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In this paper we propose GP-COACH, a Genetic Programming-based method for the learn-
ing of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional
problems. GP-COACH learns disjunctive normal form rules (generated by means of a con-
text-free grammar) coded as one rule per tree. The population constitutes the rule base, so
it is a genetic cooperative-competitive learning approach. GP-COACH uses a token compe-
tition mechanism to maintain the diversity of the population and this obliges the rules to
compete and cooperate among themselves and allows the obtaining of a compact set of
fuzzy rules. The results obtained have been validated by the use of non-parametric statis-
tical tests, showing a good performance in terms of accuracy and interpretability.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the design of any fuzzy rule-based system (FRBS) learning method, there are two main (and contrary) goals to be max-
imized: the accuracy and the interpretability of the knowledge extracted. In the 1990s, more attention was given to accuracy
maximization, and different approaches were developed to improve the accuracy of FRBSs, although this improvement was
usually at the cost of their interpretability. However, more recent studies [17–19,24,41,46] have indicated the necessity of an
interpretability-accuracy trade-off in the design of FRBSs.

Such a trade-off is more difficult to achieve when the problem to be solved has high dimensionality, that is, a high number
of input features or a high number of examples. In this paper we consider the high dimensionality problem with regard to
the number of features. In this kind of problems, a linear increase in the number of input features causes an exponential
growth of the fuzzy rule search space, what is popularly known as the combinatorial rule explosion problem [23]. This
growth makes the learning process more difficult and, in most cases, leads to an FRBS with a high level of complexity (with
respect to the number of rules, features and conditions included in each rule).

An analysis of the specialized literature shows that there exist two main solutions for tackling this problem of high
dimensionality in the learning of compact, interpretable and accurate FRBSs:
. All rights reserved.
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1. Carrying out a feature selection process [40,50,54], which determines the most relevant variables before (a priori feature
selection) or during (embedded feature selection) the FRBS inductive learning process. This process reduces the fuzzy rule
search space and increases the efficiency and accuracy of the learning stage.

2. Compacting and reducing a previously learned rule set in a postprocessing stage [16,48,65]. The methods which employ this
strategy operate by combining rules and/or selecting a subset of them from a given rule set in order to achieve the goal of
minimizing the number of rules used while maintaining (or even improving) the FRBS performance.

Evolutionary algorithms (EAs), and particularly genetic algorithms (GAs) [36], have been successfully applied to FRBS
learning, giving way to the appearance of the so-called genetic fuzzy systems (GFSs) [27,41,46]. Many different GFSs have
been formulated for the learning of fuzzy rule sets. Although most of these methods are GA-based, it is also possible to find
proposals using other different types of EAs such as genetic programming (GP) [53], a type of evolutionary algorithm that
uses variable-length trees to represent the different individuals in the population, instead of fixed-sized vectors with binary,
integer or real codification [35,56,62,68].

In this paper we propose GP-COACH (Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based
classification systems for High-dimensional problems), a method for dealing with problems having a high dimensionality
with regard to the number of input features considered. It is a GP-based method that allows the absence of some of the input
features in each rule. GP-COACH learns disjunctive normal form (DNF) fuzzy rules (generated by means of a context-free
grammar), coded as one rule per chromosome and with the population forming the rule set, thus following a genetic coop-
erative-competitive learning approach [41]. It uses a competition mechanism between rules (token competition) which
simultaneously maintains the diversity in the population and deletes irrelevant rules during the learning process, allowing
us to obtain compact FRBCSs (with few rules, variables, and conditions per rule) with a high generalization capability.

An experimental study involving 24 data sets and five well-known FRBCS learning algorithms has been carried out. Non-
parametric statistical methods have been used to compare and analyze the compactness and accuracy of the experimental
results. They show the good performance (in terms of accuracy and interpretability) of our approach. Moreover, the suitabil-
ity of some GP-COACH components such as the token competition diversity mechanism, the use of specific genetic operators
and the advantages of using a GP algorithm instead of a traditional GA have been also analyzed.

This paper is organized in the following way. In Section 2, some preliminaries are described. The GP-COACH algorithm is
comprehensively described in Section 3. The experimental framework is presented in Section 4. In Sections 5 and 6 we have
included the experimental results and their analysis. Finally, in Section 7 some concluding remarks are pointed out.

2. Preliminaries

In this section, we introduce the notation that has been used in this paper. Then we describe the structure of an FRBCS, a
brief introduction to GFSs and finally a short review of the main approaches we find in the specialized literature on the use of
GP for learning FRBSs.

2.1. Notation

A classification problem is considered with:

� A set of input variables X ¼ fXi=i ¼ 1; . . . ;nvg, where nv is the number of features of the problem.
� A set of values for the target variable (class) C ¼ fCj=j ¼ 1; . . . ;ncg, where nc is the number of different values for the class

variable.
� A set of examples E ¼ feh ¼ ðeh

1; . . . ; eh
nv
;ChÞ=h ¼ 1; . . . ;neg, where Ch is the class label for the sample eh, and ne is the num-

ber of examples.

2.2. Fuzzy rule-based classification systems

FRBCSs have been successfully applied to pattern classification problems [9,46], and the interest in their use arises from
the fact that they provide a good platform for managing noisy, imprecise or incomplete information, which is often encoun-
tered in any human-cognition system.

An FRBCS is composed of a knowledge base and a fuzzy reasoning method. Both components are described in the next
subsections.

2.2.1. The knowledge base
Composed of a rule base (RB) and a data base (DB):

� Rule base. Our method learns RBs containing the following type of rules:
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Rk : If X1 is bAk
1 and . . . and Xnv is bAk

nv
then Class is Ck with CDk; ð1Þ

where each input variable Xi takes as a value a set of linguistic labels bAk
i ¼ fL

1
i or . . . or Lli

i g joined by a disjunctive oper-
ator, while the output variable (Class) is one of the class labels Ck 2 C. This type of rule is called a DNF fuzzy rule and its
structure uses a more compact description which improves the interpretability of the system. Moreover, the structure
permits changes in granularity by means of the combination of linguistic terms using an or operation, and by its nature
allows the absence of some input variables in each rule (simply letting bAk

i be the whole set of linguistic terms). As can be
seen, our DNF fuzzy rule also includes a certainty degree ðCDk 2 ½0;1�Þ, which represents the confidence of the classifica-
tion in the class label represented by the consequent of the rule ðCkÞ. In our proposal, this certainty degree is obtained as
follows:

CDk ¼

P
eh2Ck

h¼1;...;ne

mkðehÞ

P
h¼1;...;ne

mkðehÞ ; ð2Þ

where mkðehÞ is the degree of compatibility between an example and the antecedent part of a fuzzy rule, i.e., the degree of
membership of the example to the fuzzy subspace delimited by the antecedent part of the rule, also known as the match-
ing degree. In our method, this matching degree is defined as follows:

mkðehÞ ¼ TðTCðlL1
1
ðeh

1Þ; . . . ;l
L

l1
1

ðeh
1ÞÞ; . . . ; TCðlL1

nv
ðeh

nv
Þ; . . . ;l

L
lnv
nv
ðeh

nv
ÞÞÞ; ð3Þ

where Lli
i is the linguistic label number li of the variable i; l

L
li
i

ðeh
i Þ is the degree of membership for the value of the feature i

of the example eh to the fuzzy set corresponding to the linguistic label li for this variable ðiÞ; T is the t-norm selected to
represent the meaning of the AND operator (the fuzzy intersection) that in our case is the minimum t-norm; and TC is the
t-conorm selected to represent the meaning of the OR operator (the fuzzy union) that in our case is the maximum t-con-
orm. Other different methods for calculating this certainty degree can be found in [49].
� Data base. The DB contains the definition of the fuzzy sets related to the linguistic terms used in the RB. This fact leads us

to specify the number of linguistic labels ðliÞ for each variable Xi considered, and the membership function of the fuzzy
sets related to these linguistic terms. In our experiments we have used five linguistic labels per variable, and we have
divided each feature definition interval in a uniform manner using triangular fuzzy sets, which is a common way of defin-
ing the DB in the specialized literature. An example of this type of partition is shown in Fig. 1.
2.2.2. The fuzzy reasoning method
A fuzzy reasoning method (FRM) is an inference procedure that derives conclusions from a set of fuzzy if-then rules and a

pattern. The power of fuzzy reasoning is that it is possible to achieve a result even when there is not an exact match (to a
degree 1) between a system observation and the antecedents of the rules.

The most commonly used FRM, maximum matching, classifies an example using the rule consequent with the high-
est association degree, discarding the information given by other rules to a lesser degree. In [25], we presented a
general reasoning model for combining information provided by different rules, which involves different possibilities as rea-
soning methods. In our experiments, we have used two different FRMs: the classical one and the normalized sum FRM
[25,44].

2.3. Genetic fuzzy systems

A GFS is basically a fuzzy system augmented by a learning process based on evolutionary computation, which includes
genetic algorithms (GAs), genetic programming (GP), and evolutionary strategies, among other evolutionary algorithms.
Fig. 1. A uniform fuzzy partition with triangular membership functions.
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These well known and widely used global search techniques have the ability to explore a large search space for suitable solu-
tions only requiring a performance measure. In addition to their ability to find near optimal solutions in complex search
spaces, the generic code structure and independent performance features of EAs make them suitable candidates to incorpo-
rate a priori knowledge.

In the case of FRBSs, this a priori knowledge may be in the form of linguistic variables, fuzzy membership function param-
eters, fuzzy rules, number of rules, etc. These capabilities have extended the use of EAs in the development of a wide range of
approaches for designing FRBSs over the last few years, as has been pointed out in the last special GFS issues [13,19,24,14].

In these special issues we can find studies emphasizing different research directions. Carse and Pipe’s special issue [13]
includes papers focused on the multiobjective evolutionary learning [37], boosting [63] and evolutionary adaptive inference
systems [5]. Casillas et al.’s special issue [19] is focused on the trade-off between interpretability and accuracy, collecting
papers that proposed different GFSs for tackling this problem: with multiobjective approaches [47,39], and optimizing the
definition for the linguistic variables [4,11]. Cordón et al.’s [24] and Casillas and Carse’s [14] special issues focus its attention
on highly innovative GFS proposals that can mark new research trends: treatment of imprecise data in GFSs [61,64], incre-
mental evolutionary learning [42], and multiobjective [10,33], parallel [57], genetic programming [56] and neuro-coevolu-
tionary approaches [30].

In this paper, we will pay special attention to the GFSs which learn RBs. When considering the task of learning rules in a
rule base based system, the different genetic learning methods follow two approaches in order to encode rules within a pop-
ulation of individuals:

� The ‘‘Chromosome = Set of rules”, Pittsburgh approach, in which each individual represents a whole rule set [66,67].
� The ‘‘Chromosome = Rule” approach, in which each individual codifies a single rule, and the whole rule set is provided by

combining several individuals in the population (rule cooperation) or via different evolutionary runs (rule competition).
In turn, within the ‘‘Chromosome = Rule” approach, there are three generic proposals:
– The Michigan approach (learning classifier system) [70,15], in which each individual codifies a single rule.
– The IRL (iterative rule learning) approach [26,38], in which each chromosome represents a rule. The global solution is

formed by the best rules obtained when the algorithm is run multiple times.
– The GCCL (genetic cooperative-competitive learning) approach [45], in which the complete population or a subset of it

codifies the RB. In this model, the chromosomes compete and cooperate simultaneously.
As was mentioned before, although most of the evolutionary proposals for the learning of GFSs are GA-based, it is also
possible to find GFSs that use other different types of EAs. One example are those GFSs which use GP [53] for learning FRBSs.
Most of these approaches follow the Pittsburgh codification scheme [1–3,35,43,55,60,62,68], although there are other pro-
posals which use GCCL codification scheme [7,8,22,56].

An extensive review of the most recent developments of GFS and FRBS can be found in [41].1
3. GP-COACH algorithm

The main features of GP-COACH are the following:

� It uses a context-free grammar which allows the learning of DNF fuzzy rules (see Eq. (1)) and the absence of some input
features, thus obtaining compact and simple rules.
� It follows the GCCL approach, so it encodes a single rule per individual and the RB is formed by the whole population. This

makes it necessary to use two different fitness functions:
– A local fitness function which evaluates the goodness of each of the different rules in the population of individuals.

From now on, we will refer to it simply as fitness function.
– A global fitness function which evaluates the goodness of a whole population of individuals (an RB). From now on, we

will refer to it as global fitness score.

� It includes a mechanism to promote diversity in the population, in order to avoid the convergence of all individuals in the

same area of search space. Specifically, it uses the token competition [71] diversity mechanism which makes rules compete
among themselves during the evolutionary process, deleting irrelevant rules and thus generating a smaller number of
rules that present a high generalization capability. We must emphasize that we have a variable size population, allowing
us to obtain a small set of rules. In [51,52], studies on the use of variable size populations in GP are done.
� It uses a two level hierarchical inference process because it learns two different types of rules: primary rules, which are

strong and general rules generated by the genetic operators, and secondary rules, which are weaker and more specific
rules, generated after the token competition procedure in order to increase the diversity in the population.
1 The web site http://www.sci2s.ugr.es/gfs/ provides complete information and material on the topic.

http://www.sci2s.ugr.es/gfs/
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� GP-COACH uses a reproduction stage in which each child is created by applying only one of the genetic operators, and the
children compete with their parents in order to generate a new population.

In the following subsections, these components, the complete description of the algorithm and a pseudo-code summariz-
ing GP-COACH algorithm are shown.

3.1. Context-free grammar definition

DNF fuzzy rules are generated according to the production rules of a context-free grammar. In Table 1, an example of the
grammar for a classification problem with two features ðX1;X2Þ, three linguistic labels per feature (Low,Medium,High) and
three classes ðC1; C2;C3Þ is shown.

The symbol ?a in some of the production rules of the grammar represents one, and only one, of the values separated by
commas in the square brackets.

3.2. Evaluating an individual: fitness function

Each one of the individuals (rules) in the population is evaluated according to a fitness function based on the estimation of
two measurements: Confidence, which measures the accuracy of an individual, that is the confidence that the consequent
will be true if the antecedent is verified (calculated in the same way as the certainty degree in Eq. (2)), and Support, which
measures the extent of the knowledge represented in the individual:
Table 1
Gramm

Start
ante
descr
descr
descr
descr
label
cons

descr
SupportðRkÞ ¼

P
eh2Ck

h¼1;...;ne

mkðehÞ

NCk
; ð4Þ
where NCk is the number of examples having the same class as the one indicated in the consequent of the individual ðRkÞ.
Both measurements are combined to form the fitness function in the following way:
raw fitnessðRkÞ ¼ a � ConfidenceðRkÞ þ ð1� aÞ � SupportðRkÞ; ð5Þ
where a parameter allows us to give more importance to either of these.
Finally, it is important to emphasize that each time that an individual is evaluated it is also necessary to modify its cer-

tainty degree according to its confidence value.

3.3. Evaluating a population: global fitness score

GP-COACH uses a global fitness score in order to obtain the best evolved population during the whole evolutionary process,
defined as follows:
Global fitness ¼ w1 � accuracyþw2 � ð1:0� VarNÞ þw3 � ð1:0� CondNÞ þw4 � ð1:0� RulNÞ; ð6Þ
where VarN and CondN are the normalized values of the average number of variables and conditions (labels) in the rules, and
RulN the number of rules in the population, respectively. Table 2 shows the minimum and maximum values used to normal-
ize each of these measurements.

It is important to point out that it is not possible to use a multiobjective evolutionary approach in GP-COACH for man-
aging the different objectives due to our proposal uses the GCCL representation. We encode one fuzzy rule per chromosome
and the complete solution is provided by joining all the individuals in the population, and therefore it is not possible to
evolve a pareto of solutions. The design of a multiobjective evolutionary approach in GP will require the use of the Pittsburgh
codification scheme, which presents several disadvantages such as efficiency problems, variable size codification problems,
and code bloating that advice against its use for the obtaining of compact and accurate FRBCSs.
ar example.

! ½If �; antec; ½then�; conseq; ½��
c ! descriptor1; ½and�;descriptor2
iptor1! ½any�
iptor1! ½X1 is�label
iptor2! ½any�
iptor2! ½X2 is�label.
! fmemberð?a; ½L;M;H; L or M; L or H;M or H; L or M or H�Þg; ½?a�

eq! ½Class is� descriptorClass

iptorClass! fmemberð?a; ½C1;C2; C3�Þg; ½?a�



Table 2
Minimum and maximum values for normalization.

Var Cond Rul

Min. 1 1 nc

Max. nv nv � ðli � 1Þ ne
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3.4. Token competition: maintaining the diversity of the population

Token competition [71] has been used as a mechanism for maintaining the diversity in the population in GP-COACH. It
emulates the following behavior in a natural environment: when an individual finds a good place to live (a niche) it will try
to exploit this niche and prevent other newcomers from sharing its resources, unless a given newcomer is stronger than it is.
The other individuals are hence forced to explore and find their own niches. In this way, the diversity of the population is
increased.

Based on this idea, it is assumed that each example in the training set can provide a resource called a token, for which all
chromosomes in the population will compete. If an individual (i.e. a rule) can match the example, it sets out a flag to indicate
that the token is seized. Other weaker individuals then cannot capture the token.

The priority of receiving tokens is determined by the strength of the individuals. The individuals with a high fitness score
will exploit their niches by seizing as many tokens as they can. The other individuals entering the same niches will have their
strength decreased because they cannot compete with the stronger ones. This is achieved by introducing a penalization in
the fitness score of each individual, based on the number of tokens which each individual has seized:
Penalized fitnessðRkÞ ¼ raw fitnessðRkÞ � countðRkÞ
idealðRkÞ

; if idealðRkÞ > 0;

0; otherwise;

(
ð7Þ
where raw fitnessðRkÞ is the fitness score obtained from the evaluation function, countðRkÞ is the number of tokens that the
rule Rk actually seized and idealðRkÞ is the total number of tokens that it can seize, which is equal to the number of examples
that the rule matches.

As a result of token competition, there exist individuals that cannot seize any token. These individuals are considered as
irrelevant, and they can be eliminated from the population due to the fact that all of their examples are covered by other
stronger individuals.

In Fig. 2 a token competition example is shown. In this example there is a population with five rules ðR1; . . . ;R5Þ ordered
decreasingly according to their fitness score. Before token competition is carried out, all the training examples ðe1; . . . ; e12Þ
have their tokens free. Once token competition has started, R1 can seize all its tokens because it is the strongest rule. R2

can only capture two of its three tokens because R1 has previously seized the token associated with e1, so R2 must have
its fitness score penalized. Rule R3 must be eliminated from the population because all its tokens have been previously seized
by other stronger rules, that is R3 is considered as an irrelevant rule. R4 and R5 do not need to modify their fitness score be-
cause they can seize all their tokens.

The token competition let us eliminate rules which describe information provided by other stronger rules (with better
confidence and/or support).
3.5. Secondary rules: improving population diversity

Once the token competition mechanism has been applied, it is possible that there exist training examples which have not
been covered by any of the rules in the population (see examples e4; e5 and e11 in Fig. 2). The generation of new specific rules
Fig. 2. Token competition example.
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covering these examples improves the diversity of the population and helps the evolutionary process to find easily stronger
and more general rules covering these examples.

As was previously mentioned, GP-COACH uses a two-level hierarchical inference process, learning rule sets with two dif-
ferent types of fuzzy rules: A core of strong and general rules (primary rules) which cover most of the examples, and a small
set of weaker and more specific rules (secondary rules), which are only taken into account if there is no primary rule which
matches the examples. This two-level hierarchical inference process works in the following way: When a new example e is
given to a learned FRBCS, this will try to find the class that better suits e by using the information provided in its knowledge
base. However, the FRM only will consider those rules which have been labelled as primary to obtain the class of the example
e. The secondary rules will only be taken into account if there exists no primary rule in the RB matching the example e.

This two-level hierarchical inference process allows GP-COACH to improve the accuracy of the learned rule sets, avoiding
misclassification errors coming from the use of the secondary rules when primary rules (more general ones) can be applied.

GP-COACH follows the method proposed by Chi et al. [21] (which extends the Wang and Mendel method [69] for clas-
sification problems) to generate secondary rules:

1. If after carrying out token competition, there are some of the training examples with their tokens free, then randomly
choose one of them and generate a new rule covering this example. This new rule will contain all the input variables,
and each one of these variables will only have a single linguistic label associated (the one for which the example presents
the highest degree of membership). The class of the new rule will be the class associated with the example chosen.

2. All the examples that match the new rule, among those with their token free after token competition, are removed.
3. If there are still examples with their token free, then repeat the two previous steps. Otherwise, evaluate all the new rules

that have been generated and join them to the ones in the current population.

It is important to point out that it is also possible that GP-COACH learns rule sets which have no secondary rules, because
their primary rules are strong enough to cover all the given examples.

3.6. Genetic operators

GP-COACH makes use of four different genetic operators to generate new individuals (the operator selection procedure is
described in the next subsection):

1. Crossover (Fig. 3): A part in the first parent is randomly selected and exchanged by another part, in the second one, but
under the constraint that the offspring produced must be valid according to the grammar production rules. It is important
to indicate that it is not possible to choose cut points in the middle of a disjunction of labels. This operator in fact pro-
duces two children, but only one of them (randomly chosen) is returned as a descendant.
Fig. 3. Crossover operator.
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2. Mutation: A variable in the rule is randomly chosen and then one of the following three actions is taken (again, randomly
chosen):
(a) A new label is added to the label set.
(b) A label is removed from the label set.
(c) A label is exchanged for another one not included in the label set.
3. Insertion: It inserts a new variable in the rule. The linguistic label set associated to this new variable is randomly chosen,
although it must have at least one label and must be different from the ‘‘any” set (see Table 1).

4. Dropping condition (Fig. 4): Due to the probabilistic nature of GP, redundant constraints may be generated in the rule.
Thus it is necessary to generalize the rules, to represent the knowledge in a more concise form. The dropping condition
randomly selects one variable in the rule and then turns it into ‘‘any”. The label set associated with this variable is also
removed. The variable is no longer considered in the rule, hence the rule can be generalized.
3.7. Reproduction stage: selection, genetic operators application and replacement

GP-COACH generates a number of descendants equal to the size of the current population. This size can vary throughout
the evolutionary process because of the action of token competition.

Selection: Parents are selected from the current population by the tournament selection scheme, with size 2.
Genetic operators application: Each individual chosen in the selection stage is used to generate a new child by applying one

of the previously described four genetic operators. The genetic operators election is carried out in a probabilistic manner.
Two considerations need to be taken into account: The first one is related to the crossover operator. As has been said be-

fore, this operator generates one child from two parents. The tournament selection mechanism only returns one parent, so
another parent must be selected from the current population. Nevertheless, in contrast with the first parent, this second one
is randomly selected from all the individuals in the population. It must be noted that this crossover operator can swap infor-
mation between individuals representing rules for different classes. It can increase the diversity in the population and if this
swap generates rules with non-appropriate information our token competition mechanism will erase then from the popu-
lation, keeping the good ones.

Another important issue is that it could be possible not to be able to apply all the genetic operators to a given parent. For
instance, it is not possible to apply the dropping condition operator to a rule with a single variable or to apply the insertion
operator to a rule using all the input variables. When this happens, another genetic operator is selected from the remaining
ones.

Replacement: An important issue in GP-COACH is that the new population of children does not replace the current pop-
ulation of parents. Instead, a new joint population is formed by adding the parents and children populations. Individuals in
this joint population are arranged by their fitness score in order to be able to apply the token competition diversity
mechanism.

3.8. Description of the algorithm

The GP-COACH algorithm begins by creating an initial population according to the rules in the context-free grammar.
Each individual in this population is then evaluated. Afterwards, the initial population is kept as the best-evolved population
and its global fitness score is calculated. Then the initial population is copied to the current population and the evolutionary
process begins:

1. An offspring population, with the same size as the current one, is created. Parents are selected by using the binary tour-
nament selection mechanism, and children are created by using the genetic operators. Each child in this offspring pop-
ulation is then evaluated.
Fig. 4. Dropping condition operator.
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2. Once the offspring population has been created it is joined to the current population, thus creating a new population
whose size is double the current population size. Individuals in this new population are then sorted by their fitness,
and the token competition diversity mechanism is applied. Irrelevant individuals (those not seizing any token) are
deleted from the population, and secondary rules (new specific rules covering those examples whose tokens have not
been seized during token competition) are created in order to increase the diversity of the population, if they are
necessary.

3. The global fitness score is then calculated for this new population. If this score outperforms the one for the best popula-
tion, the best population must be replaced by this new population (and the best global fitness score must also be
updated). In any case, the new population becomes the current population in order to be able to apply the evolutionary
process again.

The evolutionary process ends when the stop condition is verified (the maximum number of fitness evaluations is
reached). Then the population kept as the best one is returned as the solution to the problem.

A pseudo-code summarizing GP-COACH algorithm is shown in Fig. 5.

4. Experimental framework

The performance of GP-COACH is analyzed using 24 classification data sets obtained from the UCI Repository of machine
learning databases2 [6] and the DELVE project.3 The most important characteristics of these classification data sets are summa-
rized in Table 3.

We have compared GP-COACH results with the ones obtained by different methods which use either an a priori feature
selection process or an embedded one, in order to learn FRBCSs with a good interpretability-accuracy trade-off:

� PCA-Ravi: Ravi et al. [58] develop a process for deriving fuzzy rules for high-dimensional classification problems. This
approach uses a reduced set of features extracted from the original ones by principal component analysis [72], and a mod-
ified threshold accepting algorithm [59] to build a compact rule subset.
� 2SLAVE: González et al. propose in [38] 2SLAVE, a GA-based method for the learning of DNF fuzzy rules which follows the

IRL approach to encoding rules in the population and includes an embedded feature selection process.
� GP-PITT-Tsakonas: Tsakonas [68] designs a GP-based FRBCS learning process which uses a context-free grammar to gen-

erate complete rule sets for each individual in the population.
� GCCL-Ishibuchi: Ishibuchi et al. propose in [45] a method which follows the GCCL approach to encoding rules in the pop-

ulation. This method uses a fixed-size rule population and ‘‘Don’t Care” symbols for generalizing fuzzy rules. The rule con-
sequents are an output class and a certainty factor. These latter are derived using a heuristic procedure prior to fitness
evaluation, and the GA operates on the rule antecedent only.
2 We have used two different versions of the HillValley data set, corresponding to the data without (1) and with (2) noise, respectively.
3 URL: http://www.cs.toronto.edu/~delve/.

http://www.cs.toronto.edu/~delve/


Table 3
Data sets characteristics.

Name N. Inst. N. Feat. N. Clas. Name N. Inst. N. Feat. N. Clas.

Bupa 345 6 2 Cleveland 297 13 5
Ecoli 336 7 8 Flare 1066 9 2
Glass 214 9 6 HillValley1 1212 100 2
HillValley2 1212 100 2 Iris 150 4 3
Libras Mov. 360 90 15 Magic 19020 10 2
Page-blocks 5472 10 5 Parkinsons 195 22 2
Pen-based 10992 16 10 Pima 768 8 2
Quadruped 5000 46 4 Ringnorm 7400 20 2
Satimage 6435 36 6 Segment 2310 19 7
Sonar 208 60 2 Spambase 4597 57 2
Twonorm 7400 20 2 Wdbc 569 30 2
Wine 178 13 3 Yeast 1484 8 10
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� FRBCS_GP: A GP-based method for learning FRBCSs proposed earlier by the authors [8]. The main differences between
FRBCS_GP and GP-COACH are the following:
– FRBCS_GP does not use a two level hierarchical inference process, and therefore it learns rule sets containing only one

type of fuzzy rule.
– The size of the current population does not change during the evolutionary process. GP-COACH uses a non-constant

population size.
– FRBCS_GP does not use any type of fitness score to determine the best-evolved population.
– It uses a crisp fitness function, which uses the number of positive and negative examples, and not a fuzzy one as GP-

COACH does.
– Finally, FRBCS_GP uses a ranking selection scheme to select parents from the population, and different genetic oper-

ators to generate new children.

The parameters of the algorithms used are presented in Table 4. All the parameters for the algorithms are the ones rec-
ommended by the respective authors. In GP-COACH, the weights for the global fitness score have been heuristically deter-
mined, trying to represent a compromise between accuracy, simplicity of the individual rules and simplicity of the whole RB.
It must be noted that those weights used were the same for all the data sets considered in the experimentation.

To develop the different experiments we consider a 10-fold cross-validation model, and due to all the methods in study are
non-deterministic ones, we have used three different seeds for each different partition. Therefore, for each data set we con-
sider the average results for 30 runs. However, the results obtained from this validation are not completely independent, so
the results neither present normal distribution nor homogeneity of variance. In this situation we consider the use of non-
parametric tests, according to the recommendations made by Demšar in [31].

As such, these non-parametric tests can be applied to classification accuracies, error ratios or any other measure for tech-
nique evaluation, even including model sizes. Empirical results suggest that non-parametric tests are also more powerful
Table 4
Parameters used in the algorithms.

Algorithm Parameters

PCA-Ravi PCA threshold ¼ 75%; U ¼ 0:95%; thresh ¼ 0:035; thrtol ¼ 10�8

eps ¼ 0:35; acc ¼ 10�6; old ¼ 9999; itrmax ¼ 100; WNCP ¼ 10;
WS ¼ 1

2SLAVE itrmax ¼ 1000; itr no improve ¼ 50; Pop ¼ 20; k ¼ 0:8; k1 ¼ 0;
k2 ¼ 1, PAND ¼ 0:1; POR ¼ 0:1; Pc ¼ 0:6; Pmðper geneÞ ¼ 0:05;
PRotation ¼ 0:05

GP-PITT-Tsakonas max individual size ¼ 650nodes; Pop ¼ 2000; itrmax ¼ 10000
Tournament ¼ 6; Pc ¼ 0:35; Pmðper nodeÞ ¼ 0:4; PShrink ¼ 0:6

GCCL-Ishibuchi Eval ¼ 20;000; Pop ¼ 100; Nrep ¼ 20; Pc ¼ 1:0; Pm ¼ 0:1;
Pdon0tcare ¼ 0:9

FRBCS_GP Eval ¼ 20;000; Pop ¼ 200; Pc ¼ 0:5; Pm ¼ 0:4; Pdp ¼ 0:1;
min support ¼ 0:01

GP-COACH Eval ¼ 20;000; Pop ¼ 200; a ¼ 0:7; Pc ¼ 0:5; Pm ¼ 0:2;
Pdp ¼ 0:15; Pi ¼ 0:15, Tournament ¼ 2; w1 ¼ 0:8;
w2 ¼ w3 ¼ 0:05 and w4 ¼ 0:1
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than the parametric ones. Demšar recommends a set of simple, safe and robust non-parametric tests for statistical compar-
isons of classifiers. In particular, we have considered two alternative methods based on non-parametric tests for analyzing
the experimental results:

� Application of Friedman’s test, Iman–Davenport’s test and Holm’s method as post hoc procedure. The two first tests may
be used to see whether there are significant statistical differences among the algorithms in a certain group. If differences
are detected, then Holm’s test is employed to compare the best algorithm (control algorithm) against the remaining ones.
� Utilization of Wilcoxon’s matched-pairs signed-ranks test. With this test, the results of two algorithms may be compared

directly.

A wide description on the use of the non-parametric tests can be found in [31,34].

5. Experimental analysis of GP-COACH

In this section, an experimental study is carried out in order to demonstrate the suitability of some GP-COACH
components:

� the token competition diversity mechanism,
� the insertion and dropping condition genetic operators, and
� the use of a GP-based algorithm instead of a GA-based one.

First of all, due to two different FRMs, the classical (Max) and the normalized sum (Sum), have been used in all our exper-
iments, it is necessary to compare GP-COACH using both FRMs in order to find the best configuration.

We have applied a Wilcoxon signed-ranks test to find the best FRM (the statistical analysis is carried out considering the
accuracy in test). In Table 5, Rþ and R� are the rankings for the classical and the normalized sum FRMs, respectively. The best
configuration (highlighted in bold) will be that one with the highest value.

Wilcoxon’s test detects significant differences in the use of normalized sum FRM. Therefore, we will only consider this
FRM for analyzing the different GP-COACH components.

We have analyzed the following GP-COACH components:

1. Influence of thetoken competition diversity mechanism: A comparative study between GP-COACH algorithm and a modified
one not containing this diversity mechanism (called GP-COACH No Token Comp.) has been carried out.

2. Effectiveness of insertion and dropping condition genetic operators: A modified GP-COACH algorithm not containing these
genetic operators (called GP-COACH No Inser. No Drop.) has been developed.

3. Advantages of using a GP-based algorithm for learning fuzzy rules instead of a traditional GA: A new GA-based algorithm for
the learning of DNF fuzzy rules (called GA-COACH), has been implemented. This GA algorithm codifies a single DNF fuzzy
rule per chromosome using a binary codification. A uniform crossover operator and a mutation operator changing the
value of a gene randomly have been used as genetic operators (insertion and dropping condition specific operators have
been not considered).

Accuracy results are shown in Table 7 (%Tra and %Test are the accuracy percentage for training and test data,
respectively).

In Table 6, we show the statistical analysis carried out using the Wilcoxon signed-ranks test (considering the accuracy in
test). Rþ is the ranking for the traditional GP-COACH algorithm, while R� are the rankings for the different modified ap-
proaches. The best configuration (highlighted in bold) will be that one with the highest value. As it can be seen, Table 6
shows the robustness of our traditional GP-COACH algorithm, due to it is statistically better than all these modified
approaches.

6. Comparative analysis with others FRBCS learning methods

In this section, the accuracy and compactness of GP-COACH is statistically analyzed by comparing its results with the ones
obtained by other well-known FRBCS learning proposals.

First of all, we have to find the best FRM configuration for each one of the FRBCS learning methods considered in the com-
parative (with the exception of the Tsakonas method, where its own FRM has been used [68]). To do this we have applied a
Table 5
Wilcoxon’s test for the best FRM configuration in GP-COACH, p ¼ 0:05.

R+ (FRM Max) R� (FRM Sum) Critical value Sig. dif.?

7.5 292.5 81 Yes



Table 6
Wilcoxon’s test for analyzing some GP-COACH components, p ¼ 0:05.

GP-COACHSum vs: R+ R� Critical value Sig. dif.?

GP-COACHSumNo Token Comp. 300.0 0.0 81 Yes
GP-COACHSumNo Inser:No Drop. 265.5 34.5 81 Yes
GA-COACHSum 262.0 38.0 81 Yes

Table 7
GP-COACH components analysis results.

Dataset GP-COACHMax GP-COACHSum GP-COACHSum GP-COACHSum GA-COACHSum

No Token Comp. No Inser. No Drop.Sum

%Tra %Test %Tra %Test %Tra %Test %Tra %Test %Tra %Test

Bupa 66.94 61.58 69.04 63.63 58.54 57.13 65.40 60.64 66.12 62.10
Cleveland 63.91 54.31 64.93 55.23 53.84 53.52 63.14 56.79 67.60 52.75
Ecoli 83.10 77.52 83.58 77.72 50.64 50.31 77.80 75.01 69.19 65.88
Flare 67.70 67.38 67.70 67.45 59.02 58.81 65.14 64.41 66.73 66.01
Glass 69.68 65.63 71.26 65.33 49.21 47.93 61.44 56.88 60.87 57.05
HillValley1 53.76 52.56 53.96 52.89 51.67 50.80 53.29 51.82 55.30 53.05
HillValley2 55.59 52.99 55.68 53.99 50.63 49.56 55.26 54.15 56.78 54.76
Iris 97.78 97.56 97.78 97.56 93.90 90.67 97.14 97.56 94.89 94.00
Libras Mov. 73.88 45.28 74.23 45.56 17.69 15.93 74.85 50.00 93.02 57.87
Magic 78.82 78.78 79.78 79.82 65.64 65.64 76.45 76.32 75.75 75.74
Page-blocks 90.39 90.30 91.30 91.23 89.78 89.78 91.25 91.19 90.51 90.47
Parkinsons 88.60 84.62 89.74 86.48 75.48 75.57 87.88 84.97 86.38 82.01
Pen-based 78.78 78.77 82.29 82.20 35.40 35.44 78.84 78.54 74.56 74.18
Pima 75.93 73.90 77.02 74.37 65.01 65.06 76.93 73.68 74.60 73.33
Quadruped 100.00 100.00 100.00 100.00 77.26 77.25 100.00 100.00 99.28 98.67
Ringnorm 86.95 86.75 91.24 91.13 64.22 64.10 77.68 77.40 86.67 86.10
Satimage 66.58 66.51 72.83 72.50 41.06 40.96 72.40 72.25 64.27 64.02
Segment 84.87 84.78 86.55 85.96 42.42 42.66 74.32 73.62 66.41 66.32
Sonar 76.16 67.12 80.25 67.46 62.27 58.42 78.49 65.83 79.72 60.40
Spambase 77.34 76.60 83.17 82.80 63.56 63.64 76.06 76.10 88.44 81.07
Twonorm 77.25 76.70 85.42 84.83 78.61 78.17 85.16 84.77 88.03 88.25
Wdbc 94.17 92.02 95.09 93.90 88.68 87.81 93.12 91.97 92.57 90.51
Wine 97.94 94.31 98.96 95.10 89.57 83.89 96.36 89.66 91.84 89.48
Yeast 41.84 40.67 49.74 48.56 34.33 33.65 42.46 41.71 43.77 42.34

Average 77.00 73.61 79.23 75.65 60.77 59.86 75.87 72.72 76.39 71.93

Table 8
Wilcoxon’s test for the best FRM configurations, p ¼ 0:05.

Algorithm R+ (FRM Max) R� (FRM Sum) Critical value (p = 0.05) Sig. dif.?

PCA-Ravi 149.0 151.0 81 No
2SLAVE 86.5 213.5 81 No
GCCL-Ishibuchi 197.0 103.0 81 No
FRBCS_GP 21.5 278.5 81 Yes
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Wilcoxon signed-ranks test (the statistical analysis is carried out considering the accuracy in test). In Table 8, Rþ and R� are
the rankings for the classical and the normalized sum FRMs, respectively. The best configurations (highlighted in bold) will
be those that present the highest values.

Wilcoxon’s test only detects significant differences, in the use of one FRM or another, with regard to FRBCS_GP method.
However, for our empirical study we will consider for each method the FRM configuration that presents the highest value.

Our study has been divided into three different parts: The first one comprises a statistical comparison of the accuracy of
the six FRBCS learning methods considered in the empirical study. The statistical analysis of the compactness and interpret-
ability results is carried out in the second part. Finally, a third part summarizes the GP-COACH accuracy and compactness
performance.
6.1. Accuracy analysis

Accuracy results are shown in Table 9. Statistical analysis is carried out considering the accuracy in test.



Table 9
GP-COACH and other FRBCS learning methods accuracy results.

Dataset PCA-RaviSum 2SLAVESum GP-PITT-Tsakonas GCCL-IshibuchiMax FRBCS_GPSum GP-COACHSum

%Tra %Test %Tra %Test %Tra %Test %Tra %Test %Tra %Test %Tra %Test

Bupa 67.08 54.46 64.75 58.58 59.80 56.45 60.36 58.27 64.49 62.20 69.04 63.63
Cleveland 79.97 49.24 54.18 46.19 61.93 56.46 62.83 54.15 60.91 56.69 64.93 55.23
Ecoli 86.19 55.46 58.18 57.49 45.77 43.94 74.47 71.17 81.22 76.75 83.58 77.72
Flare 67.65 66.48 43.54 42.64 67.90 67.23 67.31 65.92 64.81 64.36 67.70 67.45
Glass 74.18 46.56 49.29 44.39 48.03 45.12 69.63 60.69 61.28 56.61 71.26 65.33
HillValley1 52.35 51.48 52.52 51.76 50.86 49.97 20.26 20.02 50.43 49.78 53.96 52.89
HillValley2 52.00 50.85 52.53 51.21 50.57 49.20 28.62 28.00 51.28 50.69 55.68 53.99
Iris 94.27 88.44 94.67 94.67 54.10 48.44 95.55 94.67 97.65 97.11 97.78 97.56
Libras Mov. 74.83 42.41 33.15 25.83 10.08 5.28 28.70 20.74 56.24 47.69 74.22 45.56
Magic 77.47 77.59 74.23 74.29 64.89 64.79 76.02 76.02 74.59 74.51 79.78 79.82
Page-blocks 91.15 90.70 91.40 91.42 93.03 92.92 90.41 90.34 91.24 91.09 91.30 91.23
Parkinsons 88.20 73.63 84.10 81.75 77.87 74.53 84.22 83.27 86.86 85.75 89.74 86.48
Pen-based 81.36 81.81 81.32 81.16 44.86 44.67 82.53 82.18 75.74 75.53 82.29 82.20
Pima 81.77 68.31 67.00 66.45 65.85 64.28 70.37 69.11 74.79 73.16 77.02 74.37
Quadruped 100.00 100.00 99.99 99.99 30.03 28.51 99.99 99.99 99.94 99.89 100.00 100.00
Ringnorm 38.40 30.12 80.12 79.64 50.87 50.51 91.81 91.70 94.10 93.84 91.24 91.13
Satimage 78.36 76.54 33.39 33.45 23.82 23.82 63.14 63.12 68.08 68.06 72.83 72.50
Segment 80.17 78.50 73.37 72.81 21.85 21.62 84.64 84.07 81.23 80.38 86.55 85.96
Sonar 92.90 27.65 78.45 70.72 65.24 52.42 83.49 72.40 83.30 71.15 80.25 67.48
Spambase 81.70 64.93 69.87 70.14 82.30 81.89 69.77 69.87 75.03 74.55 83.17 82.80
Twonorm 24.81 20.04 84.67 84.35 49.02 48.80 90.70 90.12 92.40 91.97 85.42 84.83
Wdbc 94.73 86.77 92.42 91.80 65.66 63.09 92.69 91.09 95.60 95.02 95.09 93.90
Wine 99.33 93.17 92.22 91.53 46.30 38.19 97.98 91.21 95.84 91.13 98.96 95.10
Yeast 58.94 39.45 15.22 14.51 32.36 31.76 50.69 49.01 52.79 52.16 49.74 48.56

Average 75.74 63.11 67.52 65.70 52.62 50.16 72.34 69.88 76.24 74.17 79.23 75.66
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In Fig. 6 the values of the average rankings using Friedman’s method are specified. Each column represents the average
ranking obtained by an algorithm; that is, if a certain algorithm achieves rankings 1, 3, 1, 4 and 2 on five data sets, the aver-
age ranking is 1þ3þ1þ4þ2

5 ¼ 11
5 . The height of each column is proportional to the ranking and the lower a column is, the better its

associated algorithm. We then apply Friedman’s and Iman–Davenport’s tests (considering a level of significance a ¼ 0:05) to
check whether differences exist among all the methods, presenting the results in Table 10.

Table 10 indicates that both Friedman’s and Iman–Davenport’s statistics are higher than their associated critical value, so
the hypothesis of equivalence of results is rejected. A post hoc test is then needed in order to distinguish whether the control
algorithm (GP-COACH, which obtains the lowest value of ranking computed through Friedman’s test) is significantly better
than the remainder. Table 11 shows all the possible hypotheses of comparison between the control algorithm and the others,
ordered by their p-value and associated with their level of significance a.

Holm’s method rejects all hypotheses. Therefore, according to Holm’s procedure, the control algorithm (GP-COACH) is
statistically better regarding accuracy than the rest of methods, with a p-value of 0.05.
Fig. 6. Accuracy Friedman rankings.



Table 10
Statistics and critical values for Friedman’s and Iman–Davenport’s tests, a ¼ 0:05.

Critical value Hypothesis

Friedman’s statistic
43.2976 11.0705 Rejected

Iman–Davenport’s statistic
12.9832 2.2932 Rejected
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6.2. Compactness analysis

Once we have demonstrated the good performance in term of accuracy of our proposal, in this second part we will ana-
lyze the compactness and interpretability results.

It must be pointed out that some of the FRBCS learning methods considered in the study learn DNF fuzzy rules, while
other ones learn non-DNF (canonical) rules. As has been seen, a DNF fuzzy rule is a special type of rule which can comprise
several canonical rules. Therefore it seems rather inappropriate to compare methods obtaining these two different types of
rules. Due to the fact that GP-COACH learns DNF rules, we only will consider those methods which also learn DNF rules in
this compactness study.

Compactness results are shown in Table 12, where Rul is the average rule number, Var is the average number of anteced-
ent variables per rule, Cond is the average number of antecedent conditions per rule, and CI is a compactness index which has
been calculated in order to measure the compactness and interpretability of a learned RB, with the following expression:
Table 1
Holm ta
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Table 1
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Bupa
Clev
Ecol
Flare
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Segm
Sona
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Wdb
Win
Yeas
CI ¼ RulN þ VarN þ CondN ; ð8Þ
1
ble (GP-COACH is the control algorithm).

Algorithm z p a=i Hypothesis

GP-PITT-Tsakonas 5.9021 3.5890 � 10�9 0.0167 Rejected
PCA-RaviSum 4.4748 7.6484 � 10�6 0.01 Rejected
2SLAVESum 4.3205 1.5568 � 10�5 0.0125 Rejected
GCCL-IshibuchiMax 3.3947 6.8710 � 10�4 0.025 Rejected
FRBCS_GPSum 2.0445 0.0409 0.05 Rejected

2
CH and other FRBCS learning methods compactness results.

set 2SLAVESum FRBCS_GPSum GP-COACHSum

Rul Var Cond CI Rul Var Cond CI Rul Var Cond CI

4.57 4.96 14.55 1.40 18.53 4.83 12.40 1.31 10.07 1.38 2.49 0.16
eland 12.37 9.19 21.00 1.10 34.53 3.82 10.12 0.52 23.83 3.05 7.44 0.35
i 10.37 4.49 11.35 0.97 30.40 3.31 7.44 0.70 25.57 2.88 6.21 0.57

2.97 5.98 12.39 0.94 15.23 3.47 9.42 0.55 8.13 1.80 4.11 0.19
s 8.80 6.32 14.69 1.07 23.47 3.71 8.16 0.63 17.43 2.64 5.56 0.39
alley1 6.63 21.38 48.74 0.32 26.93 16.10 50.54 0.30 7.27 3.18 7.65 0.04
alley2 6.40 47.73 157.42 0.88 34.33 8.22 24.39 0.16 6.90 3.20 8.16 0.04

3.93 2.72 6.71 0.96 3.00 1.51 2.69 0.28 3.23 1.22 1.75 0.13
s Mov. 25.53 37.93 73.35 0.65 49.77 3.75 7.09 0.16 113.93 53.36 76.03 1.07

ic 4.23 6.31 15.03 0.96 33.33 5.53 13.82 0.83 9.33 1.71 4.33 0.16
-blocks 7.53 6.45 15.95 0.99 39.87 3.95 8.92 0.53 14.97 1.61 3.51 0.13
insons 3.43 9.96 18.86 0.64 7.53 4.23 10.87 0.29 6.40 1.67 3.77 0.09
based 39.97 11.76 26.55 1.12 87.07 3.25 7.67 0.26 89.70 4.27 9.35 0.35

3.80 4.24 10.60 0.74 27.90 4.46 11.76 0.88 17.23 2.46 5.15 0.36
ruped 6.00 18.22 29.01 0.53 4.27 1.24 1.75 0.01 4.57 1.24 1.55 0.01

norm 4.60 12.54 35.27 1.02 39.60 13.19 18.38 0.87 17.50 5.45 9.90 0.35
age 9.83 18.34 40.45 0.77 93.40 11.00 25.59 0.47 27.53 5.82 13.29 0.22
ent 10.47 9.21 21.58 0.73 38.8 6.30 14.00 0.48 23.30 3.28 6.85 0.21

r 9.33 15.50 28.40 0.40 20.97 8.58 25.22 0.32 14.03 2.78 6.35 0.12
base 7.90 22.25 49.19 0.59 43.93 13.46 31.57 0.37 10.27 3.77 7.48 0.08

norm 24.40 14.02 42.74 1.22 99.27 16.85 49.08 1.46 51.67 4.11 9.15 0.27
c 5.47 9.90 21.24 0.50 16.30 3.57 9.02 0.18 4.90 1.17 3.03 0.03

e 5.73 6.55 15.87 0.77 9.60 3.60 7.98 0.40 7.57 1.90 4.65 0.18
t 13.27 4.69 11.50 0.86 64.03 3.29 6.98 0.56 32.20 2.99 6.44 0.47



Fig. 7. Compactness Friedman rankings.

Table 13
Statistics and critical values for Friedman’s and Iman–Davenport’s tests, a ¼ 0:05.

Critical value Hypothesis

Friedman’s statistic
36.7500 5.9915 Rejected

Iman–Davenport’s statistic
75.1333 3.1996 Rejected

Table 14
Holm table (GP-COACH is the control algorithm).

i Algorithm z p a=i Hypothesis

2 2SLAVESum 6.0622 1.3429 � 10�9 0.025 Rejected
1 FRBCS_GPSum 3.0311 0.0024 0.05 Rejected
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where RulN; VarN and CondN are the normalized values for three previous measurements. These normalized values have been
obtained using the maximum and minimum values shown in Table 2.

The statistical analysis is carried out considering the CI measurement (the lower this is, the better the compactness).
In Fig. 7 the values of the average rankings using Friedman’s method are specified. We then apply Friedman’s and Iman–

Davenport’s tests (considering a level of significance a ¼ 0:05) to check whether differences exist among all the methods,
presenting the results in Table 10.

Table 13 indicates that both Friedman’s and Iman–Davenport’s statistics are higher than their associated critical value, so
the hypothesis of equivalence of results is rejected. A post hoc test is then needed in order to distinguish whether the control
algorithm (the algorithm which obtains the lowest value of ranking computed through Friedman’s test) is significantly better
than the remainder. Table 14 shows all the possible hypotheses of comparison between the control algorithm and the others,
ordered by their p-value and associated with their level of significance a.

Holm’s method rejects all the hypotheses, which means that GP-COACH is statistically better regarding compactness than
2SLAVE and FRBCS_GP algorithms, with a p-value of 0.05.
6.3. Summary

Table 15 summarizes GP-COACH’s performance with regard to the rest of the methods considered in the study. In this
table, the symbols + , � or = show the existence or absence of significant differences between GP-COACH and the algorithm
specified in the row via Holm’s method, while the symbol * indicates that the existence or absence of significant differences
is unknown because we have been unable to perform a statistical analysis.

Therefore, we can conclude that GP-COACH presents a good interpretability-accuracy trade-off, since it is the algorithm
that presents the best ranking, and it statistically outperforms the rest of the methods in at least one of the two criteria
(accuracy and compactness) analyzed.
Table 15
GP-COACHSum performance.

Method Acc. Comp. Method Acc. Comp.

PCA-RaviSum + * 2SLAVESum + +
GP-PITT-Tsakonas + * GCCL-IshibuchiMax + *

FRBCS GPSum + +



Table 16
Fuzzy rule bases obtained for Iris dataset.

PCA-RaviSum (N. rules: 4, %Test: 73.33)

R1 : If P1 is L1ð2Þ
1 then Class is C1

R2 : If P1 is L2ð2Þ
1 then Class is C3

R3 : If P1 is L4ð5Þ
1 then Class is C3

R4 : If P1 is L2ð3Þ
1 then Class is C2

2SLAVESum (N. rules: 4, %Test: 93.33)

R1 : If X3 is ðL1
3 or L5

3Þ and X4 is ðL1
4 or L2

4 or L5
4Þ then Class is C1

R2 : If X3 is ðL1
3 or L2

3 or L5
3Þ and X4 is ðL1

4 or L5
4Þ then Class is C1

R3 : If X2 is ðL1
2 or L2

2 or L3
2 or L5

2Þ and X3 is ðL1
3 or L2

3 or L3
3 or L5

3Þ and X4 is ðL3
4 or L5

4Þ then Class is C2

R4 : If X1 is L4
1 and X3 is ðL4

3 or L5
3Þ and X4 is ðL4

4 or L5
4Þ then Class is C3

GP-PITT-Tsakonas (N. rules: 49, %Test: 46.67)

R1 : If X1 is L5
1 then Class is C1

R2 : If X1 is L4
1 then Class is C3

. . .

R48 : If X3 is L3
3 then Class is C2

R49 : If X4 is L2
4 then Class is C1

GCCL-IshibuchiMax (N. rules: 12, %Test: 86.67)

R1 : If X4 is L1
4 then Class is C1 with CD 1:0

R2 : If X4 is L3
4 then Class is C2 with CD 0:82

. . .

R11 : If X2 is L1
2 then Class is C2 with CD 0:65

R12 : If X1 is L2
1 and X3 is L3

3 then Class is C2 with CD 0:92

FRBCS GPSum (N. rules: 3, %Test: 93.33)

R1 : If X4 is L1
4 then Class is C1 with CD 1:0

R2 : If X2 is ðL1
2 or L2

2 or L3
2 or L5

2Þ and X3 is L3
3 and X4 is L3

4 then Class is C2 with CD 0:95

R3 : If X4 is ðL4
4 or L5

4Þ then Class is C3 with CD 0:85

GP-COACHSum (N. rules: 3, %Test: 93.33)

R1 : If X4 is L1
4 then Class is C1 with CD 1:0

R2 : If X3 is ðL2
3 or L3

3Þ and X4 is L3
4 then Class is C2 with CD 0:96

R3 : If X4 is ðL4
4 or L5

4Þ then Class is C3 with CD 0:85
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Finally, in Table 16, an example of the fuzzy rule bases obtained by the different methods for the Iris dataset is shown4 (as
an illustrative example of the mentioned trade-off).
7. Conclusions

In this paper we have presented GP-COACH, a genetic programming-based algorithm for the learning of COmpact and
interpretable fuzzy rule bases, that also present a high ACcuracy on test data, for High-dimensional (a high number of fea-
tures) classification problems. GP-COACH’s main features are:

� It uses a context-free grammar which allows the learning of DNF fuzzy rules and the absence of some input features.
� It follows the GCCL approach that encodes a single rule per individual, and thus the RB is formed by the whole population.
� It includes a mechanism to increase the diversity in the population, token competition.
� It makes use of a two-level hierarchical inference process, which allows us to improve the accuracy of a learned RB, avoid-

ing misclassification errors because of the use of specific rules (secondary rules) covering a small number of examples.
� Regarding FRBCS_GP, GP-COACH uses a new fitness function, new genetic operators and a global fitness score, and learns

variable size rule sets with two different types of rules, obtaining more compact rule sets which also present a good accu-
racy performance.

An experimental study involving several high-dimensional data sets and another five well-known FRBCS learning algo-
rithms has been carried out, and non-parametric statistical methods have been used to compare and analyze the compact-
ness and accuracy of the algorithms. The main conclusions are the following:
4 In PCA-RaviSum method, the variable ‘‘P1” is an extracted one (by the Principal Analysis Components method) from the original variables ðXiÞ. On the other
hand, the numbers in brackets in the labels L indicate the number of fuzzy sets per variable, due to Ravi method simultaneously uses four fuzzy set partitions
for each attribute with 2, 3, 4 and 5 linguistic labels, respectively.
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� GP-COACH outperforms the rest of the algorithms with regard to the accuracy results on test data. It has been demon-
strated to be able to obtain FRBCSs with a high generalization capability for high-dimensional problems.

� GP-COACH is able to learn compact and interpretable FRBCSs for high-dimensional problems.

As future work, it would be of interest to investigate the use of instance selection techniques [12] to deal with problems
having high dimensionality because of the number of instances. We also would like to examine the possibility of hybridiza-
tion of GP-COACH with those approaches which use hierarchical fuzzy partitions [29] and fuzzy partition context adaptation
[28], with the aim of adapting fuzzy partitions to high-dimensional problems. Finally, we would analyze the behavior of GP-
COACH for classifying imbalanced data sets [20,32].
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