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Lots of real world applications appear to be a matter of classification with imbalanced data-sets. This
problem arises when the number of instances from one class is quite different to the number of instances
from the other class. Traditionally, classification algorithms are unable to correctly deal with this issue as
they are biased towards the majority class. Therefore, algorithms tend to misclassify the minority class
which usually is the most interesting one for the application that is being sorted out.

Among the available learning approaches, fuzzy rule-based classification systems have obtained a good
behavior in the scenario of imbalanced data-sets. In this work, we focus on some modifications to further
improve the performance of these systems considering the usage of information granulation. Specifically,
a positive synergy between data sampling methods and algorithmic modifications is proposed, creating a
genetic programming approach that uses linguistic variables in a hierarchical way. These linguistic vari-
ables are adapted to the context of the problem with a genetic process that combines rule selection with
the adjustment of the lateral position of the labels based on the 2-tuples linguistic model.

An experimental study is carried out over highly imbalanced and borderline imbalanced data-sets
which is completed by a statistical comparative analysis. The results obtained show that the proposed
model outperforms several fuzzy rule based classification systems, including a hierarchical approach
and presents a better behavior than the C4.5 decision tree.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Learning from imbalanced data-sets is an issue that has at-
tracted a lot of attention in machine learning research [29,51]. This
problem is characterized by a class distribution where the number
of examples in one class is outnumbered by the number of exam-
ples in the other class. The presence of imbalanced data-sets is
dominant in a high number of real problems including, but not lim-
ited to, medical diagnosis, fraud detection, finances, risk manage-
ment, network intrusion and so on. Additionally, the positive or
minority class is usually the one that has the highest interest from
the learning point of view and it also implies a great cost when it is
not well classified [17,57].

A standard classifier that seeks accuracy over a full range of in-
stances is frequently not suitable to deal with imbalanced learning
tasks, since it tends to be overwhelmed by the majority class thus
misclassifying the minority examples. This situation becomes crit-
ical when the minority class is greatly outnumbered by the major-
ity class, generating an scenario of highly imbalanced data-sets
ll rights reserved.
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where the performance deterioration is amplified. However, some
studies have shown that imbalance for itself is not the only factor
that hinders the classification performance [37]. There are several
data intrinsic characteristics which lower the learning effective-
ness. Some of these handicaps within the data are the presence
of small disjuncts [53], the overlap between the classes [26] or
the existence of noisy [49] and borderline [44] samples. There is
no need to say that when the classification data share an skewed
data distribution together with any of the aforementioned situa-
tions, the performance degradation is intensified [19,42,53].

A large number of approaches have been proposed to deal with
the class imbalance problem. Those solutions fall largely into two
major categories. The first is data sampling in which the training
data distribution is modified to obtain a set with a balanced distri-
bution. Standard classifiers are thus helped to obtain a correct
identification of data [9,6]. The second is through algorithmic mod-
ification where the base learning methods are modified to consider
the imbalanced distribution of the data. In this manner, base learn-
ing methods change some of its internal operations accordingly
[57].

Fuzzy Rule-Based Classification Systems (FRBCSs) [34] are
useful and well-known tools in the machine learning framework.
They provide a good trade-off between the empirical precision of
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1 http://www.keel.es/datasets.php.
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traditional engineering techniques and the interpretability
achieved through the use of linguistic labels whose semantic is
close to the natural language. Specifically, recent works have
shown that FRBCSs have a good behavior dealing with imbalanced
data-sets by means of the application of instance preprocessing
techniques [20].

The hybridization between fuzzy logic and genetic algorithms
leading to Genetic Fuzzy Systems (GFSs) [12,30] is one of the most
popular approaches used when different computational intelli-
gence techniques are combined. A GFS is basically a fuzzy system
augmented by a learning process based on evolutionary computa-
tion. Among evolutionary algorithms, Genetic Programming (GP)
[39] is a development of classical genetic algorithms that evolve
tree-shaped solutions using variable length chromosomes. GP has
been used in FRBCSs to learn fuzzy rule bases [7] profitting from
its high expressive power and flexibility.

However, the disadvantage of FRBCSs is the inflexibility of the
concept of linguistic variable because it imposes hard restrictions
on the fuzzy rule structure [5] which may suppose a loss in accu-
racy when dealing with some complex systems, such as high
dimensional problems, the presence of noise or overlapped classes.
Many different possibilities to enhance the linguistic fuzzy model-
ing have been considered in the specialized literature. All of these
approaches share the common idea of improving the way in which
the linguistic fuzzy model performs the interpolative reasoning by
inducing a better cooperation among the rules in the Knowledge
Base (KB). This rule cooperation may be induced acting on three
different model components:

� Approaches acting on the whole KB. This includes the KB deriva-
tion [43] and a hierarchical linguistic rule learning [14].
� Approaches acting on the Rule Base (RB). The most common

approach is rule selection [35] but also multiple rule conse-
quent learning [11] could be considered.
� Approaches acting on the Data Base (DB). For example a priori

granularity learning [13] or membership function tuning [1].

In this work, we present a procedure to obtain an Hierarchical
Fuzzy Rule Based Classification System (HFRBCS) to deal with
imbalanced data-sets. In order to do so, this model introduces
modifications both at the data and algorithm level. This procedure
is divided into three different steps:

1. A preprocessing technique, the Synthetic Minority Over-
sampling Technique (SMOTE) [9], is used to balance the
distribution of training examples in both classes.

2. A hierarchical knowledge base (HKB) [14] is generated, using
the GP-COACH (Genetic Programming-based learning of COm-
pact and ACcurate fuzzy rule-based classification systems for
High-dimensional problems) algorithm [7] to build the RB.
The GP-COACH algorithm has been modified to extend a classi-
cal KB into a HKB, integrating a rule expansion process to create
high granularity rules in each generation of the algorithm. The
usage of a HKB implies an adaptation of the components to
allow the interaction of the different granularities in the RB
population.

3. A post-processing step involving rule selection and the applica-
tion of the 2-tuples based genetic tuning is applied to improve
the overall performance.

The combination of these steps constitutes a convenient ap-
proach to solve the problem of classification with imbalanced
data-sets. First of all, the preprocessing technique compensates
the number of instances for each class easing the learning process
for the consequent procedures. Then, the step to learn the HKB is
used to address the imbalanced problem together with some of
the data intrinsic characteristics that difficult the learning. This
HKB process is appropriate because it increases the accuracy by
reinforcing those problem subspaces that are specially difficult in
this environment, such as borderline instances [44], small disjuncts
[37] or overlapping regions [26]. Finally, the post-processing step
refines the results achieved by the previous process. The integra-
tion of these schemes completes our proposal, which will be de-
noted as GP-COACH-H (GP-COACH Hierarchical).

We will focus on two difficult situations in the scenario of
imbalanced data, such as highly imbalanced and borderline imbal-
anced classification problems. For that, we have selected a bench-
mark of 44 and 30 problems respectively from KEEL data-set
repository1 [2]. We will perform our experimental analysis focusing
on the precision of the models using the Geometric Mean of the true
rates (GM) [4]. This study will be carried out using non-parametric
tests to check whether there are significant differences among the
obtained results [25].

This work is structured in the following way. First, Section 2
presents an introduction of classification with imbalanced prob-
lems, describing its features, the SMOTE algorithm and the metrics
that are used in this framework. Next, Section 3 introduces the pro-
posed approach. Sections 4 and 5 describe the experimental frame-
work used and the analysis of results, respectively. Next, the
conclusions achieved in this work are shown in Section 6. Finally,
we include an appendix with the detailed results for the experi-
ments performed in the experimental study.
2. Imbalanced data-sets in classification

In this section we delimit the context in which this work is con-
tent, briefly introducing the problem of imbalanced classification.
Then, we will describe the preprocessing technique that we have
applied in order to deal with the imbalanced data-sets: the SMOTE
algorithm [9]. We finish this section describing the evaluation met-
rics that are used in this specific problem with respect to the most
common ones in classification.

2.1. The problem of imbalanced data-sets

In some classification problems, the number of examples that
represent the diverse classes is very different. Specifically, the
imbalance problem occurs when one class is represented only by
a few number of examples, while the others are represented by a
large number of examples [51,29]. In this paper, we focus on
two-class imbalanced data-sets, where there is a positive (minor-
ity) class, with the lowest number of instances, and a negative
(majority) class, with the highest number of instances.

This problem is prevalent in many real world applications, such
as medical diagnosis [45,48], anomaly detection [38], image analy-
sis [8] or bioinformatics [28], just referencing some of them. Fur-
thermore, it is usual that positive classes are the most interesting
from the application point of view so it is crucial to correctly iden-
tify these cases. The importance of this problem in the aforemen-
tioned uses has increased the attention towards it, which has
been considered one of the 10 challenging problems in data mining
[56].

Although these issues occur frequently in data, many data min-
ing methods do not naturally perform well under these circum-
stances. In fact, many only work optimally when the classes in
data are relatively balanced. Furthermore, the performance of algo-
rithms is usually more degraded when the imbalance increases
because positive examples are more easily forgotten. That situation
is critical in highly imbalanced data-sets because the number of
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positive instances in the data-set is negligible and that situation
increases the difficulty that most learning algorithms have in
detecting positive regions. Figs. 1 and 2 depict two data-sets with
low imbalance and high imbalance respectively.

However, the imbalanced data-set is also affected by some cir-
cumstances that make the learning more difficult. For example,
metrics that have been used traditionally seem inappropriate in
this scenario when they ascribe a high performance to a trivial
classifier that predicts all samples as negative. This behavior is
wrapped up in the inner way of building an accurate model, prefer-
ring general rules with good coverage for the negative class and
disregarding more specific rules which are the ones associated to
the positive class.

An important issue that appear in imbalanced data-sets is the
presence of borderline examples. Inspired by Kubat and Matwin
[40] we may distinguish between safe, noisy and borderline exam-
ples. Safe examples are placed in relatively homogeneous areas
with respect to the class label. By noisy examples we understand
individuals from one class occurring in safe areas of the other class.
Finally, borderline examples are located in the area surrounding
class boundaries, where the positive and negative classes overlap.
These borderline examples make difficult to determine a correct
discrimination of the classes. For instance, Napierala et al. [44]
present in a series of experiments in which it is shown that the
degradation in performance of a classifier in an imbalanced sce-
nario is strongly affected by the number of borderline examples.
2.2. Addressing imbalanced data-sets: use of preprocessing and SMOTE
algorithm

A large number of approaches have been proposed to deal with
the class-imbalance problem [51,41,42]. These approaches can be
categorized in two groups: the internal approaches that create
new algorithms or modify existing ones to take the class-
imbalance problem into consideration [4] and external approaches
that preprocess the data in order to diminish the effect of their
Fig. 1. Data-set with low imbalance (IR = 2.23).

Fig. 2. Data-set with high imbalance (IR = 9.15).
class imbalance [6,23,27]. Furthermore, cost-sensitive learning
solutions incorporating both approaches assume higher misclassi-
fication costs with samples in the positive class and seek to mini-
mize the high cost errors [17,57]. The great advantage of the
external approaches is that they are more versatile, since their
use is independent of the classifier selected. Furthermore, we
may preprocess all data-sets before-hand in order to use them to
train different classifiers. In this manner, the computation time
needed to prepare the data is only required once. According to this,
in this work we have chosen an oversampling method which is a
reference in this area: the SMOTE algorithm [9] and a variant called
SMOTE + ENN [6].

In this approach, the positive class is over-sampled by taking
each positive class sample and introducing synthetic examples
along the line segments joining any/all of the k positive class near-
est neighbors. Depending upon the amount of over-sampling re-
quired, neighbors from the k nearest neighbors are randomly
chosen. This process is illustrated in Fig. 3, where xi is the selected
point, xi1 to xi4 are some selected nearest neighbors and r1 to r4 the
synthetic data points created by the randomized interpolation.

Synthetic samples are generated in the following way: take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbor. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
along the line segment between two specific features. This ap-
proach effectively forces the decision region of the positive class
to become more general. An example is detailed in Fig. 4.

In short, its main feature is to form new positive class examples
by interpolating between several positive class examples that lie
together. Thus, the overfitting problem is avoided and causes the
decision boundaries for the positive class to spread further into
the negative class space.

Nevertheless, class clusters may be not well defined in cases
where some negative class examples might be invading the posi-
tive class space. The opposite can also be true, since interpolating
positive class examples can expand the positive class clusters,
introducing artificial positive class examples too deeply into the
negative class space. Inducing a classifier in such a situation can
lead to over-fitting. For this reason we will also consider in this
work a hybrid approach, ‘‘SMOTE+ENN’’, where the Wilson’s Edited
Nearest Neighbor Rule [54] is used after the SMOTE application to
remove any example from the training set misclassified by its three
nearest neighbors.

2.3. Evaluation in imbalanced domains

The measures of the quality of classification are built from a
confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class.
Fig. 3. An illustration of how to create the synthetic data points in the SMOTE
algorithm.



Fig. 4. Example of the SMOTE application.
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The most used empirical measure, accuracy (Eq. (1)), does not
distinguish between the number of correct labels of different clas-
ses, which in the ambit of imbalanced problems may lead to erro-
neous conclusions. For example a classifier that obtains an
accuracy of 90% in a data-set with a 90% of negative instances,
might not be accurate if it does not cover correctly any positive
class instance.

Acc ¼ TP þ TN
TP þ FN þ FP þ TN

ð1Þ

Because of this, instead of using accuracy, more appropriate
metrics in this situation are considered. Two common measures,
sensitivity and specificity (Eqs. (2) and (3)), approximate the prob-
ability of the positive (negative) label being true. In other words,
they assess the effectiveness of the algorithm on a single class.

sensitivity ¼ TP
TP þ FN

ð2Þ

specificity ¼ TN
FP þ TN

ð3Þ

The metric used in this work is the geometric mean of the true
rates [4,40], which can be defined as

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
FP þ TN

r
ð4Þ

This metric attempts to maximize the accuracy of each one of
the two classes with a good balance. It is a performance metric that
links both objectives.

3. The hierarchical genetic programming fuzzy rule based
classification system with rule selection and tuning (GP-COACH-
H)

In this section, we will describe our proposal to obtain a hierar-
chical FRBCS through the usage of GP and applying rule selection
together with 2-tuples lateral tuning, denoted as GP-COACH-H.
This proposal is defined through its components in the following
way: Section 3.1 presents a brief introduction of FRBCSs in order
to contextualize the algorithm; next, Section 3.2 describes the
GP-COACH algorithm [7] which is the linguistic rule generation
method based on GP that we have used as base for our proposal
of a hierarchical rule base generation method; later, in Section 3.3,
the building of the hierarchical fuzzy rule based classification is de-
tailed, mentioning the modifications the hierarchical procedure
introduces in the knowledge base generation and in the basic
running of the GP-COACH algorithm; subsequently, Section 3.4
Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
shows the selection of the best cooperative rules and the tuning
of the databases in a genetic process where both objectives collab-
orate; and finally, Section 3.5 summarizes the description of the
proposal.

3.1. Fuzzy rule based classification systems

FRBCSs are useful and well-known tools in the machine learning
framework since they can provide an interpretable model for the
end user. A FRBCS has two main components: the Inference System
and the KB. In a linguistic FRBCS, the KB is composed of a RB, con-
stituted by a set of fuzzy rules, and the DB that stores the member-
ship functions of the fuzzy partitions associated to the input
variables. If expert knowledge of the problem is not available, it
is necessary to use some Machine Learning process to obtain the
KB from examples.

Any classification problem consists of N training patterns xp =
(xp1, . . . , xpn), p = 1,2, . . . ,m from M classes where xpi is the ith
attribute value (i = 1,2, . . . ,n) of the pth training pattern.

In this work, we use fuzzy rules of the following form to build
our classifier:

Rule Rj : If x1 is bAj
1 and . . . and xn is bAj

n then Class

¼ Cj with RWj ð5Þ

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-
dimensional pattern vector, bAj

i is a set of linguistic labels
fL1

i or . . . or Llk
i g joined by a disjunctive operator, Cj is a class label,

and RWj is the rule weight [33]. We use triangular membership
functions as linguistic labels whose combination will form an ante-
cedent fuzzy set. This kind of rule is called a DNF fuzzy rule.

To compute the rule weight, many heuristics have been pro-
posed [36]. In our proposal, we compute the rule weight as the fuz-
zy confidence or Certainty Factor (CF) [15], showed in Eq. (6):

RWj ¼ CFj ¼

P
xp2ClassCj

lbAj

ðxpÞPN
p¼1lbAj

ðxpÞ
ð6Þ

where lbAj

ðxpÞ is the matching degree of the pattern xp with the
antecedent part of the fuzzy rule Rj.

GP-COACH-H uses the normalized sum fuzzy reasoning method
[15] for classifying new patterns by the RB, a general reasoning
model for combining information provided by different rules,
where each rule promotes the classification with its consequent
class according to the matching degree of the pattern with the
antecedent part of the fuzzy rule together with its weight. The total
sum for each class is computed as follows:

SumClass hðxpÞ ¼

P
Rj2RB;Cj¼hlbAj

ðxpÞ � CFj

max
c¼1;...;M

P
Rj2RB;Cj¼clbAj

ðxpÞ � CFj
ð7Þ

ClassðxpÞ ¼ arg maxðSumClass hðxpÞÞ ð8Þ
3.2. The GP-COACH algorithm

The GP-COACH algorithm [7] is a genetic programming-based
algorithm for the learning of fuzzy rule bases. We will use this
method as a base for our hierarchical model modifying its behavior
to include the different granularity levels into its inner way of
running.

This algorithm is a genetic cooperative-competitive learning ap-
proach where the whole population represents the RB obtained.
Each individual in the population codifies a rule. These rules are
DNF fuzzy rules (Eq. (5)) which allow the absence of some input
features and are generated according to the production rules of a
context-free grammar. As DB we are using linguistic partitions



Fig. 5. The GP-COACH algorithm.
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with the same number of linguistic terms for all input variables,
composed of symmetrical triangular-shaped and uniformly distrib-
uted membership functions.

There are two evaluation functions in the GP-COACH algorithm:
a local fitness function, known as raw_fitness, to evaluate the per-
formance of each rule and a global fitness function, known as
global_fitness, to evaluate the behavior of the whole rule popula-
tion. The raw_fitness is computed according to Confidence (shown
in Eq. (6)) and Support, which measure the accuracy of the rule
and the extent of knowledge of the rule respectively:

SupportðRjÞ ¼
P

xp2ClassCj
lAj
ðxpÞ

NCj
ð9Þ

where NCj is the number of examples that belong to the same class
that the one determined in the consequent of the rule. Therefore,
the raw_fitness is computed in the following way:

raw fitnessðRjÞ ¼ a � ConfidenceðRjÞ þ ð1� aÞ � SupportðRjÞ ð10Þ

Finally, it is important to point out that each time that an individual
is evaluated it is also necessary to modify its certainty degree. On
the other hand, the global_fitness score measure is defined as
follows:

global fitness ¼ w1 � accuracyþw2 � ð1:0� VarNÞ þw3 � ð1:0
� CondNÞ þw4 � ð1:0� RulNÞ ð11Þ

where VarN and CondN are the normalized values of the average
number of variables and conditions in the rules, and RulN is the nor-
malized number of rules in the population respectively.

The GP-COACH algorithm also includes a mechanism for main-
taining the diversity in the population: the token competition pro-
cedure [55], inspired by the following natural behavior: when an
individual finds a good place to live, it will maintain its position
there preventing the others to share its position unless they are
stronger. Each example in the training set is called a token and
the rules in the population compete to acquire as many tokens as
possible. When a rule matches an example, it tries to seize the to-
ken, however, this token will be assigned to the stronger rule that
matches the example. Stronger individuals exploit their dominant
position by seizing as many tokens as they can. The other ones
entering the same position will have their strength decreased be-
cause they cannot compete with the stronger ones, by the addition
of a penalization in the fitness score of the individual. Therefore, to
model this behavior, a penalized_function is defined:

penalized fitnessðRjÞ ¼
raw fitnessðRjÞ �

countðRjÞ
idealðRjÞ

if idealðRjÞ > 0;

0; otherwise

(
ð12Þ

where raw_fitness(Rj) is the fitness score obtained from the evalua-
tion function (Eq. (10)), count(Rj) is the number of tokens that the
individual actually seized and ideal(Rj) is the total number of tokens
that it can seize, which is equal to the number of examples that the
individual matches.

As a result of the token competition, there can be individuals
that cannot grab any token. These individuals are considered as
irrelevant, and they are eliminated from the population because
all of their examples are covered by other stronger individuals.

Once the token competition mechanism has been applied, it is
possible that some of the examples in the training set are not cov-
ered by any of the rules in the population. The generation of new
specific rules covering these examples improves the diversity in
the population, and helps the evolutionary process to easily find
stronger and more general rules covering these examples. There-
fore, GP-COACH learns rule sets having two different types of fuzzy
rules: a core of strong and general rules (primary rules) that cover
most of the examples, and a small set of weaker and more specific
rules (secondary rules) that are only used if there are not any pri-
mary rule matching the example. These secondary rules are gener-
ated by the Chi et al. algorithm [10] over the set of training
examples that are left uncovered by the primary rules. This scaly
scheme is used in rule based algorithms to cover in a better way
the data space [52]. GP-COACH uses four different genetic opera-
tors to generate new individuals during the evolutionary process:

1. Crossover: A part in the first parent is randomly selected and
exchanged by another part, randomly selected, in the second
one.

2. Mutation: It is applied to a variable in the rule randomly chosen.
The mutation can add a new label to the label set associated to
the variable, remove a label from the label set associated to the
variable or exchange one label in the label set associated to the
variable with another one not included.

3. Insertion: It adds a new variable to the parent rule with at least
one linguistic label.

4. Dropping condition: It selects one variable and removes its con-
ditions from the rule.

These operations only generate one offspring each time they are
applied.

Fig. 5 shows the pseudocode associated to the GP-COACH algo-
rithm. This method begins creating a random initial population
according to the rules in the context-free grammar. Each individual
in this population is then evaluated. After that, the initial popula-
tion is kept as the best evolved population and its global fitness
score is computed. Then, the initial population is copied to the cur-
rent population and the evolutionary process begins:

1. An offspring population, with the same size than the current
one, is created. Parents are selected by using the tournament
selection mechanism and children are created by using one of
the four genetic operators. The genetic operator selection is
done in a probabilistic way according to a given probability.

2. Once the offspring population is created, it is joined to the cur-
rent population, creating a new population whose size is double
the current population size. Individuals in this new population
are sorted according to their fitness and the token competition
mechanism is applied. Secondary rules are created if some
examples remain uncovered.
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3. The global fitness score measure is then calculated for this new
population. We check whether this new fitness is better than
the one stored for the best population, updating the best popu-
lation and fitness if necessary. In any case, the new population
is copied as the current population in order to be able to apply
the evolutionary process again.

The evolutionary process ends when the stop condition is veri-
fied, that is when a number of evaluations is reached. Then, the
population kept as the best one is returned as the solution to the
problem and GP-COACH finishes.

3.3. Hierarchical fuzzy rule based classification system construction

HFRBCs try to improve the performance of fuzzy rule based sys-
tems in data subspaces that are particularly difficult. In order to do
so, instead of the classical definition of the KB, we use an extension
known as HKB [14], which is composed of a set of layers. We will
divide this subsection in two parts: the first part is devoted to the
presentation of the HKB, its components and some general guide-
lines about how to build it; the second part is devoted to the inte-
gration of the HKB into the inner way of running of the GP-COACH
algorithm which we have used as base for our proposal.

3.3.1. Hierarchical knowledge base
In order to overcome the inflexibility of the concept of linguistic

variable which degrades the performance of algorithms in complex
search spaces, we extend the definition of the standard KB into an
hierarchical one that preserves the original model descriptive
power and increases its accuracy. This HKB is composed of a set
of layers. We define a layer by its components in the following
way:

layerðt;nðtÞÞ ¼ DBðt;nðtÞÞ þ RBðt;nðtÞÞ ð13Þ

with n(t) being the number of linguistic terms that compose the
partitions of layer, DB(t,n(t)) (t-linguistic partitions) being the DB
which contains the linguistic partitions with granularity level n(t)
of layer, and RB(t,n(t)) (t-linguistic rules) being the RB formed by
those linguistic rules whose linguistic variables take values in the
former partitions. The number of linguistic terms in the t-linguistic
partitions is defined in the following way:

nðtÞ ¼ ðnð1Þ � 1Þ � 2t�1 þ 1 ð14Þ

with n(1) being the granularity of the initial fuzzy partitions.
This set of layers is organized as a hierarchy, where the order is

given by the granularity level of the linguistic partition defined in
each layer. That is, given two successive layers t and t + 1 then the
granularity level of the linguistic partitions of layer t + 1 is greater
than the ones of layer t. This causes a refinement of the previous
layer linguistic partitions. As a consequence of the previous defini-
tions, we can now define the HKB as the union of every layer t

HKB ¼
[

t

layerðt;nðtÞÞ ð15Þ

Our proposal considers a two-layer HKB, i.e. starting with an initial
layer t, we produce layer t + 1 in order to extract the final system of
linguistic rules. This fact allows the approach to build a significantly
more accurate modeling of the problem space.

First of all, we need to build the two-layer HDB. The first level
layer is built by the usage of linguistic partitions with the same
number of linguistic terms for all input variables, composed of
symmetrical triangular-shaped and uniformly distributed mem-
bership functions. The second layer, is built preserving all the
membership function modal points, corresponding to each linguis-
tic term, through the higher layers of the hierarchy and adding a
new linguistic term between each two consecutive terms of the
t-linguistic partition reducing the support of these linguistic terms
in order to keep place for the new one, which is located in the mid-
dle of them. Fig. 6 shows the linguistic partitions from one level to
another, with n(1) = 3 and n(2) = 5.

The second step affects the generation of the HRB which is com-
posed by the RB of layer t and a RB of layer t + 1. Two measures of
error are usually used to build a RB of layer t + 1 from a layer RB of
layer t: a global measure, which is used to evaluate the complete
RB, and a local measure, used to determine the goodness of the
rules. We calculate these measures similarly to other HFRBCS
methodologies focused on classification problems [21]. The global
measure used is the accuracy per class, computed as:

AcciðXi;RBÞ ¼ jxp 2 Xi=FRMðxp;RBÞ ¼ ClassðxpÞj
jXij

ð16Þ

where j j is the number of patterns, Xi is the set of examples of the
training set that belong to the ith class, FRM(xp,RB) is the class pre-
diction of the pattern using the rules in the RB with the FRM used by
the GP-COACH algorithm, and Class(xp) is the class label for example
xp. The local measure utilized is the accuracy for a rule, computed
over the whole training set as

AccðX;RjÞ ¼
jXþðRjÞj
jXðRjÞj

ð17Þ

It is important to remind that since we are using the normalized
sum approach as FRM, X+(Rj) and X(Rj) are defined as

� X(Rj) is the set of examples that have a matching degree with
the rule higher than 0 where this compatibility has contributed
to classify the sample as the class label of the rule.
� X+(Rj) is the set of examples that have a matching degree with

the rule higher than 0 where this compatibility has contributed
to classify the sample as the class label of the rule and where
the predicted class corresponds with the class label of the
example.



Fig. 7. Lateral displacement of a MF.
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For each example in the training set, we obtain a set of rules
that have contributed to the classification when we compute the
global measure. Therefore, when we try to compute X+(Rj) and
X(Rj) we have for each rule the set of examples where the current
rule has contributed to its classification.

Once we have computed the global measure and the local mea-
sure, we characterize the rules as good or bad according to the fol-
lowing calculation:

If (Acc(X,Rj) 6 (1 � a) � Acci(Xi,RB)) Then
Rj = goodrule

Else
Rj = badrule

Good rules are kept in the rule population while bad rules are de-
leted from the current population. Then, new high granularity rules
are created using as linguistic rule generator with the DB associ-
ated to layer t + 1 and adopting as training set for this task a subset
of the original training set including examples that meets some
specified conditions. If after the generation of these rules we find
repeated rules we only keep one copy of them, or if we find contra-
dictory rules (rules with the same antecedent but with different
consequents) we maintain the rule with a higher rule weight in
the RB while the others are removed.

3.3.2. Integration of a HKB in the GP-COACH algorithm
The usage of a HKB in the inner way of running of the GP-

COACH algorithm induces some changes in its structure. For exam-
ple, the existence of the HRB which is composed by the RB of layer t
and a RB of layer t + 1 forces the GP-COACH algorithm to provide a
mechanism to maintain these two RB levels. In our case, these RBs
are merged and are evolved together in the different generations
computed in the GP-COACH algorithm.

The rule population used in the algorithm is now a mixed pop-
ulation that combines primary rules and secondary rules where the
secondary rules present different granularities. In this kind of pop-
ulation, genetic operators obtain rules according to the type of par-
ent rule: primary rules obtain primary rules while secondary rules
obtain secondary rules maintaining the granularity of the original
rule. The only restriction in the application of the genetic opera-
tions appears in the usage of the crossover operation where the
rules selected for the generation of a new rule must have the same
granularity.

The global fitness score is modified to consider the different
granularities of the rules in the population. The new global fitness
function is:

global fitness¼w1 � accuracyþw2 � ð1:0�VarNÞþw3

� 1:0�ðCond LowN �R LowþCond HighN �R HighÞ
R

� �
þw4 � ð1:0�RulNÞ

ð18Þ

where VarN is the normalized average number of variables,
Cond_LowN is the normalized average number of conditions in low
granularity rules, Cond_HighN is the normalized average number
of conditions in high granularity rules, RulN is the normalized num-
ber of rules and R_Low,R_High,R are the number of low granularity
rules, high granularity rules and total number of rules respectively.

To generate the high granularity rules some additional steps are
performed just after the final step of a GP-COACH generation
which is the construction of secondary rules for examples that
have not been covered with the current rule base. This process is
done performing the following operations:
1. The rules that compose the rule set are classified as good rules or
bad rules as explained in the previous subsection.

2. Good rules are kept in the rule population and bad rules are
directly deleted.

3. New high granularity rules are created using as linguistic rule
generator the Chi et al. algorithm [10] with the DB associated
to layer t + 1 and adopting as training set for this task the exam-
ples that were classified by the rules that were considered bad
rules.

4. Repeated and contradictory rules are searched for and only one
copy of the best performing is kept.

Usually, when creating a hierarchical rule base, another step is
added to improve the performance of the final model: a hierarchi-
cal rule selection step. In our case, since the hierarchical expansion
of rules is embedded into each generation of the GP-COACH algo-
rithm, adding a genetic selection process would increase consider-
ably the run time of the approach. Therefore, this rule selection
step is appended after the GP-COACH generations end combined
with a tuning step to take advantage of the synergy between these
refinements of the KB. Furthermore, GP-COACH tries to obtain a
compact rule population with the token competition procedure
making thus this delay of the rule selection step possible.
3.4. Hierarchical rule base selection and lateral tuning

In this last step, we analyze the use of genetic algorithms to se-
lect and tune a compact and cooperative set of fuzzy rules that
obtain a high performance starting from the hierarchical rules gen-
erated in the previous step. In order to do so, we consider the ap-
proach used by Alcalá et al. [1] that uses the linguistic 2-tuples
representation [32]. This representation allows the lateral dis-
placement of the labels considering only one parameter (symbolic
translation parameter), which involves a simplification of the tun-
ing search space that aids the obtaining of optimal models. Partic-
ularly this happens when it is combined with a rule selection
within the same process enabling it to take advantage of the posi-
tive synergy that both techniques present. In this way, this process
for contextualizing the membership functions permits them to
achieve a better covering degree while maintaining the original
shapes, which results in accuracy improvements without a signif-
icant loss in the interpretability of the fuzzy labels. The symbolic
translation parameter of a linguistic term is a number within the
interval [ �0.5,0.5) that expresses the domain of a label when it
is moving between its two lateral labels. Let us consider a set of la-
bels S representing a fuzzy partition. Formally, we have the pair,
(si,ai),si 2 S,ai 2 [�0.5,0.5). An example is illustrated in Fig. 7
where we show the symbolic translation of a label represented
by the pair (S2, �0.3).



Fig. 8. Flowchart of GP-COACH-H.
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Alcalá et al. [1] proposed two different rule representation
approaches, a global approach and a local approach. In our algo-
rithm, the tuning is applied to the level of linguistic partitions (glo-
bal approach). In this way, the pair (Xi, label) takes the same tuning
value in all the rules where it is considered. For example, X1 -
is (High,0.3) will present the same value for those rules in which
the pair ‘‘X1 is High’’ was initially considered. This proposal de-
creases the tuning problem complexity, greatly easing the deriva-
tion of optimal models.

To accomplish this rule selection and lateral tuning process, we
consider the use of a specific genetic algorithm, the CHC evolution-
ary algorithm [18] with the same scheme described in our previous
works [21,22]. In the remainder of this section, we describe the
specific features of our new tuning approach, which involves the
codification of the solutions and initial gene pool, chromosome
evaluation, crossover operator and restarting approach.

1. Codification and Initial Gene Pool: To combine the rule selection
with the global lateral tuning, a double coding scheme for both
rule selection (CS) and lateral tuning (CT) is used:
� For the CS part, each chromosome is a binary vector that

determines when a rule is selected or not (alleles ‘1’ and
‘0’ respectively). Considering the M rules contained in the
candidate rule set (rules from the two hierarchical levels
considered), the corresponding part CS = {c1, . . . , cM} repre-
sents a subset of rules composing the final rule base, so that,
If cj = 1 then(Rj 2 RB)else(Rj R RB), with Rj being the corre-
sponding jth rule in the candidate rule set and RB being
the final RB.

� For the CT part, a real coding is considered. This part is the
joint of the a parameters of each fuzzy partition. Let us con-
sider the following number of labels per variable: (ml1, ml2,
. . . , mln) for low granularity rules and (mh1, mh2, . . . , mhn)
for high granularity rules, with n being the number of sys-
tem variables. Then, this part has the following form (where
each gene is associated to the tuning value of the corre-
sponding label): CT ¼ ðcl11; . . . ; cl1ml1 ; cl21; . . . ; cl2ml2 ; . . . ; cln1;

. . . ; clnmln ; ch11; . . . ; ch1mh1 ; ch21; . . . ; ch2mh2 ;. . . ; chn1; . . . ; chnmhn Þ.
Finally, a chromosome C is coded in the following way: C = CSCT.
To make use of the available information, all the candidate rules
are included in the population as an initial solution. To do this,
the initial pool is obtained with the first individual having all
genes with value ‘1’ in the CS part and all genes with value
‘0.0’ in the CT part. The remaining individuals are generated at
random.
2. Chromosome Evaluation: To evaluate a determined chromosome

we compute its accuracy over the training set. If two individuals
obtain the same value, then the individual with the lower num-
ber of selected rules is preferred.

3. Crossover Operator: The crossover operator will depend on the
chromosome part where it is applied:
� In the CS part, the half uniform crossover scheme (HUX) is

employed.
� For the CT part, we consider the Parent Centric BLX (PCBLX)

operator [31], which is based on BLX-a.
4. Restarting Approach: To get away from local optima, this algo-

rithm uses a restart approach that is performed to improve
the diversity of the population that may be reduced by the
strong elitist pressure of the replacement scheme.

For details about the remainder features of the optimization pro-
cess, please refer to Fernández et al. [21] and Fernández et al. [22].

3.5. Summary of the GP-COACH-H algorithm

Once every step of the algorithm has been explained we briefly
sum up how the GP-COACH-H algorithm works. Fig. 8 depicts a
flowchart of the GP-COACH-H algorithm.



Table 2
Parameter specification for the algorithms tested in the experimentation.

Algorithm Parameters

FRBCS parameters
GP-COACH and GP-

COACH-H
Minimum t-norm, Maximum t-conorm, Rule Weight = Certainty Factor, Fuzzy Reasoning Method = Normalized Sum, Number of Fuzzy
Labels (for basic GP-COACH) = 5 or 9, Number of Fuzzy Labels (for GP-COACH-H) = 5 for Low Granularity Rules and 9 for High Granularity
Rules

HFRBCS(Chi) Product t-norm, Rule Weight = Penalized Certainty Factor, Fuzzy Reasoning Method = Winning Rule, Number of Fuzzy Labels = 3 for Low
Granularity Rules and 5 for High Granularity Rules

GP-COACH parameters
GP-COACH and GP-

COACH-H
Evaluations = 20000, Initial Population Size = 200, a (raw fitness) = 0.7, Crossover Probability = 0.5, Mutation Probability = 0.2, Dropping
Condition Probability = 0.15, Insertion Probability = 0.15, Tournament size = 2, w1 = 0.8, w2 = w3 = 0.05, w4 = 0.1

Hierarchical procedure parameters
GP-COACH-H and

HFRBCS(Chi)
a (rule expansion) = 0.2, CHC Evaluations = 10,000, CHC Population Size = 61, CHC bits per gene (for GP-COACH-H) = 30

C4.5 parameters
C4.5 Pruned=true, Confidence = 0.25 and Minimum number of item-sets per leaf = 2
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There are three different steps in the building of the model:

1. Preprocessing stage: In this first step, GP-COACH-H preprocesses
the original data-set to balance the class distribution. In order
to do so, the SMOTE algorithm is used, as described in
subSection 2.2.

2. Generation of the HKB: This stage is devoted to the generation of
a two-layer HKB from the balanced data-set. This HKB is
composed by two different DBs (each one with a different gran-
ularity level) and one RB that contains rules from the two
hierarchies:
(a) HDB Generation: The first layer DB is created with the same

number of linguistic terms for all input variables, composed
of symmetrical triangular-shaped and uniformly distributed
membership functions. The second layer, is built preserving
all the membership function modal points, corresponding to
each linguistic term.

(b) HRB Generation: In order to generate the HRB we use as a
base the GP-COACH algorithm, which has been modified
to incorporate in its internal way of running the creation
of hierarchical rules. The adjustments reinforce the connec-
tion between the GP-COACH algorithm and the hierarchical
methodology because they have been designed to get the
greatest possible performance. Specifically, these modifica-
tions include:

� A step to identify good and bad rules, where bad rules are

deleted and the examples covered by them are used to
create new high granularity rules.

� Changes in the global fitness function considering the
different granularities in the rule population.

� A variation on the conditions of the application of the
crossover operator where only rules with the same gran-
ularity level are allowed to produce an offspring.

This HRB generation procedure uses the preprocessed data-set
from the previous step and the membership functions defined
by the HDB.
2

3. Refinement of the HKB: After the building of an initial HKB in
the previous phase, another genetic procedure is applied to
improve the final performance of this solution. In this step,
rules that cooperate properly in the population are selected
and the HDB is tuned with the 2-tuples linguistic representa-
tion. These optimizations are done in a single step to take
advantage of the synergy that both techniques can achieve.
The set of selected rules define the final HRB given as solu-
tion and the tuning parameters obtained modify the original
HDB to create the final HDB which is the output of the
algorithm.
4. Experimental framework

In this section, we present the set up of the experimental frame-
work used to develop the analysis of our proposal. First we intro-
duce the algorithms selected for the comparison with the
proposed approach and their configuration parameters (subSec-
tion 4.1). Next, we provide details of the problems chosen for the
experimentation (subSection 4.2). Finally, we present the statisti-
cal tests applied to compare the results obtained with the different
classifiers (subSection 4.3).

4.1. Algorithms selected for the study and parameters

In order to test the performance of our approach, GP-COACH-H,
several classification methods have been selected to perform the
experimental study. These methods are:

� GP-COACH [7]: The original FRBCS that was used as base for our
approach, a GP-based algorithm for the learning of compact and
interpretable fuzzy rule bases that obtains good accuracy in
high dimensional classification problems.
� HFRBCS(Chi) [21]: This approach obtains a Hierarchical Fuzzy

Rule Base Classification System (HFRBCS) using the Chi et al.
algorithm [10] as the linguistic rule generation method and
has reported good results in imbalanced data-sets.
� C4.5 [47]: A well-known decision tree which has shown a good

behavior in the framework of imbalanced data-sets [6].

The configuration parameters used for these algorithms are
shown in Table 2. All the methods were run using KEEL software2

[3], following the default parameter values given in the KEEL plat-
form to configure the methods, which were selected according to
the recommendation of the corresponding authors of each algo-
rithm, assuming that the choice of the values of the parameters
was optimal.

Regarding the use of the SMOTE [9] and SMOTE+ENN [6] pre-
processing methods, we consider only the 1-nearest neighbor
(using the euclidean distance) to generate the synthetic samples,
and we balance the training data to the 50% distribution. We only
use SMOTE + ENN for C4.5 because it shows a positive synergy
when pruning the tree [16].

4.2. Data-sets and data partitions

In order to analyze the quality of our approach GP-COACH-H
against the algorithms introduced in the previous section, we have
http://www.keel.es/.

http://www.keel.es/


Table 3
Summary of imbalanced data-sets.

Data-sets #Ex. #Atts. Class (�;+) %Class (�;+) IR

ecoli034vs5 200 7 (p, imL, imU;om) (10.00,90.00) 9.00
yeast2vs4 514 8 (cyt;me2) (9.92,90.08) 9.08
ecoli067vs35 222 7 (cp,omL,pp; imL,om) (9.91,90.09) 9.09
ecoli0234vs5 202 7 (cp, imS, imL, imU;om) (9.90,90.10) 9.10
glass015vs2 172 9 (build-win-non_float-proc, tableware,build-win-float-proc;ve-win-float-proc) (9.88,90.12) 9.12
yeast0359vs78 506 8 (mit,me1,me3,erl;vac,pox) (9.88,90.12) 9.12
yeast02579vs368 1004 8 (mit,cyt,me3,vac,erl;me1,exc,pox) (9.86,90.14) 9.14
yeast0256vs3789 1004 8 (mit,cyt,me3,exc;me1,vac,pox,erl) (9.86,90.14) 9.14
ecoli046vs5 203 6 (cp, imU,omL;om) (9.85,90.15) 9.15
ecoli01vs235 244 7 (cp, im;imS, imL,om) (9.83,90.17) 9.17
ecoli0267vs35 224 7 (cp, imS,omL,pp; imL,om) (9.82,90.18) 9.18
glass04vs5 92 9 (build-win-float-proc,containers; tableware) (9.78,90.22) 9.22
ecoli0346vs5 205 7 (cp, imL, imU,omL;om) (9.76,90.24) 9.25
ecoli0347vs56 257 7 (cp, imL, imU,pp;om,omL) (9.73,90.27) 9.28
yeast05679vs4 528 8 (me2;mit,me3,exc,vac,erl) (9.66,90.34) 9.35
ecoli067vs5 220 6 (cp,omL,pp;om) (9.09,90.91) 10.00
vowel0 988 13 (hid;remainder) (9.01,90.99) 10.10
glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc,build-win-non_float-proc,headlamps) (8.89,91.11) 10.29
glass2 214 9 (Ve-win-float-proc;remainder) (8.78,91.22) 10.39
ecoli0147vs2356 336 7 (cp, im,imU,pp; imS, imL,om,omL) (8.63,91.37) 10.59
led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9;1) (8.35,91.65) 10.97
glass06vs5 108 9 (build-win-float-proc,headlamps;tableware) (8.33,91.67) 11.00
ecoli01vs5 240 6 (cp, im;om) (8.33,91.67) 11.00
glass0146vs2 205 9 (build-win-float-proc,containers,headlamps,build-win-non_float-proc;ve-win-float-proc) (8.29,91.71) 11.06
ecoli0147vs56 332 6 (cp, im,imU,pp;om,omL) (7.53,92.47) 12.28
cleveland0vs4 177 13 (0;4) (7.34,92.66) 12.62
ecoli0146vs5 280 6 (cp, im,imU,omL;om) (7.14,92.86) 13.00
ecoli4 336 7 (om;remainder) (6.74,93.26) 13.84
yeast1vs7 459 8 (nuc;vac) (6.72,93.28) 13.87
shuttle0vs4 1829 9 (Rad Flow;Bypass) (6.72,93.28) 13.87
glass4 214 9 (containers; remainder) (6.07,93.93) 15.47
page-blocks13vs2 472 10 (graphic;horiz.line,picture) (5.93,94.07) 15.85
abalone9vs18 731 8 (18;9) (5.65,94.25) 16.68
glass016vs5 184 9 (tableware; build-win-float-proc,build-win-non_float-proc,headlamps) (4.89,95.11) 19.44
shuttle2vs4 129 9 (Fpv Open;Bypass) (4.65,95.35) 20.5
yeast1458vs7 693 8 (vac;nuc,me2,me3,pox) (4.33,95.67) 22.10
glass5 214 9 (tableware; remainder) (4.20,95.80) 22.81
yeast2vs8 482 8 (pox;cyt) (4.15,95.85) 23.10
yeast4 1484 8 (me2;remainder) (3.43,96.57) 28.41
yeast1289vs7 947 8 (vac;nuc,cyt,pox,erl) (3.17,96.83) 30.56
yeast5 1484 8 (me1;remainder) (2.96,97.04) 32.78
ecoli0137vs26 281 7 (pp, imL;cp, im,imU, imS) (2.49,97.51) 39.15
yeast6 1484 8 (exc;remainder) (2.49,97.51) 39.15
abalone19 4174 8 (19;remainder) (0.77,99.23) 128.87
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selected several highly imbalanced and borderline imbalanced
data-sets.

Specifically, as highly imbalanced data-sets, we have selected
44 data-sets from KEEL data-set repository3 [2] with an imbalance
ratio (IR) [46] greater than 9. The data are summarized in Table 3,
where we denote the number of examples (#Ex.), number of attri-
butes (#Atts.), class name of each class (positive and negative), class
attribute distribution and IR. This table is in ascending order accord-
ing to the IR.

Inspired by Kubat and Matwin [40], Napierala et al. [44] created
several artificial data-sets that contain borderline examples in an
imbalanced scenario to address the correct identification of those
examples. These data-sets have three different shapes of the posi-
tive class: subclus (Fig. 9), clover (Fig. 10) and paw (Fig. 11), all sur-
rounded uniformly by the negative class. For each shape, we have
data-sets from two different sizes and IR: data-sets with 600 exam-
ples with an IR of 5 and data-sets with 800 examples with an IR of
7. Each one of these data-sets is affected by different disturbance
ratio levels (0%, 30%, 50%, 60% and 70%). The disturbance ratio is
simulated increasing the ratio of borderline examples from the po-
sitive class subregions.
3 http://www.keel.es/datasets.php.
To develop the different experiments we consider a 5-fold cross-
validation model, i.e., five random partitions of data with a 20% and
the combination of 4 of them (80%) as training and the remaining
ones as test. For each data-set we consider the average results of
the five partitions. The data-sets used in this study use the parti-
tions provided by the KEEL data-set repository in the imbalanced
classification data-set section.4

4.3. Statistical tests for performance comparison

Statistical analysis needs to be carried out in order to find sig-
nificant differences among the results obtained by the studied
methods [24]. We consider the use of non-parametric tests, accord-
ing to the recommendations made in [25,24] where a set of simple,
safe and robust non-parametric tests for statistical comparisons of
classifiers is presented. These tests are used due to the fact that the
initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose
credibility [50].

The Wilcoxon test [50] will be used as a non-parametric statistical
procedure in order to conduct pairwise comparisons between two
algorithms. For multiple comparisons we use the Iman-Davenport
4 http://www.keel.es/imbalanced.php.

http://www.keel.es/datasets.php
http://www.keel.es/imbalanced.php


Fig. 9. Subclus.

Fig. 10. Clover.

Fig. 11. Paw.

5 http://sci2s.ugr.es/sicidm/.
6 http://www.keel.es/imbalanced.php.
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test to detect statistical differences among a group of results, and the
Holm post-hoc test in order to find which algorithms are distinctive
among a 1 � n comparison.

The post-hoc procedure allows us to know whether a hypothesis
of comparison of means could be rejected at a specified level of sig-
nificance a. However, it is very interesting to compute the p-value
associated with each comparison, which represents the lowest level
of significance of a hypothesis that results in a rejection. It is the
adjusted p-value. In this manner, we can know whether two
algorithms are significantly different and how different they are.

Furthermore, we consider the average ranking of the algo-
rithms, in order to show how good a method is with respect to
its partners. This ranking is obtained by assigning a position to
each algorithm depending on its performance for each data-set.
The algorithm which achieves the best accuracy in a specific
data-set will have the first ranking (value 1); then, the algorithm
with the second best accuracy is assigned rank 2, and so forth. This
task is carried out for all data-sets and finally an average ranking is
computed as the mean value of all rankings.
These tests are suggested in the studies presented in [25,24],
where their use in the field of machine learning is highly recom-
mended. For a wider description of the use of these tests, please re-
fer to the website on Statistical Inference in Computational
Intelligence and Data Mining.5

5. Experimental study

In this section, we present a set of experiments to illustrate and
demonstrate the behavior of GP-COACH-H. These experiments are
designed towards two objectives: to exemplify how the GP-
COACH-H algorithm works, and to determine its robustness for
highly and borderline imbalanced data-sets.

We organize those experiments in the following way. First, Sec-
tion 5.1 presents a case of study over one one of the highly imbal-
anced data-sets presented in the previous section. Next, Section 5.2
contains an analysis of the impact of the hierarchical step in the
algorithm. Section 5.3 studies the the importance of the usage of
a preprocessing step when dealing with highly imbalanced data-
sets. Later, Section 5.4 performs a global comparison among the
fuzzy classification methods and C4.5 over the highly imbalanced
data-sets. Finally, in Section 5.5, this global comparison is also car-
ried out over the borderline imbalanced data-sets.

5.1. Sample procedure of the GP-COACH-H algorithm: a case of study

In order to illustrate how GP-COACH-H works we have selected
the glass0146vs2 data-set. We will follow the algorithm operations
and the results it provides. The glass0146vs2 data-set is a highly
imbalanced data-set from the KEEL data-set repository,6 with 9 in-
put attributes, 205 instances and an IR equal to 11.06. We have se-
lected this data-set as one with a small size whose results can be
easily interpreted.

For this specific run, we have chosen the 3rd partition from the
5-fcv used in all the experiments. This partition uses 164 instances
for training (14 positive and 150 negative) and 41 for test (3 posi-
tive and 38 negative), using the 9 input attributes of the whole
data-set. The first step of the GP-COACH-H algorithm (see Fig. 8)
uses the SMOTE algorithm to balance the class distribution. There-
fore, we apply the SMOTE algorithm and we obtain a new training
set that contains 300 instances, 150 instances for each class.

The second step starts using the preprocessed data-set to gener-
ate the HKB. In order to generate the HKB, we first generate the
HDB from the available data. The HDB is generated (as was ex-
plained in the previous sections) with the same number of linguis-
tic terms for all input variables, composed of symmetrical
triangular-shaped and uniformly distributed membership func-
tions. The second layer, is built preserving all the membership
function modal points, corresponding to each linguistic term.
Figs. 12 and 13 show the linguistic variables generated for the
Mg attribute, according to the given instructions.

Once we have generated the HDB, we start the GP procedure to
generate the HRB. This procedure evolves a rule population
through several generations, including the usage of genetic opera-
tors to generate new individuals, the token competition procedure
to delete irrelevant rules and the hierarchical creation of new rules
in each step. At the end of the iterations, a rule base with different
granularity rules is obtained. In Fig. 14, the rules generated using
the generated HDB and the preprocessed training set are shown.

At this point, we start the last step of the algorithm which is the
genetic rule selection and lateral tuning of the variables. To obtain
the final solution, we use the preprocessed set from the first step
and the HKB generated previously. The genetic search looks for a

http://sci2s.ugr.es/sicidm/
http://www.keel.es/imbalanced.php


Fig. 14. Rules generated after the Fuzzy HRB Generation.

Fig. 13. Database Layer 2 with 9 labels, Mg attribute.

Fig. 12. Database Layer 1 with 5 labels, Mg attribute.
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new HKB that better represents the data. Figs. 15–17 show the new
HDB and HRB obtained, which are the final output of the GP-
COACH-H algorithm.

5.2. Analysis of the impact of the hierarchical levels over the
imbalanced data-sets

This subsection is devoted to the impact of the usage of the HKB
in the GP-COACH-H algorithm in relation to not using a HKB and
use a traditional KB instead. In this manner, we will detect the
influence of this component of the GP-COACH-H algorithm thus
justifying its use.

We will compare the results of the GP-COACH-H algorithm
according to the fuzzy HKB generated after the application of the
GP procedure to the results of the basic GP-COACH algorithm with
5 and 9 labels, using SMOTE as preprocessing algorithm in both
cases. The performance measures used are sensitivity and specific-
ity to observe the impact for each class. Table 4 shows the average
results for each algorithm over the highly imbalanced data-sets.
The complete table of results for all data-sets can be found in the
appendix of this work.

Considering the sensitivity measure the best performing aver-
age algorithm is the basic GP-COACH with 5 labels, however, if
we look at the specificity measure then the best performing algo-
rithm is the basic GP-COACH with 9 labels. Therefore, we need to
consider the effectiveness for each class separately.

Contemplating the positive class, we can observe that the best
performance in training is higher for the hierarchical version, being



Fig. 16. Final database Layer 2 with 9 labels, Mg attribute.

Fig. 15. Final database Layer 1 with 5 labels, Mg attribute.

Table 4
Average results for GP-COACH-5, GP-COACH-9 and GP-COACH-H for the highly imbalanced data-sets.

Data-set Sensitivitytr Sensitivitytst Specificitytr Specificitytst

GP-COACH-5 .9097 ± .0307 .7809 ± .1212 .8643 ± .0307 .8531 ± .1212
GP-COACH-9 .8983 ± .0267 .7319 ± .1334 .9231 ± .0267 .9055 ± .1334
GP-COACH-H .9398 ± .0204 .7797 ± .1233 .9025 ± .0204 .8855 ± .1233

Table 5
Average results for GP-COACH versions with and without SMOTE preprocessing for the highly imbalanced data-sets.

Data-set No preprocessing SMOTE preprocessing

GMtr GMtst GMtr GMtst

GP-COACH-5 .4789 ± .1017 .3677 ± .1922 .8763 ± .0307 .7897 ± .1212
GP-COACH-9 .5074 ± .0871 .3929 ± .1996 .9056 ± .0267 .7845 ± .1334
GP-COACH-H .4536 ± .1216 .3439 ± .1697 .9576 ± .0121 .8175 ± .1193
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able to describe the training set more accurately than in the pres-
ence of low granularity rules only. Therefore, our initial intuition
where the HKB was able to better describe difficult data spaces is
confirmed. Comparing the training results in relation to the test
results we notice a drop in performance for all the algorithms
where GP-COACH-5 gets the best results, GP-COACH-H obtains
similar results to GP-COACH-5 and GP-COACH-9 accomplishes
lower results than the other two.

Analyzing the results associated to the negative class, we see an
almost opposite situation. For training results the GP-COACH-9
algorithm is the algorithm that best describes the data, a situation
where GP-COACH-H is supposed to be found. Nevertheless, GP-
COACH-H is designed to specifically deal with imbalanced data-
sets concentrating on the positive class so is logical that it does
not characterize the negative class as well as the previous case.
Confronting the training results with the test results we find a drop
in the performance on equal levels for each approaches. Therefore,
GP-COACH-9 is the best performing algorithm for the negative
class, closely followed by GP-COACH-H where GP-COACH-5 perfor-
mance falls behind those two approaches.

After checking the performance in each class, we discover that
the basic GP-COACH is a powerful tool to describe one of our clas-
ses depending on the number of labels used. Nevertheless, if we
choose a specific number of labels to focus on one class the final
performance is degraded in the other one. Consequently, the GP-
COACH-H approach that combines low granularity and high gran-
ularity rules is able to address the description of both classes
accordingly. Its performance does not exceed the results of the ba-
sic algorithm, however, it goes closely after them in each class. Fur-
thermore, there is not a high decrease in performance for the class



Fig. 17. Final rules generated with the GP-COACH-H algorithm.

Table 6
Average results for FRBCS methods and C4.5 for the highly imbalanced data-sets.
SMOTE preprocessing for FRBCS methods, SMOTE+ENN for C4.5.

Data-set GMtr GMtst

GP-COACH-5 .8763 ± .0307 .7897 ± .1212
GP-COACH-9 .9056 ± .0267 .7845 ± .1334
HFRBCS(Chi) .9331 ± .0117 .7901 ± .1325
GP-COACH-H .9576 ± .0121 .8175 ± .1193
C4.5 .9549 ± .0180 .7848 ± .1452

Table 7
Average rankings and adjusted p-values using Holm’s post-hoc procedure for FRBCS
methods and C4.5 adopting the GM measure for the highly imbalanced data-sets.

Algorithm Average ranking Adjusted p-value (Holm’s test)

GP-COACH-H 2.4091
GP-COACH-9 3.0227 0.0862
GP-COACH-5 3.0909 0.0862
C4.5 3.2045 0.0549
HFRBCS(Chi) 3.2727 0.0416

Table 8
Average results for FRBCS methods and C4.5 for the borderline imbalanced data-sets.
SMOTE preprocessing for FRBCS methods, SMOTE+ENN for C4.5.

Data-set GMtr GMtst

GP-COACH-5 .7899 ± .0218 .7630 ± .0578
GP-COACH-9 .8103 ± .0330 .7628 ± .0705
HFRBCS(Chi) .8316 ± .0195 .7992 ± .0461
GP-COACH-H .8674 ± .0157 .8234 ± .0428
C4.5 .8881 ± .0244 .8208 ± .0462

Table 9
Average rankings and adjusted p-values using Holm’s post-hoc procedure for FRBCS
methods and C4.5 adopting the GM measure for the borderline imbalanced data-sets.

Algorithm Average ranking Adjusted p-value (Holm’s test)

GP-COACH-H 1.7333
C4.5 1.9000 0.6831
HFRBCS(Chi) 3.0667 0.0022
GP-COACH-9 3.8667 0.0000
GP-COACH-5 4.4333 0.0000

Table 10
Wilcoxon test to compare GP-COACH-H against C4.5 in borderline imbalanced data-
sets. R+ corresponds to the sum of the ranks for GP-COACH-H and R� to C4.5.

Comparison R+ R� p-Value

GP-COACH-H vs C4.5 261.0 204.0 0.551
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as in the basic algorithm. In this manner, GP-COACH-H is able to
profit from the descriptive power of each granularity level obtain-
ing a good balance between the performance of both classes.

5.3. Analysis of the suitability of the preprocessing step for imbalanced
problems

In this part of the study, our aim is to show the suitability of the
preprocessing step included in GP-COACH-H as the first step of the
algorithm. We also check the performance of applying this prepro-
cessing step to the basic GP-COACH algorithm in order to show the
necessity of this procedure when dealing with imbalanced data-
sets, thus justifying the inclusion of this step in our proposal.

According to this objective, we show the average GM results in
training and test in Table 5, together with the corresponding stan-
dard deviation, for the basic GP-COACH algorithm and for the hier-
archical GP-COACH-H with and without SMOTE preprocessing over
the highly imbalanced data-sets presented in Section 4.2. The com-
plete table of results for all data-sets is shown in the appendix of
this work. We observe that the best result in test (which is stressed
in boldface) always corresponds to the one obtained when the
SMOTE preprocessing is applied. Furthermore, there is an enor-
mous difference between the usage or not usage of preprocessing.
Therefore, we conclude that the usage of SMOTE as preprocessing
clearly outperforms the usage of the original data-sets making
the use of this methodology a necessity in the framework of imbal-
anced data-sets.

5.4. Analysis of GP-COACH-H on highly imbalanced data-sets

The following part of the study will consider the performance of
the GP-COACH-H algorithm in contrast with other FRBCS learning
proposals and with the C4.5 algorithm. Table 6 shows the average
GM results in training and test together with the corresponding
standard deviation for the highly imbalanced data-sets considered.
By rows, we can observe the results for the basic GP-COACH meth-
od with 5 and 9 labels (GP-COACH-5 and GP-COACH-9), the
HFRBCS(Chi), the proposed GP-COACH-H and the C4.5 decision
tree. The best average case in test is highlighted in bold. The com-
plete table of results for all data-sets is also shown in the appendix
of this work together with the results of the previous experiments.
We remind that SMOTE is used for the FRBCS whereas SMOTE+ENN
is applied in conjunction with C4.5 along all the experiments.

According to the average values shown in this table the best
method in highly imbalanced data-sets is the GP-COACH-H. To car-
ry out the statistical study we first check for significant differences
among the algorithms using an Iman-Davenport test. The p-value
(0.0779) is low enough to reject the null equality hypothesis with
a high confidence level. Thus, we can conclude that significant dif-
ferences do exist, proceeding by showing in Table 7 the average
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ranks of the algorithms and the adjusted p-values computed by the
Holm test. Looking at this table we can notice that GP-COACH-H
obtains the lower ranking which makes it the control method used
for the post-hoc computation. As all the adjusted p-values are suf-
ficiently low to reject the null-hypothesis in all cases, the assump-
tion where GP-COACH-H is the best performing method considered
for highly imbalanced data-sets is reinforced.
5.5. Analysis of GP-COACH-H on borderline imbalanced data-sets

In the last part of our study, we want to analyze the behavior of
the GP-COACH-H proposal in the scenario of imbalance borderline
data-sets. We will take into account the same algorithms consid-
ered in the analysis for highly imbalanced data-sets, namely, the
basic GP-COACH method with 5 and 9 labels (GP-COACH-5 and
GP-COACH-9), HFRBCS(Chi), GP-COACH-H and the C4.5 decision
tree. Table 8 shows the average results in training and test together
with the corresponding standard deviation for the algorithms used
in the study over the borderline imbalanced data-sets. As in previ-
ous tables, the best average case in test is highlighted in bold and
the complete table of results for the borderline imbalanced data-
sets is also shown in the appendix of this work.

Observing the average results table we detect GP-COACH-H as
the method with the best average results. Similarly to the proce-
dure used in the highly imbalanced data-sets comparison we start
the statistical study for borderline imbalanced data-sets comput-
ing the Iman-Davenport test to discern if there are significant dif-
ferences among the algorithms. The p-value computed is zero,
implying that there are differences between the algorithms. There-
fore, we perform the Holm test as post-hoc procedure. Table 9 con-
tains the ranks of the algorithms and the adjusted p-values
computed using the Holm test.

According to Table 9 the lowest ranking corresponds to GP-
COACH-H turning it into the control method used in the Holm test
as the best performing method for borderline data-sets. In this
case, the adjusted p-values associated to the basic GP-COACH (with
5 and 9 labels) and to HFRBCS(Chi) are low enough to reject the
null-hypothesis with a high confidence level. This means, that
our proposal GP-COACH-H is the best performing FRBCS in border-
line imbalanced data-sets. In the remaining case (C4.5), we per-
form a Wilcoxon test (Table 10) in order to check if we find
differences between both algorithms.

In this case, the p-value computed does not reject the null
hypothesis. Nevertheless, GP-COACH-H achieves a higher sum of
ranks, which means that GP-COACH-H has obtained a greater per-
formance in a superior number of data-sets than C4.5, turning GP-
COACH-H into a competitive method. Furthermore, the average
performance of GP-COACH-H is better than the performance of
C4.5 and the standard deviation is lower which causes GP-
COACH-H to be a more robust method in each occasion.

To sum up, our experimental study has shown that GP-COACH-
H is an algorithm that presents a good behavior in the framework
of imbalanced data-sets, specifically, when dealing with high
imbalanced data and borderline imbalanced data. The design of
GP-COACH-H integrates different strategies to deal with the prob-
lem that help to overcome the difficulties when they appear. Spe-
cifically, the preprocessing step is used to counter the imbalance
problem, the hierarchical procedure is added to the FRBCS used
as base to obtain a better representation of the data-set in difficult
areas such as small disjuncts or borderline samples and the rule
selection combined with tuning refines the results obtained
improving the overall results. These schemes combined together
deal with the mentioned problems in conjunction generating good
results.
6. Concluding remarks

In this paper we have presented a FRBCS with different granu-
lation levels that integrates rule selection and the 2-tuples tuning
approach to improve the performance in imbalanced data-sets. The
proposal integrates data sampling together with algorithm modifi-
cations to the basic approach and adapts its behavior to the differ-
ent granulation levels considered, adding a post-processing step
that helps the hierarchical fuzzy rule base classification system
to have a better adaptation to the context of each problem and
therefore to enhance its global behavior.

The proposed hierarchical fuzzy rule based classification was
compared to the GP-COACH algorithm, HFRBCS algorithm and the
C4.5 decision tree in order to demonstrate its good performance.
The experimental study justifies the combination of SMOTE with
the algorithmic modifications such as the usage of a hierarchical
knowledge base in order to increase the performance in the imbal-
anced data-set scenario. Moreover, the results obtained when we
deal with this scenario evidence the interest of this proposal. Specif-
ically, this proposal outperforms the other approaches in the frame-
work of highly imbalanced data-sets, which usually is an scenario
where most algorithms have lots of difficulties to perform properly.

For borderline imbalanced data-sets our approach shows a bet-
ter behavior than other FRBCSs used in the experimental studio
and maintains a competitive performance when it is compared
with C4.5. These results have been contrasted by several non-
parametric statistical procedures that reinforce the extracted
conclusions.

As future work, we consider several lines of work centered on
the features of GP-COACH-H that can still be enhanced to obtain
a better performance. One possibility includes the modification of
the genetic operations to achieve a multi-objective procedure that
enables a trade-off between interpretability and accuracy. More-
over, we want to study in depth the data intrinsic characteristics
that hinder the performance in imbalanced data-sets and incorpo-
rate this knowledge into the model with a specialized strategy for
each case. Another possibility focus on the balance level of the pre-
processing step. If an equal balance is not needed and can be
substituted by a lower number of instances then the run time of
the algorithm will decrease.
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Appendix A. Detailed results for the experimental study

In this appendix we present the complete results tables for all
the algorithms used in this work. Thus, the reader can observe
the full training and test results, with their associated standard
deviation, in order to compare the performance of each approach.
In Table 11 we show the detailed results for the GP-COACH-5, GP-
COACH-9 and GP-COACH-H versions with SMOTE preprocessing
for the GP procedure using the specificity and sensitivity measures.
Next, in Table 12 we show the results for the basic GP-COACH
method and the hierarchical GP-COACH-H with and without
SMOTE preprocessing. Later, the results for each FRBCS method
with SMOTE preprocessing and C4.5 with SMOTE+ENN preprocess-
ing over the highly imbalanced data-sets are shown in Table 13. Fi-
nally, Table 14 presents the results for the same algorithms as
Table 13 over the borderline data-sets considered.



Table 11
Complete table of results for GP-COACH-5, GP-COACH-9 and GP-COACH-H after the GP procedure using the specificity and sensitivity measures.

Data-set GP-COACH-5 GP-COACH-9 GP-COACH-H

Sensitivitytr Sensitivitytst Specificitytr Specificitytst Sensitivitytr Sensitivitytst Specificitytr Specificitytst Sensitivitytr Sensitivitytst Specificitytr Specificitytst

ecoli034vs5 .9750 ± .0165 .8500 ± .1282 .9764 ± .0165 .9722 ± .1282 .9875 ± .0158 .9000 ± .0709 .9653 ± .0158 .9556 ± .0709 .9375 ± .0567 .8500 ± .0759 .9806 ± .0567 .9667 ± .0759
yeast2vs4 .9316 ± .0092 .8818 ± .0412 .9196 ± .0092 .9179 ± .0412 .9265 ± .0044 .8818 ± .0381 .9319 ± .0044 .9288 ± .0381 .9365 ± .0166 .8636 ± .0471 .9352 ± .0166 .9308 ± .0471
ecoli067vs35 .9654 ± .0193 .8400 ± .2093 .9200 ± .0193 .8650 ± .2093 .9438 ± .0210 .8400 ± .2265 .9412 ± .0210 .9250 ± .2265 .9660 ± .0292 .8400 ± .2248 .9463 ± .0292 .9200 ± .2248
ecoli0234vs5 .9625 ± .0095 .7500 ± .1552 .9794 ± .0095 .9338 ± .1552 .9625 ± .0409 .8000 ± .1648 .9670 ± .0409 .9174 ± .1648 .9875 ± .0111 .8500 ± .1239 .9822 ± .0111 .9392 ± .1239
glass015vs2 .7429 ± .1337 .4833 ± .2183 .4774 ± .1337 .4968 ± .2183 .8077 ± .0511 .1833 ± .3032 .8581 ± .0511 .7677 ± .3032 .8978 ± .0440 .6000 ± .0739 .7742 ± .0440 .7677 ± .0739
yeast0359vs78 .7650 ± .0840 .6400 ± .1244 .5273 ± .0840 .5312 ± .1244 .3700 ± .0258 .3600 ± .0833 .8499 ± .0258 .8418 ± .0833 .8450 ± .0199 .7000 ± .0820 .8164 ± .0199 .8026 ± .0820
yeast02579vs368 .8763 ± .0093 .8700 ± .0376 .9577 ± .0093 .9514 ± .0376 .8864 ± .0109 .8900 ± .0395 .9279 ± .0109 .9204 ± .0395 .8788 ± .0093 .8600 ± .0488 .9577 ± .0093 .9547 ± .0488
yeast0256vs3789 .7096 ± .0136 .6858 ± .0676 .9251 ± .0136 .9271 ± .0676 .7322 ± .0149 .7063 ± .0563 .9022 ± .0149 .8994 ± .0563 .7247 ± .0154 .7063 ± .0598 .9191 ± .0154 .9182 ± .0598
ecoli046vs5 .9750 ± .0168 .9000 ± .1248 .9740 ± .0168 .9509 ± .1248 .9875 ± .0174 .8500 ± .2166 .9836 ± .0174 .9566 ± .2166 1.0000 ± .0073 .8500 ± .2117 .9727 ± .0073 .9401 ± .2117
ecoli01vs235 .9689 ± .0151 .8600 ± .1131 .9125 ± .0151 .8955 ± .1131 .9689 ± .0152 .9100 ± .0670 .9398 ± .0152 .9227 ± .0670 .9479 ± .0184 .7700 ± .1915 .9443 ± .0184 .9364 ± .1915
ecoli0267vs35 .9216 ± .0211 .8000 ± .1311 .9209 ± .0211 .9156 ± .1311 .9778 ± .0334 .8000 ± .1125 .9220 ± .0334 .8916 ± .1125 .9444 ± .0260 .8000 ± .0928 .9073 ± .0260 .8709 ± .0928
glass04vs5 1.0000 ± .0208 .9000 ± .1277 .9338 ± .0208 .9287 ± .1277 1.0000 ± .0247 1.0000 ± .0134 .9426 ± .0247 .9279 ± .0134 1.0000 ± .0365 .8000 ± .4020 .9190 ± .0365 .8412 ± .4020
ecoli0346vs5 1.0000 ± .0028 .8000 ± .1132 .9919 ± .0028 .9784 ± .1132 .9875 ± .0159 .8500 ± .0632 .9811 ± .0159 .9459 ± .0632 1.0000 ± .0107 .8500 ± .0608 .9770 ± .0107 .9622 ± .0608
ecoli0347vs56 .9700 ± .0104 .8000 ± .1039 .9461 ± .0104 .9224 ± .1039 .9700 ± .0166 .8000 ± .1459 .9590 ± .0166 .9397 ± .1459 .9800 ± .0069 .8400 ± .0923 .9483 ± .0069 .9309 ± .0923
yeast05679vs4 .7843 ± .0198 .7836 ± .0759 .8569 ± .0198 .8490 ± .0759 .7990 ± .0158 .7636 ± .0858 .8753 ± .0158 .8616 ± .0858 .8184 ± .0117 .7255 ± .0653 .8496 ± .0117 .8449 ± .0653
ecoli067vs5 1.0000 ± .0144 .8000 ± .1277 .9113 ± .0144 .8850 ± .1277 .9625 ± .0162 .8500 ± .0884 .9488 ± .0162 .9400 ± .0884 .9625 ± .0153 .8500 ± .0513 .9463 ± .0153 .9350 ± .0513
vowel0 .9861 ± .0116 .9667 ± .0154 .9527 ± .0116 .9532 ± .0154 .9778 ± .0075 .9444 ± .0093 .9510 ± .0075 .9365 ± .0093 .9611 ± .0160 .9333 ± .0232 .9630 ± .0160 .9588 ± .0232
glass016vs2 .9560 ± .0558 .5500 ± .1228 .6443 ± .0558 .5886 ± .1228 .8231 ± .0355 .3000 ± .2385 .8257 ± .0355 .7886 ± .2385 .9714 ± .0171 .5833 ± .1741 .7286 ± .0171 .7086 ± .1741
glass2 .9264 ± .0256 .7667 ± .0841 .5330 ± .0256 .5074 ± .0841 .7626 ± .0615 .3500 ± .3725 .8514 ± .0615 .8027 ± .3725 .9407 ± .0533 .4667 ± .1544 .8225 ± .0533 .7505 ± .1544
ecoli0147vs2356 .9228 ± .0241 .7200 ± .1060 .9267 ± .0241 .8990 ± .1060 .8808 ± .0521 .7133 ± .1467 .9218 ± .0521 .9056 ± .1467 .9221 ± .0232 .8333 ± .0477 .9120 ± .0232 .9154 ± .0477
led7digit02456789vs1 .8582 ± .0246 .8607 ± .0829 .9421 ± .0246 .9483 ± .0829 .8582 ± .0274 .8321 ± .0708 .9434 ± .0274 .9507 ± .0708 .8648 ± .0216 .8607 ± .0851 .9403 ± .0216 .9458 ± .0851
glass06vs5 1.0000 ± .0073 1.0000 ± .0113 .9798 ± .0073 .9900 ± .0113 1.0000 ± .0069 .9000 ± .1332 .9849 ± .0069 .9300 ± .1332 1.0000 ± .0141 1.0000 ± .0215 .9722 ± .0141 .9595 ± .0215
ecoli01vs5 1.0000 ± .0137 .8000 ± .1248 .9636 ± .0137 .9682 ± .1248 1.0000 ± .0075 .9000 ± .0908 .9784 ± .0075 .9409 ± .0908 1.0000 ± .0043 .8500 ± .0868 .9784 ± .0043 .9545 ± .0868
glass0146vs2 .9253 ± .0483 .7833 ± .0450 .6208 ± .0483 .5909 ± .0450 .8978 ± .0665 .5167 ± .3191 .8085 ± .0665 .8027 ± .3191 .8956 ± .0273 .5833 ± .0748 .7486 ± .0273 .7343 ± .0748
ecoli0147vs56 .9700 ± .0222 .8000 ± .0385 .9455 ± .0222 .8987 ± .0385 .9900 ± .0154 .8000 ± .0661 .9577 ± .0154 .9282 ± .0661 .9800 ± .0198 .8400 ± .0898 .9381 ± .0198 .9118 ± .0898
cleveland0vs4 .9800 ± .0194 .5667 ± .1710 .9687 ± .0194 .9697 ± .1710 .9418 ± .0266 .6333 ± .2114 .9781 ± .0266 .9634 ± .2114 .9600 ± .0378 .8000 ± .1632 .9439 ± .0378 .9146 ± .1632
ecoli0146vs5 1.0000 ± .0171 .8500 ± .1133 .9577 ± .0171 .9385 ± .1133 .9875 ± .0168 .8500 ± .1158 .9750 ± .0168 .9423 ± .1158 1.0000 ± .0111 .8500 ± .1162 .9712 ± .0111 .9462 ± .1162
ecoli4 .9750 ± .0151 .9000 ± .0717 .9755 ± .0151 .9811 ± .0717 .9625 ± .0201 .8500 ± .0806 .9723 ± .0201 .9588 ± .0806 .9750 ± .0143 .9000 ± .0724 .9723 ± .0143 .9684 ± .0724
yeast1vs7 .9333 ± .0568 .8333 ± .0539 .5640 ± .0568 .5644 ± .0539 .8667 ± .0832 .4667 ± .1465 .8736 ± .0832 .8483 ± .1465 .9000 ± .0314 .6667 ± .0899 .7506 ± .0314 .6945 ± .0899
shuttle0vs4 1.0000 ± .0000 1.0000 ± .0020 1.0000 ± .0000 .9982 ± .0020 1.0000 ± .0003 .9920 ± .0103 .9990 ± .0003 .9988 ± .0103 .9980 ± .0023 .9917 ± .0094 1.0000 ± .0023 1.0000 ± .0094
glass4 1.0000 ± .0168 .7333 ± .4090 .9615 ± .0168 .9200 ± .4090 .9800 ± .0212 .8333 ± .1306 .9739 ± .0212 .9500 ± .1306 1.0000 ± .0187 .6667 ± .3937 .9478 ± .0187 .9200 ± .3937
page-blocks13vs4 .9273 ± .0477 .9000 ± .0679 .9189 ± .0477 .9144 ± .0679 .9391 ± .0703 .8400 ± .1574 .9262 ± .0703 .9233 ± .1574 .9735 ± .0116 .7933 ± .1273 .9825 ± .0116 .9752 ± .1273
abalone9-18 .7439 ± .0355 .7306 ± .0996 .6589 ± .0355 .6705 ± .0996 .8275 ± .0149 .5889 ± .1103 .7885 ± .0149 .7851 ± .1103 .8446 ± .0191 .7778 ± .0917 .8004 ± .0191 .7823 ± .0917
glass016vs5 1.0000 ± .0106 1.0000 ± .0422 .9643 ± .0106 .9314 ± .0422 1.0000 ± .0058 .9000 ± .1312 .9643 ± .0058 .9314 ± .1312 1.0000 ± .0108 .8000 ± .1672 .9557 ± .0108 .9429 ± .1672
shuttle2vs4 1.0000 ± .0496 1.0000 ± .0667 .9310 ± .0496 .9190 ± .0667 1.0000 ± .0046 1.0000 ± .0090 .9959 ± .0046 .9920 ± .0090 1.0000 ± .0046 1.0000 ± .0000 .9939 ± .0046 1.0000 ± .0000
yeast1458vs7 .6917 ± .1104 .4333 ± .2086 .6012 ± .1104 .5829 ± .2086 .7750 ± .0498 .4000 ± .1118 .7492 ± .0498 .7451 ± .1118 .8583 ± .0314 .5000 ± .1284 .6923 ± .0314 .6756 ± .1284
glass5 .9714 ± .0317 .6000 ± .5297 .9720 ± .0317 .9561 ± .5297 .9714 ± .0340 .6000 ± .4085 .9854 ± .0340 .9805 ± .4085 1.0000 ± .0368 .8000 ± .4225 .9183 ± .0368 .9122 ± .4225
yeast2vs8 .5750 ± .0319 .5500 ± .1487 .9919 ± .0319 .9957 ± .1487 .6500 ± .0211 .6000 ± .1606 .9973 ± .0211 .9978 ± .1606 .9625 ± .0175 .5500 ± .1322 .9259 ± .0175 .9111 ± .1322
yeast4 .8434 ± .0095 .7236 ± .0527 .8789 ± .0095 .8772 ± .0527 .7988 ± .0140 .6873 ± .0469 .8939 ± .0140 .8905 ± .0469 .9216 ± .0137 .8018 ± .0438 .8238 ± .0137 .8248 ± .0438
yeast1289vs7 .7583 ± .1556 .5333 ± .1253 .6065 ± .1556 .6122 ± .1253 .7917 ± .0672 .4667 ± .1633 .8277 ± .0672 .8079 ± .1633 .9000 ± .0495 .7000 ± .0902 .7132 ± .0495 .6925 ± .0902
yeast5 .9208 ± .0262 .8611 ± .0478 .9493 ± .0262 .9479 ± .0478 .9324 ± .0289 .8833 ± .0434 .9642 ± .0289 .9667 ± .0434 .9487 ± .0131 .9083 ± .0477 .9488 ± .0131 .9479 ± .0477
ecoli0137vs26 .8867 ± .0418 .7000 ± .4202 .9516 ± .0418 .9490 ± .4202 .8533 ± .0354 .7000 ± .4200 .9562 ± .0354 .9562 ± .4200 1.0000 ± .0106 .8000 ± .4201 .9362 ± .0106 .9015 ± .4201
yeast6 .8786 ± .0128 .8571 ± .0907 .9208 ± .0128 .9248 ± .0907 .8571 ± .0187 .8000 ± .1348 .9367 ± .0187 .9399 ± .1348 .8857 ± .0130 .8286 ± .0988 .9294 ± .0130 .9310 ± .0988
abalone19 .8508 ± .0131 .6952 ± .0824 .6165 ± .0131 .6200 ± .0824 .9298 ± .0196 .4714 ± .0569 .7402 ± .0196 .7359 ± .0569 .8588 ± .0165 .4667 ± .1476 .7233 ± .0165 .7216 ± .1476

Mean .9097 ± .0307 .7809 ± .1212 .8643 ± .0307 .8531 ± .1212 .8983 ± .0267 .7319 ± .1334 .9231 ± .0267 .9055 ± .1334 .9398 ± .0204 .7797 ± .1233 .9025 ± .0204 .8855 ± .1233
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Table 12
Complete table of results for GP-COACH versions with and without SMOTE preprocessing.

Data-set No preprocessing SMOTE preprocessing

GP-COACH-5 GP-COACH-9 GP-COACH-H GP-COACH-5 GP-COACH-9 GP-COACH-H

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

ecoli034vs5 .8348 ± .0623 .7293 ± .1508 .8436 ± .0337 .7854 ± .1903 .5871 ± .5366 .5412 ± .4967 .9755 ± .0165 .9018 ± .1282 .9761 ± .0158 .9250 ± .0709 .9833 ± .0276 .8660 ± .1252
yeast2vs4 .8111 ± .0405 .7934 ± .1018 .5085 ± .4646 .4557 ± .4232 .8855 ± .0243 .7817 ± .0850 .9252 ± .0092 .8987 ± .0412 .9283 ± .0044 .9036 ± .0381 .9647 ± .0095 .9304 ± .0288
ecoli067vs35 .7120 ± .1319 .5262 ± .3357 .8724 ± .0453 .6667 ± .3799 .9087 ± .0578 .6631 ± .3861 .9421 ± .0193 .8185 ± .2093 .9420 ± .0210 .8509 ± .2265 .9707 ± .0140 .7286 ± .4095
ecoli0234vs5 .7559 ± .2269 .6610 ± .3759 .8802 ± .0194 .7854 ± .1903 .2500 ± .4330 .1973 ± .4411 .9707 ± .0095 .8286 ± .1552 .9638 ± .0409 .8472 ± .1648 .9966 ± .0024 .8473 ± .1526
glass015vs2 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .5017 ± .1337 .3732 ± .2183 .8301 ± .0511 .2115 ± .3032 .9503 ± .0127 .6301 ± .0922
yeast0359vs78 .3816 ± .0722 .2151 ± .2033 .4467 ± .0198 .4595 ± .0941 .5025 ± .0540 .4136 ± .0989 .5764 ± .0840 .5111 ± .1244 .4804 ± .0258 .4467 ± .0833 .8919 ± .0188 .7189 ± .1013
yeast02579vs368 .4423 ± .2722 .4263 ± .3592 .2948 ± .0425 .2621 ± .1685 .9015 ± .0256 .8413 ± .0321 .9160 ± .0093 .9087 ± .0376 .9068 ± .0109 .9044 ± .0395 .9298 ± .0080 .9107 ± .0303
yeast0256vs3789 .3581 ± .0988 .1078 ± .1513 .3997 ± .1358 .2928 ± .2341 .7495 ± .0269 .6353 ± .1073 .8101 ± .0136 .7954 ± .0676 .8127 ± .0149 .7955 ± .0563 .8348 ± .0146 .7982 ± .0673
ecoli046vs5 .8263 ± .0684 .6878 ± .1833 .8725 ± .0144 .6514 ± .3834 .9551 ± .0180 .8105 ± .2129 .9744 ± .0168 .9171 ± .1248 .9855 ± .0174 .8793 ± .2166 .9952 ± .0039 .8677 ± .2102
ecoli01vs235 .7225 ± .1149 .5614 ± .3222 .7925 ± .1083 .5727 ± .3727 .4644 ± .2395 .2426 ± .3508 .9398 ± .0151 .8682 ± .1131 .9540 ± .0152 .9138 ± .0670 .9845 ± .0143 .8471 ± .0944
ecoli0267vs35 .8223 ± .0748 .5828 ± .3713 .8973 ± .0300 .8518 ± .1458 .7825 ± .3031 .6055 ± .3454 .9201 ± .0211 .8407 ± .1311 .9494 ± .0334 .8365 ± .1125 .9707 ± .0163 .9028 ± .0739
glass04vs5 .3917 ± .4067 .1414 ± .3162 .7777 ± .1085 .6243 ± .3713 .0000 ± .0000 .0000 ± .0000 .9662 ± .0208 .9064 ± .1277 .9706 ± .0247 .9632 ± .0134 .9909 ± .0125 .9429 ± .0419
ecoli0346vs5 .8211 ± .0317 .7560 ± .1884 .8353 ± .0390 .8005 ± .0897 .3742 ± .5123 .3732 ± .5132 .9959 ± .0028 .8772 ± .1132 .9842 ± .0159 .8934 ± .0632 .9993 ± .0015 .8847 ± .0690
ecoli0347vs56 .4067 ± .1337 .1779 ± .2436 .6756 ± .0664 .6729 ± .1658 .5673 ± .1876 .2654 ± .3956 .9576 ± .0104 .8525 ± .1039 .9644 ± .0166 .8571 ± .1459 .9881 ± .0036 .8767 ± .0977
yeast05679vs4 .5301 ± .1708 .4502 ± .2955 .0000 ± .0000 .0000 ± .0000 .7518 ± .1110 .5433 ± .1763 .8194 ± .0198 .8136 ± .0759 .8360 ± .0158 .8080 ± .0858 .8961 ± .0280 .6988 ± .0530
ecoli067vs5 .7960 ± .0691 .5861 ± .3606 .9076 ± .0156 .7474 ± .1815 .9218 ± .0186 .7505 ± .1554 .9545 ± .0144 .8356 ± .1277 .9554 ± .0162 .8923 ± .0884 .9849 ± .0041 .8671 ± .0629
vowel0 .7763 ± .0717 .7098 ± .0795 .8520 ± .0443 .8207 ± .0619 .8046 ± .1343 .7599 ± .1505 .9691 ± .0116 .9598 ± .0154 .9642 ± .0075 .9400 ± .0093 .9947 ± .0057 .9465 ± .0622
glass016vs2 .0555 ± .1240 .0000 ± .0000 .0555 ± .1240 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .7820 ± .0558 .5419 ± .1228 .8120 ± .0355 .4211 ± .2385 .9415 ± .0218 .6467 ± .2206
glass2 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0535 ± .1195 .0000 ± .0000 .7019 ± .0256 .6223 ± .0841 .7981 ± .0615 .3949 ± .3725 .9663 ± .0188 .5886 ± .1299
ecoli0147vs2356 .5083 ± .1123 .3942 ± .2360 .4271 ± .0894 .0816 ± .1826 .5234 ± .0427 .3036 ± .3019 .9247 ± .0241 .7976 ± .1060 .8994 ± .0521 .7972 ± .1467 .9594 ± .0153 .8263 ± .0687
led7digit02456789vs1 .8988 ± .0194 .9013 ± .0830 .9081 ± .0156 .8958 ± .0864 .5328 ± .4872 .5099 ± .4682 .8981 ± .0246 .9011 ± .0829 .8986 ± .0274 .8874 ± .0708 .9142 ± .0158 .9000 ± .0809
glass06vs5 .7986 ± .0637 .7548 ± .1379 .5142 ± .3470 .1949 ± .4359 .1512 ± .3381 .1414 ± .3162 .9898 ± .0073 .9949 ± .0113 .9924 ± .0069 .9060 ± .1332 .9975 ± .0035 .9120 ± .1263
ecoli01vs5 .7401 ± .0531 .6549 ± .1580 .7686 ± .1074 .4130 ± .3987 .9673 ± .0323 .8196 ± .1238 .9816 ± .0137 .8739 ± .1248 .9891 ± .0075 .9190 ± .0908 .9977 ± .0031 .8946 ± .0823
glass0146vs2 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .7552 ± .0483 .6651 ± .0450 .8501 ± .0665 .5675 ± .3191 .9313 ± .0074 .7300 ± .0534
ecoli0147vs56 .3948 ± .1736 .1789 ± .2449 .5243 ± .1376 .2444 ± .3541 .7058 ± .2287 .3563 ± .3715 .9574 ± .0222 .8472 ± .0385 .9735 ± .0154 .8577 ± .0661 .9852 ± .0045 .8372 ± .0595
cleveland0vs4 .8312 ± .0470 .5287 ± .3100 .8656 ± .0464 .3969 ± .5436 .5326 ± .3671 .2784 ± .3812 .9740 ± .0194 .7232 ± .1710 .9595 ± .0266 .7578 ± .2114 .9719 ± .0322 .8646 ± .1627
ecoli0146vs5 .6469 ± .0906 .4560 ± .4213 .8714 ± .0461 .6805 ± .2062 .9284 ± .0280 .7762 ± .2119 .9785 ± .0171 .8832 ± .1133 .9811 ± .0168 .8862 ± .1158 .9952 ± .0038 .9194 ± .0597
ecoli4 .6336 ± .1716 .5146 ± .3263 .6761 ± .3818 .4696 ± .3039 .0000 ± .0000 .0000 ± .0000 .9751 ± .0151 .9373 ± .0717 .9673 ± .0201 .9008 ± .0806 .9936 ± .0043 .9357 ± .0702
yeast1vs7 .0986 ± .1382 .0000 ± .0000 .2234 ± .2285 .0000 ± .0000 .1632 ± .1706 .0000 ± .0000 .7229 ± .0568 .6802 ± .0539 .8676 ± .0832 .6093 ± .1465 .8988 ± .0301 .6900 ± .0646
shuttle0vs4 .8361 ± .0143 .8300 ± .0595 .9877 ± .0101 .9744 ± .0387 1.0000 ± .0000 .9960 ± .0090 1.0000 ± .0000 .9991 ± .0020 .9995 ± .0003 .9954 ± .0103 1.0000 ± .0000 1.0000 ± .0000
glass4 .4689 ± .1175 .1155 ± .2582 .7019 ± .0955 .4737 ± .4550 .2963 ± .1948 .0000 ± .0000 .9804 ± .0168 .7231 ± .4090 .9766 ± .0212 .8811 ± .1306 .9906 ± .0077 .7303 ± .4132
page-blocks13vs4 .7063 ± .0430 .6917 ± .1876 .7397 ± .0877 .6815 ± .2216 .7321 ± .1134 .6016 ± .1727 .9205 ± .0477 .9035 ± .0679 .9316 ± .0703 .8706 ± .1574 .9994 ± .0008 .9482 ± .0502
abalone9-18 .3172 ± .0875 .2357 ± .2205 .3648 ± .2181 .2412 ± .2282 .4393 ± .1049 .2565 ± .2510 .6884 ± .0355 .6922 ± .0996 .8070 ± .0149 .6699 ± .1103 .8595 ± .0265 .7500 ± .0599
glass016vs5 .4309 ± .4010 .1414 ± .3162 .7755 ± .0843 .4828 ± .4567 .0000 ± .0000 .0000 ± .0000 .9819 ± .0106 .9644 ± .0422 .9820 ± .0058 .9090 ± .1312 .9921 ± .0078 .8550 ± .1596
shuttle2vs4 .6367 ± .2363 .6000 ± .5477 .2159 ± .3028 .2000 ± .4472 .8257 ± .1510 .8000 ± .4472 .9639 ± .0496 .9568 ± .0667 .9979 ± .0046 .9960 ± .0090 1.0000 ± .0000 .9918 ± .0183
yeast1458vs7 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .5775 ± .1104 .3546 ± .2086 .7566 ± .0498 .5353 ± .1118 .8952 ± .0261 .6304 ± .1095
glass5 .2926 ± .4010 .2000 ± .4472 .7766 ± .0977 .5372 ± .5051 .0000 ± .0000 .0000 ± .0000 .9711 ± .0317 .5801 ± .5297 .9780 ± .0340 .6758 ± .4085 .9957 ± .0027 .7877 ± .4404
yeast2vs8 .7401 ± .0348 .7283 ± .1497 .7401 ± .0348 .7283 ± .1497 .7410 ± .0351 .7283 ± .1497 .7544 ± .0319 .7274 ± .1487 .8049 ± .0211 .7601 ± .1606 .9937 ± .0047 .7381 ± .1765
yeast4 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0853 ± .1236 .0000 ± .0000 .8602 ± .0095 .7923 ± .0527 .8443 ± .0140 .7807 ± .0469 .9001 ± .0156 .8175 ± .0391
yeast1289vs7 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .6325 ± .1556 .5262 ± .1253 .7996 ± .0672 .5860 ± .1633 .8843 ± .0292 .6939 ± .1205
yeast5 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0333 ± .0745 .0000 ± .0000 .9344 ± .0262 .9020 ± .0478 .9477 ± .0289 .9229 ± .0434 .9724 ± .0066 .9428 ± .0526
ecoli0137vs26 .6472 ± .0986 .1414 ± .3162 .3344 ± .1877 .1414 ± .3162 .8430 ± .0583 .1401 ± .3133 .9167 ± .0418 .7215 ± .4202 .9021 ± .0354 .7203 ± .4200 .9843 ± .0107 .7067 ± .4136
yeast6 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .8994 ± .0128 .8856 ± .0907 .8960 ± .0187 .8574 ± .1348 .9319 ± .0155 .8170 ± .0977
abalone19 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .0000 ± .0000 .7196 ± .0131 .6425 ± .0824 .8290 ± .0196 .5828 ± .0569 .8558 ± .0193 .5532 ± .1487

Mean .4789 ± .1017 .3677 ± .1922 .5074 ± .0871 .3929 ± .1996 .4536 ± .1216 .3439 ± .1697 .8763 ± .0307 .7897 ± .1212 .9056 ± .0267 .7845 ± .1334 .9576 ± .0121 .8175 ± .1193
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Table 13
Complete table of results for FRBCS methods and C4.5 in highly imbalanced data-sets. SMOTE preprocessing for FRBCS methods, SMOTE + ENN for C4.5.

Data-set GP-COACH-5 GP-COACH-9 HFRBCS(Chi) GP-COACH-H C4.5

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

ecoli034vs5 .9755 ± .0165 .9018 ± .1282 .9761 ± .0158 .9250 ± .0709 .9930 ± .0050 .8421 ± .1471 .9833 ± .0276 .8660 ± .1252 .9762 ± .0149 .8761 ± .0492
yeast2vs4 .9252 ± .0092 .8987 ± .0412 .9283 ± .0044 .9036 ± .0381 .9527 ± .0105 .8932 ± .0418 .9647 ± .0095 .9304 ± .0288 .9745 ± .0066 .9029 ± .0406
ecoli067vs35 .9421 ± .0193 .8185 ± .2093 .9420 ± .0210 .8509 ± .2265 .9574 ± .0163 .8267 ± .1415 .9707 ± .0140 .7286 ± .4095 .9771 ± .0204 .7206 ± .4072
ecoli0234vs5 .9707 ± .0095 .8286 ± .1552 .9638 ± .0409 .8472 ± .1648 .9910 ± .0031 .8425 ± .1504 .9966 ± .0024 .8473 ± .1526 .9827 ± .0074 .8861 ± .1245
glass015vs2 .5017 ± .1337 .3732 ± .2183 .8301 ± .0511 .2115 ± .3032 .6967 ± .0269 .5590 ± .0851 .9503 ± .0127 .6301 ± .0922 .9066 ± .0263 .7788 ± .2089
yeast0359vs78 .5764 ± .0840 .5111 ± .1244 .4804 ± .0258 .4467 ± .0833 .8401 ± .0040 .7330 ± .0403 .8919 ± .0188 .7189 ± .1013 .9213 ± .0214 .6894 ± .0888
yeast02579vs368 .9160 ± .0093 .9087 ± .0376 .9068 ± .0109 .9044 ± .0395 .9063 ± .0103 .8946 ± .0355 .9298 ± .0080 .9107 ± .0303 .9572 ± .0206 .9125 ± .0336
yeast0256vs3789 .8101 ± .0136 .7954 ± .0676 .8127 ± .0149 .7955 ± .0563 .8106 ± .0165 .7927 ± .0674 .8348 ± .0146 .7982 ± .0673 .9173 ± .0180 .7707 ± .0366
ecoli046vs5 .9744 ± .0168 .9171 ± .1248 .9855 ± .0174 .8793 ± .2166 .9925 ± .0029 .8800 ± .1156 .9952 ± .0039 .8677 ± .2102 .9834 ± .0079 .8776 ± .1148
ecoli01vs235 .9398 ± .0151 .8682 ± .1131 .9540 ± .0152 .9138 ± .0670 .9844 ± .0132 .8709 ± .1076 .9845 ± .0143 .8471 ± .0944 .9649 ± .0302 .8277 ± .1191
ecoli0267vs35 .9201 ± .0211 .8407 ± .1311 .9494 ± .0334 .8365 ± .1125 .9609 ± .0140 .8247 ± .1089 .9707 ± .0163 .9028 ± .0739 .9825 ± .0058 .8061 ± .1065
glass04vs5 .9662 ± .0208 .9064 ± .1277 .9706 ± .0247 .9632 ± .0134 .9457 ± .0185 .7092 ± .3976 .9909 ± .0125 .9429 ± .0419 .9909 ± .0063 .9748 ± .0269
ecoli0346vs5 .9959 ± .0028 .8772 ± .1132 .9842 ± .0159 .8934 ± .0632 .9918 ± .0057 .8729 ± .1175 .9993 ± .0015 .8847 ± .0690 .9884 ± .0046 .8946 ± .0793
ecoli0347vs56 .9576 ± .0104 .8525 ± .1039 .9644 ± .0166 .8571 ± .1459 .9682 ± .0099 .9007 ± .0962 .9881 ± .0036 .8767 ± .0977 .9566 ± .0176 .8413 ± .1377
yeast05679vs4 .8194 ± .0198 .8136 ± .0759 .8360 ± .0158 .8080 ± .0858 .9290 ± .0103 .7318 ± .0747 .8961 ± .0280 .6988 ± .0530 .9197 ± .0128 .7678 ± .1029
ecoli067vs5 .9545 ± .0144 .8356 ± .1277 .9554 ± .0162 .8923 ± .0884 .9531 ± .0211 .8559 ± .0542 .9849 ± .0041 .8671 ± .0629 .9740 ± .0103 .8376 ± .1167
vowel0 .9691 ± .0116 .9598 ± .0154 .9642 ± .0075 .9400 ± .0093 .9999 ± .0003 .9882 ± .0162 .9947 ± .0057 .9465 ± .0622 .9943 ± .0047 .9417 ± .0815
glass016vs2 .7820 ± .0558 .5419 ± .1228 .8120 ± .0355 .4211 ± .2385 .8726 ± .0230 .5837 ± .2004 .9415 ± .0218 .6467 ± .2206 .9365 ± .0323 .6063 ± .1173
glass2 .7019 ± .0256 .6223 ± .0841 .7981 ± .0615 .3949 ± .3725 .8299 ± .0174 .5484 ± .2057 .9663 ± .0188 .5886 ± .1299 .9261 ± .0342 .7377 ± .1633
ecoli0147vs2356 .9247 ± .0241 .7976 ± .1060 .8994 ± .0521 .7972 ± .1467 .9517 ± .0109 .8477 ± .0655 .9594 ± .0153 .8263 ± .0687 .9563 ± .0318 .8119 ± .0459
led7digit02456789vs1 .8981 ± .0246 .9011 ± .0829 .8986 ± .0274 .8874 ± .0708 .9380 ± .0212 .8276 ± .0778 .9142 ± .0158 .9000 ± .0809 .9217 ± .0192 .8370 ± .0475
glass06vs5 .9898 ± .0073 .9949 ± .0113 .9924 ± .0069 .9060 ± .1332 .9744 ± .0046 .8907 ± .1178 .9975 ± .0035 .9120 ± .1263 .9911 ± .0035 .9628 ± .0556
ecoli01vs5 .9816 ± .0137 .8739 ± .1248 .9891 ± .0075 .9190 ± .0908 .9932 ± .0043 .8689 ± .1166 .9977 ± .0031 .8946 ± .0823 .9828 ± .0068 .8081 ± .1213
glass0146vs2 .7552 ± .0483 .6651 ± .0450 .8501 ± .0665 .5675 ± .3191 .7005 ± .0077 .5117 ± .1026 .9313 ± .0074 .7300 ± .0534 .9010 ± .0596 .6157 ± .3465
ecoli0147vs56 .9574 ± .0222 .8472 ± .0385 .9735 ± .0154 .8577 ± .0661 .9790 ± .0059 .8886 ± .0918 .9852 ± .0045 .8372 ± .0595 .9608 ± .0173 .8250 ± .1380
cleveland0vs4 .9740 ± .0194 .7232 ± .1710 .9595 ± .0266 .7578 ± .2114 .9992 ± .0018 .3961 ± .3827 .9719 ± .0322 .8646 ± .1627 .9819 ± .0187 .7307 ± .1517
ecoli0146vs5 .9785 ± .0171 .8832 ± .1133 .9811 ± .0168 .8862 ± .1158 .9913 ± .0047 .8674 ± .1069 .9952 ± .0038 .9194 ± .0597 .9850 ± .0061 .8880 ± .1148
ecoli4 .9751 ± .0151 .9373 ± .0717 .9673 ± .0201 .9008 ± .0806 .9869 ± .0141 .9302 ± .0817 .9936 ± .0043 .9357 ± .0702 .9826 ± .0170 .8947 ± .1202
yeast1vs7 .7229 ± .0568 .6802 ± .0539 .8676 ± .0832 .6093 ± .1465 .9163 ± .0225 .7074 ± .1240 .8988 ± .0301 .6900 ± .0646 .9093 ± .0332 .7222 ± .0532
shuttle0vs4 1.0000 ± .0000 .9991 ± .0020 .9995 ± .0003 .9954 ± .0103 1.0000 ± .0000 .9912 ± .0115 1.0000 ± .0000 1.0000 ± .0000 .9999 ± .0002 .9997 ± .0007
glass4 .9804 ± .0168 .7231 ± .4090 .9766 ± .0212 .8811 ± .1306 .9981 ± .0017 .7039 ± .4049 .9906 ± .0077 .7303 ± .4132 .9665 ± .0149 .7639 ± .4279
page-blocks13vs4 .9205 ± .0477 .9035 ± .0679 .9316 ± .0703 .8706 ± .1574 .9989 ± .0012 .9864 ± .0065 .9994 ± .0008 .9482 ± .0502 .9975 ± .0018 .9909 ± .0065
abalone9-18 .6884 ± .0355 .6922 ± .0996 .8070 ± .0149 .6699 ± .1103 .8396 ± .0303 .6756 ± .1401 .8595 ± .0265 .7500 ± .0599 .9273 ± .0074 .6884 ± .1181
glass016vs5 .9819 ± .0106 .9644 ± .0422 .9820 ± .0058 .9090 ± .1312 .9971 ± .0030 .7796 ± .4361 .9921 ± .0078 .8550 ± .1596 .9863 ± .0047 .7738 ± .4328
shuttle2vs4 .9639 ± .0496 .9568 ± .0667 .9979 ± .0046 .9960 ± .0090 .9990 ± .0023 .9749 ± .0271 1.0000 ± .0000 .9918 ± .0183 1.0000 ± .0000 1.0000 ± .0000
yeast1458vs7 .5775 ± .1104 .3546 ± .2086 .7566 ± .0498 .5353 ± .1118 .9037 ± .0133 .6249 ± .0626 .8952 ± .0261 .6304 ± .1095 .8717 ± .0492 .3345 ± .3342
glass5 .9711 ± .0317 .5801 ± .5297 .9780 ± .0340 .6758 ± .4085 .9764 ± .0221 .6873 ± .3956 .9957 ± .0027 .7877 ± .4404 .9698 ± .0296 .5851 ± .5343
yeast2vs8 .7544 ± .0319 .7274 ± .1487 .8049 ± .0211 .7601 ± .1606 .8334 ± .0164 .7247 ± .1510 .9937 ± .0047 .7381 ± .1765 .8923 ± .0447 .8033 ± .1167
yeast4 .8602 ± .0095 .7923 ± .0527 .8443 ± .0140 .7807 ± .0469 .9001 ± .0194 .8264 ± .0229 .9001 ± .0156 .8175 ± .0391 .8984 ± .0123 .6897 ± .0769
yeast1289vs7 .6325 ± .1556 .5262 ± .1253 .7996 ± .0672 .5860 ± .1633 .8699 ± .0224 .6937 ± .0437 .8843 ± .0292 .6939 ± .1205 .9408 ± .0259 .5522 ± .1662
yeast5 .9344 ± .0262 .9020 ± .0478 .9477 ± .0289 .9229 ± .0434 .9782 ± .0033 .9420 ± .0259 .9724 ± .0066 .9428 ± .0526 .9819 ± .0077 .9390 ± .0474
ecoli0137vs26 .9167 ± .0418 .7215 ± .4202 .9021 ± .0354 .7203 ± .4200 .9867 ± .0079 .7148 ± .4180 .9843 ± .0107 .7067 ± .4136 .9650 ± .0320 .7062 ± .4093
yeast6 .8994 ± .0128 .8856 ± .0907 .8960 ± .0187 .8574 ± .1348 .9341 ± .0177 .8492 ± .1288 .9319 ± .0155 .8170 ± .0977 .9301 ± .0157 .8029 ± .1541
abalone19 .7196 ± .0131 .6425 ± .0824 .8290 ± .0196 .5828 ± .0569 .8343 ± .0280 .7019 ± .0856 .8558 ± .0193 .5532 ± .1487 .8838 ± .0300 .1550 ± .2125

Mean .8763 ± .0307 .7897 ± .1212 .9056 ± .0267 .7845 ± .1334 .9331 ± .0117 .7901 ± .1325 .9576 ± .0121 .8175 ± .1193 .9549 ± .0180 .7848 ± .1452
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Table 14
Complete table of results for FRBCS methods and C4.5 in borderline imbalanced data-sets. SMOTE preprocessing for FRBCS methods, SMOTE+ENN for C4.5.

Data-set GP-COACH-5 GP-COACH-9 HFRBCS(Chi) GP-COACH-H C4.5

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

paw02a-600-5-70-BI .7969 ± .0223 .7892 ± .0297 .7898 ± .0311 .7178 ± .0867 .8730 ± .0129 .8460 ± .0395 .8824 ± .0068 .8523 ± .0342 .8879 ± .0176 .8310 ± .0292
paw02a-600-5-60-BI .7849 ± .0185 .7603 ± .0698 .7364 ± .1198 .6329 ± .1650 .8485 ± .0311 .8157 ± .0309 .8753 ± .0046 .8501 ± .0235 .8755 ± .0287 .8094 ± .0279
paw02a-600-5-50-BI .8188 ± .0129 .7869 ± .0676 .8541 ± .0123 .8117 ± .0348 .8595 ± .0307 .8226 ± .0514 .9002 ± .0067 .8402 ± .0227 .8936 ± .0213 .8301 ± .0468
paw02a-600-5-30-BI .8418 ± .0121 .8193 ± .0639 .8567 ± .0209 .8281 ± .0695 .8749 ± .0185 .8573 ± .0352 .9036 ± .0143 .8605 ± .0660 .8990 ± .0328 .8604 ± .0542
paw02a-600-5-0-BI .8427 ± .0313 .8489 ± .0311 .9130 ± .0299 .8765 ± .0836 .9339 ± .0076 .9142 ± .0179 .9596 ± .0055 .9367 ± .0124 .9512 ± .0389 .9473 ± .0259
04clover5z-600-5-70-BI .7706 ± .0217 .7457 ± .1094 .7832 ± .0233 .7094 ± .0921 .7790 ± .0371 .7427 ± .0816 .8250 ± .0126 .7795 ± .0574 .8665 ± .0173 .7557 ± .0468
04clover5z-600-5-60-BI .7789 ± .0209 .7464 ± .0290 .7243 ± .0473 .6445 ± .0800 .7713 ± .0242 .7725 ± .0514 .8405 ± .0146 .7986 ± .0328 .8895 ± .0151 .7990 ± .0757
04clover5z-600-5-50-BI .7658 ± .0362 .7434 ± .0872 .7804 ± .0385 .7496 ± .1121 .7925 ± .0390 .7582 ± .0536 .8537 ± .0280 .8080 ± .0530 .8771 ± .0286 .8063 ± .0575
04clover5z-600-5-30-BI .7839 ± .0294 .7683 ± .0638 .8029 ± .0699 .7453 ± .0767 .8087 ± .0332 .8097 ± .0474 .8737 ± .0182 .8093 ± .0688 .8957 ± .0175 .8291 ± .0337
04clover5z-600-5-0-BI .7842 ± .0151 .7663 ± .0536 .8389 ± .0146 .7705 ± .0179 .8104 ± .0288 .8008 ± .0309 .8900 ± .0363 .8519 ± .0517 .9269 ± .0333 .8652 ± .0271
03subcl5-600-5-70-BI .6807 ± .0416 .6319 ± .0582 .7940 ± .0278 .7478 ± .0572 .7947 ± .0138 .7278 ± .0277 .8528 ± .0098 .8006 ± .0419 .8381 ± .0367 .7617 ± .0406
03subcl5-600-5-60-BI .7471 ± .0251 .6898 ± .0903 .8047 ± .0196 .7789 ± .0483 .8083 ± .0182 .7498 ± .0719 .8067 ± .0434 .7379 ± .0545 .8322 ± .0348 .7641 ± .0732
03subcl5-600-5-50-BI .7688 ± .0094 .7320 ± .0902 .7920 ± .0172 .7500 ± .0869 .8020 ± .0227 .7465 ± .0537 .8269 ± .0257 .7563 ± .0600 .8332 ± .0109 .7753 ± .0895
03subcl5-600-5-30-BI .8022 ± .0333 .7860 ± .0504 .8183 ± .0137 .8020 ± .0930 .8148 ± .0276 .7713 ± .0552 .8474 ± .0169 .8307 ± .0379 .8615 ± .0208 .8140 ± .0552
03subcl5-600-5-0-BI .8795 ± .0173 .8685 ± .0470 .8952 ± .0145 .8965 ± .0183 .8985 ± .0048 .8765 ± .0329 .9364 ± .0015 .9179 ± .0132 .9336 ± .0265 .8969 ± .0368
paw02a-800-7-70-BI .7947 ± .0138 .7733 ± .0423 .7872 ± .0391 .6775 ± .1242 .8601 ± .0118 .8197 ± .0415 .8741 ± .0104 .8421 ± .0274 .8923 ± .0147 .8001 ± .0486
paw02a-800-7-60-BI .8028 ± .0132 .7410 ± .0558 .8089 ± .0167 .7235 ± .0549 .8514 ± .0070 .8113 ± .0439 .8706 ± .0105 .8253 ± .0523 .8817 ± .0188 .8043 ± .0352
paw02a-800-7-50-BI .8211 ± .0026 .7736 ± .0546 .8317 ± .0152 .7905 ± .0352 .8719 ± .0074 .8373 ± .0416 .8863 ± .0081 .8164 ± .0704 .9072 ± .0238 .8448 ± .0447
paw02a-800-7-30-BI .8391 ± .0135 .8170 ± .0565 .8445 ± .0423 .7998 ± .0312 .8894 ± .0059 .8672 ± .0145 .9030 ± .0077 .8299 ± .0398 .9135 ± .0282 .8449 ± .0455
paw02a-800-7-0-BI .8493 ± .0472 .8300 ± .0418 .9197 ± .0506 .9100 ± .0433 .9288 ± .0068 .9307 ± .0192 .9576 ± .0092 .9351 ± .0245 .9532 ± .0318 .9371 ± .0334
04clover5z-800-7-70-BI .7708 ± .0199 .7351 ± .0673 .7839 ± .0335 .7100 ± .1069 .7898 ± .0143 .7237 ± .1008 .8182 ± .0161 .7857 ± .0643 .8723 ± .0429 .7525 ± .0956
04clover5z-800-7-60-BI .7722 ± .0159 .7796 ± .0340 .7108 ± .0542 .6688 ± .0708 .7799 ± .0194 .7842 ± .0591 .8256 ± .0073 .7707 ± .0461 .8889 ± .0276 .7704 ± .0396
04clover5z-800-7-50-BI .7860 ± .0215 .7436 ± .0766 .7744 ± .0198 .7544 ± .1039 .7928 ± .0290 .7543 ± .0608 .8390 ± .0138 .7897 ± .0645 .8946 ± .0099 .8261 ± .0701
04clover5z-800-7-30-BI .7879 ± .0219 .7488 ± .0362 .8162 ± .0221 .7545 ± .0775 .8075 ± .0324 .7750 ± .0583 .8513 ± .0171 .7805 ± .0541 .8930 ± .0215 .8256 ± .0360
04clover5z-800-7-0-BI .7962 ± .0210 .7578 ± .0503 .8249 ± .0347 .7694 ± .0373 .8091 ± .0283 .7693 ± .0608 .8958 ± .0213 .8541 ± .0578 .9412 ± .0370 .8730 ± .0413
03subcl5-800-7-70-BI .6662 ± .0352 .6456 ± .0446 .7107 ± .1049 .6454 ± .1444 .7784 ± .0059 .7552 ± .0490 .8186 ± .0330 .7868 ± .0250 .8255 ± .0211 .7735 ± .0376
03subcl5-800-7-60-BI .7250 ± .0225 .6991 ± .0392 .7962 ± .0137 .7696 ± .0284 .7896 ± .0195 .7331 ± .0436 .8102 ± .0325 .7729 ± .0347 .8374 ± .0244 .7513 ± .0357
03subcl5-800-7-50-BI .7584 ± .0152 .7261 ± .0908 .8021 ± .0058 .7516 ± .0509 .7927 ± .0158 .7239 ± .0340 .8204 ± .0200 .7436 ± .0310 .8396 ± .0089 .7507 ± .0438
03subcl5-800-7-30-BI .7993 ± .0219 .7689 ± .0630 .8133 ± .0269 .7901 ± .0594 .8327 ± .0228 .7955 ± .0439 .8552 ± .0081 .8297 ± .0390 .8812 ± .0155 .7941 ± .0220
03subcl5-800-7-0-BI .8814 ± .0223 .8663 ± .0396 .8998 ± .0099 .9061 ± .0238 .9036 ± .0081 .8851 ± .0321 .9217 ± .0126 .9081 ± .0224 .9588 ± .0249 .9292 ± .0370

Mean .7899 ± .0218 .7630 ± .0578 .8103 ± .0330 .7628 ± .0705 .8316 ± .0195 .7992 ± .0461 .8674 ± .0157 .8234 ± .0428 .8881 ± .0244 .8208 ± .0462
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