not used any more. Then,
a second step is performed to obtain the representatives of each subset. The representatives
are chosen as the center of each subset together with its k nearest neighbors. As it will
be seen in the results, partition using input values is able to obtain fairly good results for
nominal data, but very poor results for real-valued inputs.

– Intelligent Multiobjective Evolutionary Algorithm (IMOEA; Chen et al. 2005) method.
This method is a multi-objective evolutionary algorithm which considers not only in-
stance selection but also feature selection. The algorithm has three objectives, maximiza-
tion of training accuracy and minimization of the number of instances and features se-
lected. The multi-objective algorithm used is based on Pareto dominance as it is common
in multi-objective algorithms (Zitzler et al. 2003). The fitness of each individual is the
difference between the individuals it dominates and the individuals that dominate it. The
algorithm also includes a new crossover operator, called intelligent crossover, which in-
corporates the systematic reasoning ability of orthogonal experimental design (Leung and
Wang 2001) to estimate the contribution of each gene to the fitness of the individuals.

– LVQPRU method (Li et al. 2005). The method starts choosing randomly Npc prototypes
for each class, where Npc is a parameter of the algorithm. Then, the selected prototypes
that are not useful for classifying any instance are discarded and an iterative process
is started. First a learning vector quantization (LVQ) algorithm is applied to fine-tune
the set of selected prototypes, then a standard condensing algorithm (Tomek 1976) is
applied. Of the remaining instances the one whose removal causes the least increase in the
classification error is discarded. The method continues until we have as many prototypes
as classes. The result of the algorithm is the set of prototypes with the minimum error.

In the experiments we use the parameters for each algorithm suggested by the authors.
Results are shown in Table 13, and the comparison with our cooperative approach in Ta-
ble 14. IMOEA and entropy-based instance selection select instances and features, so the

412 Mach Learn (2010) 78: 381–420

Table 13 Summary of results for the cooperative method in terms of testing error and storage requirements.
The results of using 3, 5, and 10 subpopulations are shown

Dataset MSS Entropy-based IS IMOEA LVQPRU

Storage Error Storage Error Storage Error Storage Error

abalone 0.6435 0.8053 0.9959 0.8036 0.1153 0.8034 0.1105 0.7638

anneal 0.1731 0.0303 0.0806 0.0258 0.0495 0.0101 0.0624 0.0506

audiology 0.4500 0.3864 0.1605 0.4045 0.0732 0.3091 0.5059 0.3091

autos 0.4519 0.3300 0.0883 0.2000 0.0429 0.2600 0.4838 0.3200

balance 0.3169 0.2823 0.9235 0.2065 0.2791 0.2952 0.1197 0.1903

breast-cancer 0.4484 0.4214 0.8496 0.3786 0.0716 0.3143 0.1632 0.3393

cancer 0.1013 0.0783 0.1771 0.0609 0.1004 0.0580 0.0387 0.0377

card 0.3908 0.2652 0.2521 0.2580 0.0432 0.2044 0.0644 0.2014

dermatology 0.1988 0.0917 0.2094 0.0917 0.0535 0.0528 0.5952 0.0361

ecoli 0.3010 0.2515 0.5859 0.2091 0.1265 0.2666 0.3716 0.2121

gene 0.4442 0.3107 0.2071 0.4070 0.0728 0.2027 0.0322 0.1685

german 0.4309 0.3550 0.4530 0.3110 0.0758 0.3240 0.0498 0.3030

glass 0.4207 0.3143 0.6289 0.2714 0.0796 0.4476 0.5539 0.3000

glass-g2 0.3932 0.2500 0.5355 0.2313 0.0642 0.2438 0.2435 0.2438

heart 0.3716 0.2630 0.4946 0.2519 0.0701 0.3111 0.1951 0.2222

heart-c 0.3923 0.2600 0.3461 0.2734 0.0607 0.2967 0.1684 0.2567

hepatitis 0.3186 0.2334 0.3267 0.2933 0.0281 0.2333 0.1607 0.2267

horse 0.4168 0.3917 0.8851 0.3889 0.0599 0.4194 0.2451 0.3528

hypothyroid 0.1675 0.0995 0.1286 0.2687 0.0460 0.0228 0.0092 0.0610

ionosphere 0.2484 0.1457 0.1531 0.1229 0.0406 0.1457 0.1693 0.0971

iris 0.2155 0.0933 0.5217 0.1000 0.0266 0.1667 0.3837 0.0733

kr vs. kp 0.3192 0.0843 0.0420 0.3254 0.1163 0.0354 0.0107 0.0552

labor 0.3327 0.2000 0.1781 0.2600 0.0000 0.6000 0.4096 0.0800

led24 0.5661 0.5900 0.6355 0.5900 0.0584 0.3250 0.8300 0.5750

liver 0.5064 0.3971 0.9249 0.3706 0.0889 0.4147 0.1997 0.3971

lrs 0.2818 0.2132 0.1141 0.2245 0.0607 0.1509 0.2314 0.1736

storage values shown in the tables consider both reductions. In terms of storage reduction,
our proposal is significantly better than the three methods based on non-evolutionary pro-
cedures, MSS, entropy-based instance selection and LVQPRU. On the other hand, IMOEA,
which is also an evolutionary algorithm, is able to match the storage reduction of our method.
However, we must bear in mind that IMOEA considers feature selection and our method
does not. Regarding testing error, our method with 3 and 5 subpopulations is able to signif-
icantly improve the results of all the other methods, with the exception of LVQPRU. With
10 subpopulations is as good as MSS and IMOEA, better than entropy-based instance selec-
tion at a confidence level of 90%, and worse than LVQPRU, but with a significantly better
storage reduction.

Figure 6 shows a plot summary of the results in Table 13. As in the previous plots,
x-axis shows the storage requirements and y-axis the testing error. There, we can easily
see that in terms of testing error all methods achieved similar results, but that in terms of
storage reduction, the proposed cooperative method is significantly better than the other
tested methods, with the exception of IMOEA, which also performs feature selection. The

Mach Learn (2010) 78: 381–420 413

Table 13 (Continued)

Dataset MSS Entropy-based IS IMOEA LVQPRU

Storage Error Storage Error Storage Error Storage Error

lymphography 0.3948 0.2286 0.1951 0.2500 0.0439 0.2786 0.3396 0.1643

new-thyroid 0.1546 0.0476 0.5292 0.0524 0.0857 0.0571 0.1763 0.0524

optdigits 0.1663 0.0425 0.5020 0.0215 0.1450 0.0374 0.0234 0.0685

page-blocks 0.0991 0.0428 0.3578 0.0417 0.1397 0.0441 0.0170 0.0431

pendigits 0.0900 0.0135 0.6463 0.0088 0.2179 0.0560 0.0107 0.0369

phoneme 0.2433 0.1287 0.7149 0.1072 0.3047 0.1622 0.0073 0.1785

pima 0.4142 0.3342 0.8507 0.3224 0.0544 0.3948 0.0708 0.2855

post-operative 0.4247 0.4556 0.8803 0.4667 0.0370 0.4630 0.2160 0.3889

primary-tumor 0.5056 0.6576 0.8683 0.6758 0.1508 0.6546 0.6628 0.6576

promoters 0.4563 0.3000 0.0464 0.3300 0.0474 0.2600 0.4865 0.2300

satimage 0.2032 0.1212 0.5835 0.1012 0.1592 0.1280 0.0137 0.1030

segment 0.1628 0.0498 0.4615 0.0615 0.0219 0.5282 0.0435 0.0541

sick 0.1240 0.0608 0.1813 0.0886 0.0589 0.0339 0.0016 0.0570

sonar 0.3697 0.1800 0.1496 0.3550 0.0460 0.2050 0.1591 0.2150

soybean 0.2412 0.0897 0.3839 0.1471 0.0836 0.0676 0.1759 0.0911

texture 0.1335 0.0206 0.5331 0.0096 0.1037 0.0249 0.0245 0.0567

tic-tac-toe 0.2092 0.0474 0.4902 0.0327 0.1787 0.2358 0.0306 0.0747

vehicle 0.4139 0.3321 0.6477 0.3012 0.0834 0.3310 0.0906 0.2857

vote 0.1684 0.0930 0.1512 0.1372 0.0503 0.0489 0.0357 0.0930

vowel 0.2971 0.3141 0.8954 0.3030 0.1847 0.4465 0.2263 0.3171

waveform 0.3435 0.3052 0.8755 0.2792 0.0856 0.2516 0.0120 0.1796

wine 0.1801 0.0765 0.3231 0.0823 0.0376 0.1412 0.2429 0.0412

yeast 0.5339 0.5230 0.7232 0.4838 0.1790 0.5500 0.1424 0.4311

zoo 0.1670 0.0700 0.1640 0.0900 0.0349 0.1000 0.4242 0.0500

Average 0.3160 0.2336 0.4610 0.2415 0.0888 0.2483 0.2008 0.2040

plot shows how, in terms of storage MSS, entropy-based instance selection and LVQPRU
are clearly worse than CCIS. IMOEA is able to achieve a similar performance, although it
is worse in testing error.

7 Large datasets

One of the most interesting aspects in any instance selection algorithm is its scalability.
Studying whether it is able to deal with large problems in a reasonable time and achieve a
good performance is of relevance, due to the increasing size of the datasets for many of the
problems of interest. In this section we study the behavior of the studied algorithms when
they face problems that can be considered large. We use the five problems from the UCI Ma-
chine Learning Repository shown in Table 15. For krkopt, letter, and magic, we estimate test-
ing error and storage following 10-fold cross-validation as in the previous experiments. For
adult and shuttle, due to the large number of instances, we use 5 × 2 cross-validation (Diet-
terich 1998). 5×2 cross-validation performs five replications of a two-fold cross-validation.

414 Mach Learn (2010) 78: 381–420

Table 14 Comparison of results for the three standard methods, the genetic algorithm, and the cooperative
method with 3, 5, and 10 subpopulations in terms of storage requirements and testing error

Storage

MSS Entropy-based IS IMOEA LVQPRU

Mean all 0.3160 0.4610 0.0888 0.2008

3 subpops s 5/0/45 4/0/46 27/0/23 14/0/36

ps 0.0000 0.0000 0.6718 0.0026

pw 0.0000 0.0000 0.2818 0.0035

5 subpops s 4/0/46 3/0/47 22/0/28 14/0/36

ps 0.0000 0.0000 0.4799 0.0026

pw 0.0000 0.0000 0.6887 0.0019

10 subpops s 1/0/49 3/0/47 25/0/25 15/0/35

ps 0.0000 0.0000 1.0000 0.0066

pw 0.0000 0.0000 0.3823 0.0005

Testing error

MSS Entropy-based IS IMOEA LVQPRU

Mean all 0.2336 0.2415 0.2483 0.2040

3 subpops s 13/3/34 15/0/35 19/0/31 23/1/26

ps 0.0031 0.0066 0.1189 0.7754

pw 0.0003 0.0002 0.0093 0.7102

5 subpops s 18/3/29 16/3/31 21/0/29 23/2/25

ps 0.1439 0.0400 0.3222 0.8854

pw 0.0337 0.0018 0.0959 0.4286

10 subpops s 22/1/27 20/0/30 24/1/25 29/0/21

ps 0.5682 0.2026 1.0000 0.3222

pw 0.5054 0.0798 0.5178 0.0254

Table 15 Summary of large datasets

Data set Cases Features Classes Inputs 1-NN error

C B N

adult 48842 6 1 7 2 105 0.2033

krkopt 28056 6 – – 18 6 0.4520

letter 20000 16 – – 26 16 0.0390

magic 19020 10 – – 2 10 0.1351

shuttle 58000 9 – – 7 9 0.0015

In each replication the available data is partitioned into two random equal-sized sets. Each
method is trained on one set at a time and tested on the other set.

For these problems we used the three standard methods, IB3, ICF and Drop3, CHC and
our method. CHC was not able to scale well. For all the problems the results obtained were

Mach Learn (2010) 78: 381–420 415

Fig. 6 Summary of results in terms of testing error and storage for the methods

poor and the time needed far higher than the time spent by the other methods. Due to the
size of the datasets we have evolved our model using 50 subpopulations, in order to keep
a ratio of instances per subpopulation similar to the previous experiments, and the inner
loop N = 1. The remaining parameters are the shown in Table 4. The results are shown in
Table 16 for standard methods and in Table 17 for CCIS and CHC. The table shows a very
good scalability of our method. Even for problems with more than 20000 instances, it is
able to obtain better results on average than the standard methods. The achieved reduction
is markedly better than the obtained by DROP3 and ICF, keeping at the same time a testing
error better than ICF and very similar to DROP3. Only IB3 obtains similar results in terms
of reduction, but with worse testing errors.

Regarding computational cost, Fig. 7 shows the average time spent by both evolutionary
algorithms, CCIS and CHC, for the problems. The figure shows that CCIS is able not only
to achieve better results but also in less time than CHC. This behavior corroborates the
observed in the previous study of computational cost (see Fig. 5).

8 Discussion

In the previous sections we have presented a new approach to instance selection for instance
based learning based on a cooperative coevolutionary model. This model has the interesting
feature of being independent from the classifier used, in contrast with most current methods
that are based on k-NN classifiers. Additionally, the flexibility of the evolutionary approach

416 Mach Learn (2010) 78: 381–420

Table 16 Summary of results the three standard methods in terms of testing error and storage requirements
for large datasets

Dataset DROP3 ICF IB3

Storage Error Storage Error Storage Error

adult 0.2908 0.2276 0.2454 0.2712 0.0816 0.2332

letter 0.6413 0.4496 0.6995 0.4321 0.4767 0.4410

krkopt 0.1476 0.0770 0.1497 0.1415 0.1402 0.0850

magic 0.1580 0.1104 0.2345 0.2576 0.0011 0.9832

shuttle 0.0037 0.0014 0.0333 0.0196 0.0033 0.0016

Average 0.2483 0.1732 0.2725 0.2244 0.1406 0.3488

Table 17 Summary of results
for CCIS and CHC methods in
terms of testing error and storage
requirements for large datasets

Dataset CCIS CHC

Storage Error Storage Error

adult 0.0565 0.1981 0.2081 0.2056

letter 0.2850 0.4663 0.5237 0.4711

krkopt 0.2371 0.0970 0.2125 0.1020

magic 0.0063 0.0889 0.2139 0.2129

shuttle 0.0302 0.0029 0.2929 0.0022

Average 0.1139 0.1731 0.2902 0.1988

Fig. 7 Summary of average time
spent by CCIS and CHC for large
datasets

allows the user to put more emphasis on storage reduction or testing error modifying the
relative weight of these two values in the fitness function. In this way, the algorithm can be
better adapted to the necessities of the researcher.

As stated in the introduction we developed our method with two main objectives, estab-
lishing the validity of cooperative coevolution for instance selection and obtaining a method
able to improve standard methods and with a good scalability. We believe that the results
reported in this paper show that both objectives have been fulfilled.

Mach Learn (2010) 78: 381–420 417

We have carried out a thorough comparison of the proposed methodology with state-of-
the-art methods in both storage requirements and testing error. We have used a large set of 50
benchmark problems with different features, sizes and numbers of classes and eight instance
selection methods to compare with. The performed experiments show a clear advantage
of the proposed method over standard algorithms. In terms of storage requirements, the
improvement achieved by the cooperative method is specially marked.

An additional set of experiments has been carried out to test the behavior of the coop-
erative algorithm in the presence of noise in the labels of the instances. These experiments
show that CCIS is able to maintain its advantage over the other algorithms in noisy data,
even improving the differences with some of them.

An alternative version of the algorithm has been presented, which can be implemented
distributedly to achieve a more efficient execution of the algorithm. Although this imple-
mentation is based on an approximate evaluation of the individuals, the experiments show
that it can match the performance of the standard cooperative algorithm in terms of storage
reduction. Nevertheless, the testing error of this implementation is significantly worse, as it
should be expected, although the differences are not dramatic. Scalability to large datasets
has been studied using five datasets. Our method has shown very good results even for those
large datasets, achieving an overall performance better than the standard methods and CHC.

9 Future work

As future work, we are working on a natural extension of the model. As the evaluation of the
selectors and combinations is made using different criteria, the application of a multiobjec-
tive genetic algorithm is natural instead of a weighted sum of the criteria. In a previous work
(García-Pedrajas et al. 2002) we have shown how the multiobjective algorithm can outper-
form the non-multiobjective one in the field of artificial neural network evolution. Also, due
to the excellent performance of IMOEA, subspace selection is a promising feature to be
incorporated into our approach.

Furthermore, the results in this paper open a very interesting research line. The idea
underlaying our model is that we can obtain good results for instance selection with a method
that combines several partial views of the dataset, but that never has to deal with the whole
dataset. This idea can be extended to scale up instance selection algorithms. In the same
way we use it for constructing a more scalable evolutionary instance selection algorithm,
we can use it to scale up other instance selection algorithms. On the other hand, trying to
develop algorithms with a lower efficiency order is likely to be a fruitless search. Obtaining
the nearest neighbor of a given instance is O(n).6 To test whether removing an instance
affects the accuracy of the nearest neighbor rule, we must measure the effect on the other
instances of the absence of the removed one. Measuring this effect involves recalculating,
directly or indirectly, the nearest neighbors of the instances. The result is a process of O(n2).
In this way, the attempt to develop algorithms of an efficiency order below O(n2) is not
very promising. Thus, the method proposed in this paper offers a different and promising
alternative.

In a certain sense, we can liken our approach to ensemble construction of classifiers. We
are constructing a instance selection algorithm joining together several instance selection
algorithms that have only a partial view of the dataset. These instance selection methods

6Although more sophisticated methods, like kd-trees, can be used, these methods are complex and increase
memory requirements.

418 Mach Learn (2010) 78: 381–420

applied to subsets of instances are then similar to the weak classifiers in an ensemble. Thus,
our approach shows a way to introduce concepts from classifier ensembles into instance
selection. Furthermore, it can be extended to related problems, such as feature selection and
clustering.

As a side result, the accomplished scalability of instance selection allows the application
of this technique to new fields, such as Bioinformatics, where existing algorithms are too
computationally costly to be used.

10 Conclusion

As an overall summary, we think that the major contribution of our work is showing that
cooperative coevolution can be used to tackle large problems taking advantage of its inher-
ently modular nature. In fact we are showing that a combination of cooperative coevolution
together with the principle of divide-and-conquer can be very effective both in terms of im-
proving performance and in reducing computational cost. Other problems with similar fea-
tures, such as feature selection, can also benefit from this approach. Additionally, we have
shown that the inherent modularity of cooperative coevolution makes it a good candidate for
a distributed implementation allowing a more efficient execution of the algorithm.

As stated before, in the best case, existing instance selection algorithms are of a quadratic
complexity (Cano et al. 2007) in the number of instances. For large problems these methods
are not applicable. One natural way of scaling up a certain algorithm is dividing the original
problem into several simpler subproblems and applying the algorithm separately to each
subproblem. In this way, we might scale up instance selection dividing the original dataset
into several disjoint subsets and performing the instance selection process separately on each
subset. However, this method would suffer from the partial knowledge it has of the dataset.
To evaluate the relevance of an instance, the algorithm needs to know the whole dataset, as
that relevance depends on all the other instances. The results reported in this paper show
a way to accomplish this divide and conquer approach using cooperative coevolution, and
open an interesting field of research.

Acknowledgements The authors would like to acknowledge Dr. J.R. Cano for his valuable help. They
would also like to acknowledge the anonymous reviewers for their valuable comments. This work was sup-
ported in part by Project TIN2008-03151 of the Spanish Ministry of Education and Project P07-TIC-02682
of the Junta de Andalucía.

References

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6,
37–66.

Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd edn.). Wiley series in prob-
ability and mathematical statistics. New York: Wiley.

Baluja, S. (1994). Population-based incremental learning (Technical Report CMU-CS-94-163). Carnegie
Mellon University, Pittsburgh.

Barandela, R., Ferri, F. J., & Sánchez, J. S. (2005). Decision boundary preserving prototype selection for
nearest neighbor classification. International Journal of Pattern Recognition and Artificial Intelligence,
19(6), 787–806.

Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial
Intelligence, 97, 245–271.

Bongard, J., & Lipson, H. (2005a). Active coevolutionary learning of deterministic finite automata. Journal
of Machine Learning Research, 6, 1651–1678.

Mach Learn (2010) 78: 381–420 419

Bongard, J. C., & Lipson, H. (2005b). Nonlinear system identification using coevolution of models and tests.
IEEE Transactions on Evolutionary Computation, 9(4), 361–384.

Brighton, H., & Mellish, C. (2002). Advances in instance selection for instance-based learning algorithms.
Data Mining and Knowledge Discovery, 6, 153–172.

Brodley, C. E. (1995). Recursive automatic bias selection for classifier construction. Machine Learning,
20(1/2), 63–94.

Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data
reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation, 7(6), 561–
575.

Cano, J. R., Herrera, F., & Lozano, M. (2005). Stratification for scaling up evolutionary prototype selection.
Pattern Recognition Letters, 26(7), 953–963.

Cano, J. R., Herrera, F., & Lozano, M. (2007). Evolutionary stratified training set selection for extracting
classification rules with trade off precision-interpretability. Data & Knowledge Engineering, 60(1), 90–
108.

Chaudhuri, S., Motwani, R., & Narasayya, V. (1998). Random sampling for histogram construction: how
much is enough? In L. Haas & A. Tiwary (Eds.), Proceedings of ACM SIGMOD, international confer-
ence on management of data (pp. 436–447). New York, USA.

Chellapilla, K., & Fogel, D. B. (1999). Evolving neural networks to play checkers without relying on expert
knowledge. IEEE Transactions on Neural Networks, 10(6), 1382–1391.

Chen, J. H., Chen, H. M., & Ho, S. Y. (2005). Design of nearest neighbor classifiers: multi-objective approach.
International Journal of Approximate Reasoning, 40(1–2), 3–22.

Cochran, W. (1977). Sampling techniques. New York: Wiley.
Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley series in telecommunication.

New York: Wiley.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algo-

rithms. Neural Computation, 10(7), 1895–1923.
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision

trees: bagging, boosting, and randomization. Machine Learning, 40, 139–157.
Eshelman, L. J. (1990). The CHC adaptive search algorithm: how to have safe search when engaging in

nontraditional genetic recombination. San Mateo: Morgan Kauffman.
García-Pedrajas, N., & Fyfe, C. (2007) Immune network based ensembles. In Neurocomputing (pp. 1155–

1166).
García-Pedrajas, N., & Ortiz-Boyer, D. (2007). A cooperative constructive method for neural networks for

pattern recognition. Pattern Recognition, 40(1), 80–99.
García-Pedrajas, N., Hervás-Martínez, C., & Muñoz-Pérez, J. (2002). Multiobjective cooperative coevolution

of artificial neural networks (multi-objective cooperative networks). Neural Networks, 15(10), 1255–
1274.

García-Pedrajas, N., Hervás-Martínez, C., & Ortiz-Boyer, D. (2005). Cooperative coevolution of artificial
neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation,
9(3), 271–302.

Gates, G. W. (1972). The reduced nearest neighbor rule. IEEE Transactions on Information Theory, 18(3),
431–433.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison–
Wesley.

Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algorithms. In L. Davis
(Ed.), Genetic algorithms and simulated annealing (pp. 42–60). San Mateo: Morgan Kaufmann.

Hettich, S., Blake, C., & Merz, C. (1998). UCI Repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Hillis, W. D. (1991). Co-evolving parasites improves simulated evolution as an optimization procedure. In C.
G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), In Artificial Life II (pp. 313–384).

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan
Press.

Hussain, F., Liu, H., Tan, C., & Dash, M. (1999). Discretization: an enabling technique (Technical Report
TRC6/99). School of Computing, National University of Singapore.

Ishibuchi, H., & Nakashima, T. (2000). Pattern and feature selection by genetic algorithms in nearest neighbor
classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 4(2), 138–
145.

Kivinen, J., & Mannila, H. (1994). The power of sampling in knowledge discovery. In Proceedings of the
thirteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (pp. 77–85).
Minneapolis, Minnesota, USA.

http://www.ics.uci.edu/~mlearn/MLRepository.html

420 Mach Learn (2010) 78: 381–420

Kuncheva, L. (1995). Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognition
Letters, 16, 809–814.

Leung, Y. W., & Wang, Y. P. (2001). An orthogonal genetic algorithm with quantization for global numerical
optimization. IEEE Transactions on Evolutionary Computation, 5(1), 41–53.

Li, J., Manry, M. T., Yu, C., & Wilson, D. R. (2005). Prototype classifier design with pruning. International
Journal of Artificial Intelligence Tools, 14(1–2), 261–280.

Liu, H., & Motoda, H. (1998). Feature selection for knowledge discovery and data mining. Norwell: Kluwer.
Liu, H., & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge Discovery, 6,

115–130.
Louis, S. J., & Li, G. (1997). Combining robot control strategies using genetic algorithms with memory.

In Lecture notes in computer science: Vol. 1213. Evolutionary programming VI (pp. 431–442). Berlin:
Springer.

Michalewicz, Z. (1994). Genetic algorithms + Data structures = Evolution programs. New York: Springer.
Moriarty, D. E., & Miikkulainen, R. (1995). Discovering complex Othello strategies through evolutionary

neural networks. Connection Science, 7(3), 195–209.
Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through symbiotic evolution.

Machine Learning, 22, 11–32.
Potter, M., & De Jong, K. A. (1994). A coopetative coevolutionary approach to function optimization. In

Proceedings of the third conference on parallel problem solving from nature (pp. 249–257).
Potter, M. A., & De Jong, K. A. (2000). Cooperative coevolution: an architecture for evolving coadapted

subcomponents. Evolutionary Computation, 8(1), 1–29.
Provost, F. J., & Kolluri, V. (1999). A survey of methods for scaling up inductive learning algorithms. Data

Mining and Knowledge Discovery, 2, 131–169.
Reeves, C. R., & Bush, D. R. (2001). Using genetic algorithms for training data selection in RBF networks.

In H. Liu & H. Motoda (Eds.), Instances selection and construction for data mining (pp. 339–356).
Norwell: Kluwer.

Ritter, G. L., Woodruff, H. B., Lowry, S. R., & Isenhour, T. L. (1975). An algorithm for selective nearest
neighbor decision rule. IEEE Transactions on Information Theory, 21(6), 665–669.

Rosin, C. D., & Belew, R. K. (1997). New methods for competitive coevolution. Evolutionary Computation,
5(1), 1–29.

Smith, P. (1998). Into statistics. Singapore: Springer.
Smyth, B., & Keane, M. T. (1995). Remembering to forget. In C. S. Mellish (Ed.), Proceedings of the four-

teenth international conference on artificial intelligence (Vol. 1. pp. 377–382).
Son, S. H., & Kim, J. Y. (2006). Data reduction for instance-based learning using entropy-based partition-

ing. In Lecture notes in computer science: Vol. 3982. Proceedings of the international conference on
computational science and its applications—ICCSA 2006 (pp. 590–599). Berlin: Springer.

Syswerda, G. (1991). A study of reproduction in generational and steady-state genetic algorithms. In G. Rawl-
ins (Ed.), Foundations of genetic algorithms (pp. 94–101). San Mateo: Morgan Kaufmann.

Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, SMC-6, 769–772.

Whitley, D. (1989). The GENITOR algorithm and selective pressure. In M. K. Publishers (Ed.), Proc. 3rd
international conf. on genetic algorithms (pp. 116–121). Los Altos, CA.

Whitley, D., & Kauth, J. (1988). GENITOR: a different genetic algorithm. In Proceedings of the Rocky
mountain conference on artificial intelligence (pp. 118–130). Denver, CO.

Whitley, D., & Starkweather, T. (1990). GENITOR II: a distributed genetic algorithm. Journal of Experimen-
tal Theoretical Artificial Intelligence, 2, 189–214.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, 2(3), 408–421.

Wilson, D. R., & Martinez, A. R. (1997). Instance pruning techniques. In D. Fisher (Ed.), Proceedings of the
fourteenth international conference on machine learning (pp. 404–411). San Francisco, CA, USA.

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Ma-
chine Learning, 38, 257–286.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Grunert, V. (2003). Performance assesment of
multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation,
7(2), 117–132.

	A cooperative coevolutionary algorithm for instance selection for instance-based learning
	Abstract
	Introduction
	Related work
	Instance selection by cooperative coevolution
	Distributed implementation
	Evaluating instance selection algorithms

	Experimental setup
	Experimental results
	Control experiments
	Distributed implementation
	Noise tolerance

	Comparison with recent algorithms
	Large datasets
	Discussion
	Future work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

