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Abstract.   In machine learning many real-life applications data are characterized by attributes
with unknown values.  This paper shows that the existing approaches to learning from such
examples are not sufficient.  A new method is suggested, which transforms the original decision
table with unknown values into a new decision table in which every attribute value is known.
Such a new table, in general, is inconsistent.  This problem is solved by a technique of learning
from inconsistent examples, based on rough set theory.  Thus, two sets of rules: certain and
possible are induced.  Certain rules are categorical, while possible rules are supported by
existing data, although conflicting data may exist as well.  The presented approach may be
combined with any other approach to uncertainty when processing of possible rules is
concerned.

1. Introduction

In this paper it is assumed that input data for machine learning are stored in a decision table, in

which attributes characterize examples.  The decision table provides information about real

world phenomena.  Each example is described by values of attributes.  Also, each example

belongs to some class, also called a concept.  Such a class is represented by a set of all

examples having the same value of a variable decision.  In many real-life applications an

attribute may have unknown value for an example.  More specifically, such value may exist, but

is unknown.  For example, the value has been not recorded, mistakenly erased, or forgotten by

an expert.  In the theory of databases such value is called a null [9].

Learning from examples is one of the most explored areas of machine learning.  Until

recently, many algorithms of learning from examples were developed assuming that input

information is complete and free from errors or conflicts.  As it was observed a few years ago

[5], “very little attention has been paid to the problem of developing methods that work well in

noisy environments.  There is need for research on methods of learning from uncertain input

information, from incomplete information, and from information containing errors.”  The

situation has improved greatly since that time.  Many methods of machine learning under

uncertainty have been invented, most of them based on probability theory.  However,

surprisingly little research has been done in the area of learning from incomplete information.

Up-to-date methods to deal with unknown attribute values in learning from examples were

presented in [15], see also [2, 10, 13, 14, 16].  They are based on the following ideas:

(1)  ignoring examples with unknown values of attributes [13],

(2)  assuming additional special value for an unknown value of attributes,
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(3)  using probability theory.  For example, using relative frequencies of known values

of a given attribute A for assigning them to unknown values [8].  Another possibility is based

on replacing unknown values by the most common value of A, as in CN2 [4].  Yet another

possibility is based on inclusion of an example with unknown value of attribute A to all subsets

for which values of A are known [6],

(4)  A. Shapiro suggested in a private communication to J. R. Quinlan a method in

which an attribute with unknown values is assumed to be a decision and vice versa.  Unknown

values are determined as values of the new decision from known attributes and the old decision.

All of the above approaches have serious drawbacks.  Approach (1), based on ignoring

examples with unknown values, induces rules that may not cover all cases, or even worse, false

rules, as may be showed by the following simple example.

Table 1

Attributes Decision

Feel Cuddliness Material Attitude

1 soft – plastic negative

2 hard – plastic positive

3 soft furry wool neutral

4 hard furry wool negative

Suppose that the attribute Cuddliness from Table 1 may assume values smooth, furry,

and fuzzy.  After ignoring the first two examples, as containing unknown values denoted ‘–’ of

attribute Cuddliness, two rules may be induced
(Feel, soft) → (Attitude, neutral),

(Feel, hard) → (Attitude, negative).

The above rules may be verified using the examples 1 and 2.  Both rules should be

rejected, since they are false.  Thus, the approach (1) does not provide acceptable rules.

Using the approach (2), in which the unknown value of an attribute is considered an

additional value, the following rules may be induced from Table 1:

(Feel, hard) ∧  (Cuddliness, –) → (Attitude, positive),

(Feel, hard) ∧  (Cuddliness, furry) → (Attitude, negative).

These rules have the following interpretation: if Feel is hard and it is not known what is

the value of Cuddliness (but the value of Cuddliness is one of the three: smooth, furry, or

fuzzy) then Attitude is positive, and if Feel is hard and Cuddliness is furry then Attitude is

negative.  Obviously, these two rules are conflicting, i.e., the approach (2) does not provide

acceptable rules either.
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It is difficult to use any probabilistic approach to Table 1 since the table is so small.  In

any case, it is clear that all probabilistic approaches, like the two preceding approaches,

inevitably produce errors [13–16].

In order to use approach (4), only one attribute may have unknown values—a serious

restriction.  Moreover, even then, it is not always possible to use this approach.  For example,

using this method for Table 1, Table 2 must be created.

Table 2

Attributes Decision

Feel Attitude Material Cuddliness

1 soft negative plastic –

2 hard positive plastic –

3 soft neutral wool furry

4 hard negative wool furry

Approach (4) is useless in this case, since there is no way to guess what are values of

Cuddliness from Table 2.

2.  A new approach to unknown attribute values

The suggested here method presents the most cautious approach to unknown attribute

value problem.  The main idea of the method is to replace each example with an unknown value

of attribute A by the set of examples, in which attribute A has its every possible value.  Thus, if

attribute A has an unknown value for example E, and attribute A has m possible values, then E

will be replaced by m new examples E’ , E’’ ,..., E(m).  When example E has two unknown

values of attributes A and B, and there is m possible values of A and n possible values of B,

then E will be replaced by m⋅n examples, and so on.  The most obvious rationale of the method

is the following: since the value of an attribute A for a given example E is unknown, every

possible value of A is considered, and every such value corresponds to a new example.  On the

other hand, the fact that attribute A has an unknown value for example E, and that E is a

member of some class C may be interpreted in yet another way: an expert classified E as a

member of class C not knowing the value of A , i.e., that such a value was not necessary for

classification.  This implies that it does not matter what a value it was, hence, A may assume

any value from its domain.

Using this method, a consistent decision table may be converted into inconsistent one.

The decision table is inconsistent when it contains at least one pair of inconsistent examples,
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i.e., examples characterized by the same values of all attributes yet with different values of a

decision.

Table 3

Attributes Decision

Feel Cuddliness Material Attitude

1’ soft smooth plastic negative

1’’ soft furry plastic negative

1’’’ soft fuzzy plastic negative

2’ hard smooth plastic positive

2’’ hard furry plastic positive

2’’’ hard fuzzy plastic positive

3 soft furry wool neutral

4 hard furry wool negative

Table 3 was created by applying the method to Table 1.  It is not difficult to see that

Table 3 is consistent.  Moreover, the following rules may be induced from Table 3:

(Feel, soft) ∧  (Material, plastic) → (Attitude, negative),

(Feel, hard) ∧  (Material, wool) → (Attitude, negative),

(Feel, soft) ∧  (Material, wool) → (Attitude, neutral),

(Feel, hard) ∧  (Material, plastic) → (Attitude, positive).

These rules cover all four original examples from Table 1, even though Cuddliness has

two unknown values.  Note that these rules are absolutely correct—no error analysis is

required.  Also, note that the attitude Cuddliness from Table 1 is irrelevant for inducing rules.

This fact may be easily recognized from Table 3, from which rules are actually induced.

Table 4

Attributes Decision

Color Size Attitude

1 blue – negative

2 – big negative

3 red big positive

4 red – positive

The next example, more general, is presented in Table 4.  In this table it is assumed that

attribute Color has three values: blue, red, and yellow, and that attribute Size has two values:
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small and big.  The new table, in which every example with unknown values of attribute A is

replaced by the set of examples such that attribute A has its every possible value is presented in

Table 5.

Table 5

Attributes Decision

Color Size Attitude

1’ blue small negative

1’’ blue big negative

2’ blue big negative

2’’ red big negative

2’’’ yellow big negative

3 red big positive

4’ red small positive

4’’ red big positive

In Table 5, pairs of examples (2’’, 3) and (2’’, 4’’) are inconsistent (they are described

by the same values of both attributes, yet corresponding values of decision for example 2’’ are

different than these for examples 3 and 4’’).  Thus Table 5 is inconsistent.  An approach for

learning rules from inconsistent tables, presented in the next section, follows ideas from [7].

3. Rough Set Approach for Inconsistent Examples

In the early eighties Z. Pawlak introduced a new tool to deal with uncertainty, called

rough set theory [12].  The main advantage of rough set theory is that it does not need any

preliminary or additional information about data (like prior probability in probability theory,

basic probability number in Dempster-Shafer theory, grade of membership or value of

possibility in fuzzy set theory).  Other advantages of the rough set approach include its ease of

handling and its simple algorithms.

Rough set theory is especially well suited to deal with inconsistencies in the process of

machine learning.  In the presented approach, inconsistencies are not corrected.  The key issue

is to compute lower and upper approximations of concepts, the fundamental notions of rough

set theory.  On the basis of lower and upper approximations, two different sets of rules are

computed: certain and possible.  Certain rules are categorical and may be further employed

using classical logic.  Possible rules are supported by existing data, although conflicting data

may exist as well.  Possible rules may be processed further using either classical logic or any
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theory to deal with uncertainty [3, 7].  There exist other methods of machine learning using

rough set theory, see e.g. [1, 17].

Note that the presented approach may be combined with any other approach to

uncertainty when processing of possible rules is concerned.  An advantage of the method is that

certain and possible rules are processed separately, i.e. two parallel inference engines may be

used.

Let U be a nonempty set, called the universe, and let R be an equivalence relation on U,

called an indiscernibility relation.  An ordered pair (U, R ) is called an approximation space.

For any element x of U, the equivalence class of R containing x will be denoted by [x]R.

Equivalence classes of R are called elementary sets in (U, R).  We assume that the empty set is

also elementary.

Any finite union of elementary sets in (U, R) is called a definable set in (U, R).

Let X be a subset of U.  We wish to define X in terms of definable sets in (U, R).

Thus, we need two more concepts.

A lower approximation of X in (U, R), denoted by _RX, is the set

{ x ∈ U | [x]R ⊆ X }.

An upper approximation of X in (U, R), denoted by 
_
RX, is the set

{ x ∈  U | [x]R ∩  X ≠ Ø }.

The lower approximation of X in (U , R) is the greatest definable set in (U , R),

contained in X.  The upper approximation of X in (U, R) is the least definable set in (U, R)

containing X.  Time complexity of algorithms for computing lower and upper approximations

of any set X is O(n2), where n is the cardinality of set U of examples.  A rough set in (U, R) is

the family of all subsets of U having the same lower and upper approximations in (U, R).

Let x be in U.  We say that x is certainly in X iff x  ∈ _RX , and that x is possibly in X iff

x ∈ 
_
RX .  Our terminology originates from the fact that we want to decide if x is in X on the

basis of a definable set in (U, R) rather than on the basis of X .  This means that we deal with

_RX and 
_
RX instead of X.  Since _RX ⊆ X ⊆ 

_
RX , if x is in _RX it is certainly in X .  On the

other hand, if x is in 
_
RX , it is possibly in X .

With any decision table an approximation space may be associated.  Let Q be a set of all

attributes and let U be a set of all examples of the decision table.  For any nonempty subset P of
Q , an ordered  pair (U , 

P
) is an approximation space (U , R), where 

P
 is an

indiscernibility relation on U, defined as follows.  For x, y  ∈ U,  x 
P

y  if and only if x

and y have the same value on all attributes in P.  The indiscernibility relation, associated with P,
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is an equivalence relation on U.  As such, it induces a partition of U, generated by P, denoted

P*.

For the sake of convenience, for any X ⊆ U, the lower approximation of X in (U, R)

and the upper approximation of X in (U, R) are called P-lower approximation of X and P-upper

approximation of X, and are denoted _PX and 
_
PX, respectively.

Measures of uncertainty based on rough set theory have auxiliary value only, since in

the rough-set approach, the set X is described by its lower and upper approximations.  One of

such measures is a quality of lower approximation of X by P. It  is equal to

|_PX|
|U|  .

Thus, the quality of lower approximation of X by P is the ratio of the number of all

examples certainly classified by attributes from P as being in concept X to the number of all

examples.  It is a kind of relative frequency.  Note that the quality of lower approximation of X

by P is a belief function according to Dempster-Shafer theory.

A quality of upper approximation of X by P is equal to

| PX|
|U|  .

The quality of upper approximation of X by P is the ratio of the number of all possibly

classified objects by attributes from P as being in X to the number of all objects of the system.

Therefore, it is again a kind of relative frequency.  The quality of upper approximation of X by

P is a plausibility function from the Dempster-Shafer theory viewpoint.

The difference between 
| PX|
|U|  and 

|_PX|
|U|  is called an error ε.  It is the ratio of the number of

all examples, possibly but not certainly properly classified by attributes from P as being in X, to

the number of all examples.  Thus defined error ε is an estimate of the worst case of actual error

of classification.  The actual error is always smaller than ε.

4. Certain and Possible Rules

The main idea of use of rough set theory for learning from examples is presented in

Figure 1.  A set of examples is given, e.g. in the form of decision table.  All results of

uncertainty are manifested finally by inconsistent information in the decision table.

For any concept X, every block of _PX or 
_
PX is definable, hence it may be represented

by rules using attributes of set R.  Rules induced on the basis of the lower approximation _PX

are certain.  Possible rules, on the other hand, are induced on the basis of upper approximation
_
PX.
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Lower
approximations

Upper
approximations

Certain rules
(inference based on
classical logic)

 Rough set
analysis

Set of
examples Possible rules

(inference based on
classical logic or
a theory to deal
with uncertainty)

Figure 1.  Principle of use of rough set theory for learning from examples

For Table 5, the partition P* is equal to

{{1’}, {1’’, 2’}, {2’’, 3, 4’’}, {2’’, 3, 4’’}, {2’’’}, {4’}},

where P = {Color, Size}.  The lower approximation of class {1’, 1’’, 2’, 2’’, 2’’’},

corresponding to value negative of Attitude is {1’, 1’’, 2’, 2’’’}.  Similarly, the lower

approximation of the class {3, 4’, 4’’} is {4’}.

The upper approximation of the class {1’, 1’’, 2’, 2’’, 2’’’} is {1’, 1’’, 2’, 2’’, 2’’’, 3,

4’’}, and the upper approximation of the class {3, 4’, 4’’} is {2’’, 3, 4’, 4’’}.  Thus, for both

classes, error ε is the same and equal to
7  –  4

8   =  
4 – 1

8   = 0.375.

The expression for an error may be interpreted as follows: three examples (2’’, 3, and

4’’) out of eight are possibly but not certainly correctly classified.  The error would be 0.375

when all three examples: 2’’, 3, and 4’’ are mistakenly classified, i.e., when none of them

belong to the corresponding class (however, that is impossible).

Lower approximation of the classes imply Tables 6 and 7.
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Table 6

Attributes Decision

Color Size Attitude

1’ blue small negative

1’’ blue big negative

2’ blue big negative

2’’ red big positive

2’’’ yellow big negative

3 red big positive

4’ red small positive

4’’ red big positive

Table 7

Attributes Decision

Color Size Attitude

1’ blue small negative

1’’ blue big negative

2’ blue big negative

2’’ red big negative

2’’’ yellow big negative

3 red big negative

4’ red small positive

4’’ red big negative

Note that Tables 6 and 7 are consistent.  Thus, from Table 6, rules describing the class {1’, 1’’,

2’, 2’’’}, i.e. certain rules for value negative of Attitude, may be induced as follows:

(Color, blue) → (Attitude, negative),

(Color, yellow) → (Attitude, negative).

Similarly, from Table 7, the rule for the class {4’}, i.e. a certain rule for value positive

of Attitude, is induced:

(Color, red) ∧  (Size, small) → (Attitude, positive).

Upper approximations of the classes imply Tables 7 and 6 (these tables are the same as

implied by lower approximations because Attitude has two values).  From Table 7, rules for the

class {1’, 1’’, 2’, 2’’, 2’’’, 3, 4’’}, i.e., possible rules for value negative of Attitude are

induced:
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(Color, blue) → (Attitude, negative),

(Size, big) → (Attitude, negative),

(Color, yellow) → (Attitude, negative).

Finally, from Table 6, a rule for the class {2’’, 3, 4’, 4’’}, i.e., a possible rule for value

positive of Attitude is induced:

(Color, red) → (Attitude, positive).

The certain rules, listed above, are absolutely correct—no error analysis is required.

The error for the possible rules is always smaller than 37.5%.  The above rules, certain and

possible, are presented in the minimal discriminant form [11].

Also, note that using an approach based on ignoring examples with unknown values of

attributes to Table 3 will produce a new table with just one example, from which very little can

be learned.  For Table 3 the remaining approaches, listed in [15], are also of a very little help.

4. Conclusions

A very simple method is proposed to deal with unknown values of attributes: every

example with unknown values of attribute A is replaced by the set of examples having every

possible value for A.  This is the most conservative approach because an unknown value is

replaced by every possible value.  This method produces, in general, inconsistent decision

tables.  However, the problem of learning rules from inconsistent examples may be easily

solved using rough set theory.  Thus, two different sets of rules are computed: certain and

possible.  Certain rules are categorical and may be further employed using classical logic.

Possible rules are supported by existing data, although conflicting data may exist as well.  For

possible rules an estimate for the worst case of error is presented.

Certain and possible rules may be propagated separately during an inference process in

an expert system, producing thus new certain and possible rules, respectively.  Therefore, the

inference engine of an expert system may be divided into two parallel subsystems, for certain

and possible rules, in which certain and possible rules are processed separately.  Both

subsystems will operate in the same way as those based on classical logic.  For example,

standard strategies, like forward and backward chaining, are then applicable.
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