
  

  

Abstract—The class imbalance problem, which exists in the 
field of medical image analysis universally, may cause a 
significant deterioration to the performance of the standard 
classifiers. In this paper, the related work on dealing with class 
imbalance is firstly reviewed, and then a proper generation 
mechanism of synthetic minority class examples is discussed. 
According to the analysis, a novel oversampling algorithm with 
synthetic examples, ADOMS, is proposed by generating 
synthetic examples along the first principal component axis of 
local data distribution. The experiments are arranged on 12 
UCI datasets and the experimental results show that comparing 
with other relative methods, algorithm ADOMS is able to 
alleviate the deterioration of the classification performance 
effectively. 

I. INTRODUCTION 
N the classification problem, a dataset is said to be 

imbalanced if it contains many more examples belonging to 
one of the classes than to the others [1]. The class imbalance 
problem exists in the real world universally, especially in the 
situation of detecting some rare but important things, such as 
medical diagnosis, text classification, and defective products 
monitoring. For instance, to most of medical image 
recognition problems, the positive images are always only a 
very small part of the total clinical images, compared with the 
wide-defined negative images. 

Although it had been observed for a long time that class 
imbalance may cause a significant deterioration to the 
performance of the standard classifiers, lots of relative 
researchers did not notice that it was a systematic problem. 
After two workshops on class imbalance were hold at 
AAAI’00 and ICML’03 respectively and a special issue was 
published on the SIGKDD explorations in 2004 [2], it has 
been clear that not only the class imbalance problem itself, 
but also some complicating factors coming with it, e.g. rare 
cases and class overlapping, will cause the deterioration of 
the performance of the classifiers [3],[4]. 

Resampling approaches is a group of popular and flexible 
techniques to deal with class imbalance, which attempt to 
resample the original training dataset, by oversampling the 
minority class and/or undersampling the majority class [2], 
e.g. random oversampling, random undersampling, directed 
oversampling, directed undersampling, oversampling with 
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synthetic examples and combinations of the above algorithms. 
Without adding any new information into the dataset, random 
oversampling may lead to overfitting, and random 
undersampling may discard potentially useful majority class 
examples. Directed resampling approaches attempt to handle 
the examples based on some information, but still suffer the 
same shortcomings as the random ones. In early published 
papers, undersampling approaches provided more accurate 
results than oversampling ones, but some recent research 
results are against the previous conclusions [5]. 

II. ADJUSTING THE DIRECTION OF SYNTHETIC EXAMPLES 

A. Oversampling with Synthetic Examples 
Oversampling with synthetic examples is introduced to 

alleviate the overfitting which caused by random and directed 
oversampling. New synthetic minority class examples will be 
inserted into the original training dataset obeying some 
specific rules, which can effectively expand the decision 
region of the minority class in the feature space, accompanied 
with populating the number of the minority class examples. 
However, it also can be predictable that it will also inevitably 
introduce additional noise into the dataset, since these 
generated synthetic examples are, at best, only a better 
approximation of the true distribution [4]. 

B. Algorithm SMOTE 
Chawla introduced an important concrete algorithm of 

oversampling with synthetic examples, named SMOTE [6], 
which generated synthetic minority class examples by 
interpolating between minority class examples and its nearby 
neighbors. Briefly, for each selected minority class example 
m, one of its K nearest neighbors n was randomly chosen and 
a scaling was also obtained from Random(0,1). And then a 
new synthetic minority class example m’ will be inserted in 
the dataset by constructing its value in each dimension i in the 
feature space as mi’ = mi + scaling * (ni – mi). 

C. Principal Components Analysis 
Principal components analysis (PCA), an exploratory data 

analysis technique, is usually used as a common quantitative 
method for data reduction. PCA is concerned with explaining 
the variance structure of the original data. The entire principal 
components form an orthogonal basis in the feature space and 
each principal component is orthogonal to the others so there 
is no redundant information. The first principal component 
axis occupies the maximal amount of total variance in the 
feature space, and the second principal component axis 
occupies the most remaining variance etc [7]. 
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D. A Proper Synthetic Examples Generation Mechanism  
Obeying the true class distribution should be the ideal way 

to add examples into the training dataset, and when the 
specific rules for inserting synthetic examples are not 
consistent with the underlying class distribution, the noise 
will be introduced into the training dataset inevitably. In the 
uttermost condition, the space of the minority class in the 
feature space could be fully expanded by generating synthetic 
minority class examples completely randomly, nonetheless 
the awful classification results could be foreseen and the 
synthetic examples would be treated as noise directly since 
they are obviously the improper expression of the underlying 
class distribution. Considering the underlying class 
distribution is very hard to be disclosed in the real world 
dataset, local data distribution should be investigated to make 
better approximation of the true class distribution. 

Analyzing algorithm SMOTE, the impact of synthetic 
examples to the original feature space is restricted into the 
local space by interpolating the synthetic one between the 
processing minority class example (“center” for short) and 
one of its nearby neighbors (“neighbor” for short). When the 
neighbor is far away from the center, which means that there 
are only a few examples in the local space near center and the 
true underlying class distribution will just be expressed 
coarsely, the synthetic minority class example should be 
inserted into the feature space farther from the center to 
occupy the comparatively vaguely defined space. On the 
contrary, when the neighbor is near the center, which means 
that there are already enough examples in the local space to 
finely express the underlying class distribution, the synthetic 
one should be inserted closer to the center to avoid disturbing 
the comparatively well defined space. The above generation 
mechanism of synthetic minority class examples 
(“mechanism” for short) sounds reasonable, however in 
SMOTE, only one of the neighbors of the center is randomly 
chosen to represent the local space, and the mechanism is 
even only realized in 1-Dimension which defined by the 
center and the selected neighbor. It is obviously that the 
mechanism should be realized in the entire space more 
properly. 

It should be noted that the space of the real world data is 
hardly isotropic, and the mechanism must be considered in 
every direction in the feature space respectively. When a 
synthetic one is generated in the direction where the 
projections of the local data are sparse, the projection of the 
synthetic one should be farther from the center, and on the 
contrary, in the direction where the projections of the local 
data are dense, the projection of the synthetic one should be 
closer to the center. 

The local space could be reconstructed using PCA. The 
first principal component axis occupies the maximal variance, 
and the next principal component axis occupies the maximum 
among the rest etc, therefore the synthetic one should be 
farthest from the center in the direction of the first principal 
component axis, and then should be closer in the direction 

where its occupied variance are smaller, till closest to the 
center in the direction of the last principal component axis. 
When the synthetic one is generated directly on the first 
principal component axis through the center, its projection on 
the first principal component axis should be itself and also the 
farthest from the center, and then its projection will be closer 
to the center in the projection which owns smaller variance, 
therefore it is easy to see that generating the synthetic 
minority class example along the first principal component 
axis of local data distribution would fit the mechanism most 
properly. 

Figure 1 is an illustration in 2-Dimensional feature space. 
The square M represents the processing minority class 
example, and five triangles N1,N2,N3,N4,N5 represent its 
nearby neighbors. When the number of the neighbors is 
chosen as 3, the local data distribution is composed of 
N1,N2,N3 and M. And N3 is supposed as the chosen neighbor. 
In SMOTE, the synthetic minority class example M1 is 
generated along line L1 from M to N3. Following the above 
analysis, the first principal component axis L2 of local data 
distribution is obtained firstly by the Jacobi algorithm, and 
then, adopting the same distance as M1, M2 is generated 
along L2 from M to the projection of N3 on L2. The 
projections of M1 and M2 on L1 are M1 itself and M2p 
respectively, meanwhile the projections of M1 and M2 on L2 
are M1p and M2 itself respectively. According to the 
mechanism, the synthetic one should be farther from M on L2 
than on L1, since the projections of the local data distribution 
N1,N2,N3 and M on L2 are sparser than the projections on L1. 
It is obviously that M2, which is generated along the first 
principal component axis, fits the mechanism better than M1, 
and it is even the most fittable one on the circle C1, on which 
the points own the same distance to M. 

E. Algorithm ADOMS 
According to the aforementioned analysis, a novel 

oversampling algorithm with synthetic examples, named 
ADOMS (Adjusting the Direction Of the synthetic Minority 
clasS examples), is proposed, which generates synthetic 
minority class examples in the feature space by iterating the 

 
Fig. 1. An illustration of the generation mechanism of synthetic 
examples 
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following steps: 
Step 1: Randomly select one of the minority class examples 

m in the original training data as the processing example; 
Step 2: Define the neighbor number K (K=1,2,3,…), and 

calculate the K nearest neighbors of m in the feature space 
using the Euclidean distance; 

Step 3: Calculate the first principal component axis of local 
data distribution which composed of m and its K neighbors in 
the feature space; 

Step 4: Select one of its neighbors n randomly and 
calculate the Euclidean distance D between m and n, then a 
scaling is obtained from Random(0,1); 

Step 5: Generate a new synthetic minority class example 
m’ in the feature space, where m’ is generated along the 
direction from m to the projection of n on the first principal 
component axis through m, and the Euclidean distance 
between m’ and m is scaling*D. 

It is worth noting that ADOMS is in essence equal to 
SMOTE when the neighbor number K is defined as 1. 

III. EXPERIMENTS 

A. Performance Measure 
Accuracy is widely used as the performance measure for 

the classifiers. However it is not proper when the classes are 
imbalanced, since accuracy will yield biased conclusions by 
favoring the majority class and cumbering the minority class. 
For instance, where the proportion of the majority class 
examples in a classification problem is overwhelming to 99%, 
you can easily create a classifier which having an accuracy of 
99% by simply labeling every example to the majority class. 
The ROC curve and the geometric mean (GM) are good 
substitutions of the accuracy in the class imbalance situations 
[8], where the commonality of these means is they are 
independent of the distribution of examples between classes. 
GM is defined as the square root of the product of TP and TN, 
where TP denotes the accuracy on the positive examples and 
TN is the accuracy on the negative examples. This measure 
tries to maximize the accuracy on each of the two classes with 
keeping these accuracies balanced [1]. 

B. Experimental Datasets 
12 datasets which derived from the UCI Repository [9] are 

chosen as our experimental datasets. The UCI Repository is 
commonly used as a standard platform for the performance 
evaluation in the field of machine learning. The experiments 
will be constrained in the two-class problem for simplicity. If 
the original UCI dataset owns more than two classes, the class 
with fewer examples is chosen to be the minority class with 
combining the others as the majority class. These 12 
experimental datasets own different amounts of the examples, 
dimensions and class imbalance levels, which are all 
presented in Table 1. The names of the minority class are also 
introduced between the brackets after the name of the original 
UCI datasets if there are more than two classes in the original 

datasets. 
It is worth noticing that the successive five experimental 

datasets from Index 3 to Index 7 in Table 1 are all derived 
from Letter in the UCI Repository. Letter{M,N} takes the 
letter M and N together as the minority class to get less 
imbalance situation. On the contrary, Letter{Z}%2 and 
Letter{Z}%4 take the letter Z as the minority class and then 
process the minority class using random undersampling with 
2 and 4 times respectively to get higher imbalance situation. 

C. Experimental Results 
BP (Backpropagation) neural network is chosen as the 

experimental classifier and 10-fold cross validation is 
employed [10]. To each dataset, under certain parameters of 
BP network, the successive couples of TP and TN are 
collected by changing the decision threshold to calculate the 
average GM value (GM). And to diminish the impact of the 
specific classifier structure, the parameters of the network are 
gradually modified and the GMs are averaged. The modified 
parameters of BP network include the number of the hidden 
nodes, the epoch times and the learning rate. 

The motive of the experiments is to compare the abilities of 
the proposed algorithm ADOMS with several relative 
oversampling algorithms to alleviate the deterioration of the 
classification performance of the experimental classifier in 
the class imbalance situations. The relative oversampling 
algorithms include random oversampling and SMOTE, and 
the original experimental dataset is also chosen as the 
benchmark. All of the datasets are performed normalization 
before learning. Testing under 10-fold cross validation, each 
dataset is partitioned into 10 equal-sized blocks. Each block 
in turn is used as the test data with the remaining 9 blocks as 
the training data, then the oversampling algorithms are 
employed on the training data while keeping the test data 
unchanged. All of three oversampling algorithms will 

TABLE I 
THE MAJOR INFORMATION OF THE 12 EXPERIMENTAL DATASETS 

Index Dataset Name {Minority} Amounts Dim Min% 

1 Breast-WPBC 194 33 23.71 

2 Heart-Disease {1} 297 13 18.18 

3 Letter {A} 20000 16 3.95 

4 Letter {M,N} 20000 16 7.88 

5 Letter {Z} 20000 16 3.67 

6 Letter {Z} %2 19639 16 1.9 

7 Letter {Z} %4 19457 16 0.98 

8 Pima-Indians-Diabetes 768 8 34.9 

9 Segment {Brickface} 2310 19 14.29 

10 Shuttle {!Rad Flow} 14500 9 20.84 

11 Water-Treatment {Normal} 380 38 9.8 

12 Wine {1} 178 13 33.15 
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oversample the amounts of minority class examples to double 
times. Cross-validation results are repeated and averaged 
over 10 runs. And then, to alleviate the impact of the specific 
classifier structure, the parameters of the classifier will be 
gradually modified and the learning process will be repeated 
to obtain the average GMs. Moreover, the number of the 
neighbors K, which is an important parameter to SMOTE and 
ADOMS, is also modified from 1 to 3 successively and the 
synthetic examples under different K values will be generated 
to construct different training data, and then the average 
performance under different parameter values of SMOTE and 
ADOMS is obtained. Furthermore, to ease the uncertainty 
introduced by the randomization which used widely in three 
oversampling algorithms, the experiments for each 
oversampling algorithm under different classifier parameters 
and oversampling parameters will be repeated for three times 
and the experimental results will be averaged. The final 
average GMs are presented in Table 2 and the corresponding 
standard deviations are also shown between the brackets. The 
best GM of each dataset is highlighted in bold. 

TABLE II 
THE GMS OBTAINED BY DIFFERENT OVERSAMPLING ALGORITHMS ON THE 

12 EXPERIMENTAL DATASETS 
Index Original Rand Over SMOTE ADOMS 

1 46.61(34.25) 51.61(24.59) 54.62(24.70) 61.34(23.95) 

2 21.39(26.17) 59.35(17.32) 60.07(18.92) 53.56(15.39) 

3 91.14(1.02) 92.79(1.78) 92.97(1.68) 93.35(1.59) 

4 94.20(1.97) 94.83(1.79) 95.18(1.51) 95.36(1.40) 

5 78.25(5.47) 85.41(4.06) 86.22(3.61) 86.57(3.44) 

6 13.85(12.53) 19.09(18.47) 18.60(18.15) 21.24(18.88) 

7 0(0) 0(0) 0(0) 0(0) 

8 67.94(11.75) 72.43(5.83) 72.80(5.22) 72.86(5.85) 

9 98.45(1.86) 97.97(1.75) 98.00(1.68) 98.04(1.63) 

10 52.57(14.83) 57.65(16.40) 57.18(17.76) 56.91(16.14) 

11 88.64(6.40) 91.52(3.42) 85.95(5.26) 88.11(4.36) 

12 96.10(5.87) 95.84(5.00) 95.88(5.79) 96.22(4.21) 

The experimental results clearly show that, to most of the 
datasets, the oversampling approaches can effectively 
alleviate the deterioration of the classification performance in 
the class imbalance situations, especially to the datasets on 
which the classifier performs badly, e.g. Breast-WPBC, 
Heart-Disease and Letter{Z}%2. The classification 
performance even sharply improves to almost three times on 
Heart-Disease. However it is frustrated to see that three 
oversampling methods all work in vain on Letter{Z}%4. 

Paired student’s t test is carried out for comparing SMOTE 
and ADOMS, two concrete oversampling algorithms with 
synthetic examples. The results with a P value less than 0.05 
are thought of statistically significance and marked with the 
gray color in Table 2. Considering the experimental results 
which are verified statistically significance only, as two 

different concrete algorithms of oversampling with synthetic 
examples, ADOMS performs better on 6 of 7 datasets. 

IV. CONCLUSION 
In this paper, a proper generation mechanism of synthetic 

minority class examples was discussed intensively, and a 
novel oversampling algorithm with synthetic examples, 
ADOMS, was proposed, which generated synthetic minority 
class examples along the first principal component axis of 
local data distribution. It was proved by the experiments that 
ADOMS could effectively alleviate the deterioration of the 
classification performance in the class imbalance situations, 
comparing with other relative oversampling algorithms. 
Since the true underlying class distribution is very hard to be 
disclosed, it is worth doing more work on the local data 
distribution to reduce the negative impacts which introduced 
by the inserted synthetic examples. In the future, we will 
extend the study to the multi-class problem, and the dataset 
with the nominal features will also be handled. The number of 
the nearby neighbors K is an important parameter since it 
markedly influences the construction of local space 
distribution, thus the impact of K will be intensively 
investigated. 
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