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Abstract--A general class of editing schemes is examined which allows for the relabeling as well as the 
deletion of samples. It is shown that there is a trade-offbetween asymptotic performance and sample deletion 
which can adversely affect the finite sample performance. A kk' rule is proposed to minimize the proportion of 
deleted samples. A slight modification of the rule is introduced which allows for an exact analysis in any 
dimension. 
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I N T R O D U C T I O N  

Nearest neighbor (NN) rules are well-known pro- 
cedures for classifying unknown observations by 
examining the nearest samples from the data set. In the 
asymptotic case as the number of samples becomes 
arbitrarily large, the k nearest neighbors will be 
infinitesimally close to the sample being classified. {1. 2~ 
Clearly for a finite number of samples the value of k 
should be small enough so that all k neighbors are 
close to the unknown sample. For any k the asymp- 
totic error rates for k-NN rules can be bounded in 
terms of the Bayes risk, the error rate if the Bayes or 
optimum classifier was used. 

The single NN rule, although its asymptotic perfor- 
mance is not as good as with higher values of k, is 
simpler to implement and has available algorithms for 
condensing its data set. 

To retain these advantages as well as achieve 
performance closer to that of the Bayes classifier, 
editing schemes have been proposed. {~- v~ The data set 
is edited according to a prescribed rule and then a 
single NN rule is used for the final decision. 

To examine the motivation of editing, the Bayes 
classifier which assigns an observation to the class 
having the greatest a posteriori probability at that point 
in the feature space is considered. These probabilities 
are approximately equal to the fraction of samples 
from each class in the neighborhood of the obser- 
vation. A sample is defined to be of minority class if it is 
misclassified by Bayes rule. With the NN rule the 
performance is decreased by the presence of minority 
class samples. Editing attempts to remove the minority 
samples and thus obtain performance closer to the 
Bayes classifier. The proportion p(x) of the number of 

minority class samples to the total number of samples 
in a neighborhood of x gives an indication of perfor- 
mance. If the points are distributed uniformly then p(x} 
is the probability that for an observation x the NN 
classifier differs from the Bayes classifier. 

Wilson {5} examined an editing procedure using the 
k-NN rule. The procedure tests a sample using the A- 
NN rule with the remainder of the data. The sample is 
discarded if it is misclassified. The edited data set is 
then used for single NN classification of unknown 
observations. The convergence of this editing rule has 
been proved by Wilson {5) and WagnerJ ~ 

G E N E R A L I Z E D  E D I T I N G  R U L E S  

Consider Wilson's editing scheme with the 5-NN 
rule. A sample is edited if at least three of its five nearest 
neighbors are not of the same class. However, if 
relabeling of samples is allowed one finds that a further 
decrease of p(x) occurs by including the following rule. 
If all five neighbors are of one class then the sample is 
labeled as belonging to that class. Further improve- 
ment occurs if we delete samples with only three of five 
neighbors of the same class. This indicates that rather 
than deleting on the basis of incorrect classification, 
deleting should be based on a lack of a strong 
indication of the true class of a sample. 

One might consider a class of editing rules which, 
based on the class of a sample and its nearest 
neighbors, either delete, relabel or leave the sample 
unchanged. In an attempt to minimize p(x) which is 
indicative of the performance, one quickly finds that 
the best rule is simply to edit unless the sample and all 
of its neighbors are of the same class. However, the 
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proportion of deleted samples grows considerably and 
for a finite sample size this may reduce rather than 
improve the performance. Thus with editing there 
exists a trade-off between asymptotic and finite sample 
performance. To minimize p(x) and limit the pro- 
portion of deleted samples a kk ' -NN rule is proposed. 
Unless a sample and its k - 1 nearest neighbors form a 
majority of k' out of k it is edited. Otherwise, it is 
labeled according to the majority class. Penrod and 
Wagner ~7~ point out that the editing process is not 
independent at each sample. This makes it difficult to 
determine the performance of the edited NN rules 
since the remaining data samples in a small neigh- 
borhood are no longer necessarily uniformly distri- 
buted. By restricting the problem to one dimension 
and modifying the editing procedure so that nearest 
neighbors to a sample x from those samples greater 
than x are used, an exact analysis is providedJ 7} In this 
paper, a second alternative is presented for slightly 
modifying the editing procedure. The modification 
makes possible an exact analysis of the proposed kk'- 
NN rule. 

For the single NN rule the modification consists of 
grouping the original data set into pairs. With the first 
sample a pair is formed with its nearest neighbor. With 
each next sample a pair is formed with the nearest 
neighbor remaining from the unpaired samples. Asymp- 
totically, the probability that sample pairs are arbit- 
rarily close approaches one. A sample is deleted if it is 
not of the same class as its corresponding sample in the 
pair. For the kk'-NN rule the modification is as 
follows. 

(i) Samples are placed into groups of k. 
(ii) If there is not a majority of k' of one class the 

group of k samples is deleted. Otherwise, all 
samples are labelled as belonging to the ma- 
jority class. 

(iii) The single NN rule is used on the edited data 
set. 

I1 is not proposed that this grouping should nec- 
essarily be implemented in practice. In fact for a finite 
sample size one may prefer the ungrouped kk ' -NN 
rule. The purpose of introducing this modification is to 
enable comparison of rules for various k', k and 
analyze the trade-off between performance and 
editing. 

Let pz(x) be the probability that a sample at x 
belongs to class 1. Let Pz(x) be the probability of 
classifying an unknown observation at x into class 1. 
Asymptotically, as the samples in a group become 
artibrarily close 

k 
(k)p~(x)[ 1 -- pl(x)] k-' 

i = k "  

Pz(x) = (1) 
k 

(~)[p~(x)(1 - pz(x)) k- '  
i=k' 

+ (1 -- pl(x))ip~-i(x)] 

Due to the relabeling of samples this is the proportion 

Table 1. Table of bounds (b) for kk' group editing rule 
(R* <_ R < b'R*),  

k' k=2 k=3 k=4 k=5 k=6 k=7 

2 1.21 1.31 
3 1.12 1.16 1.22 
4 1.08 1.10 1.12 1.17 
5 1.06 1.08 1.09 
6 1.05 1.06 
7 1.04 

of class I samples after editing. Since the editing of each 
group is independent, this is equal to the probability of 
a class 1 decision. 

The probability of error at x is given by 

p(elx) = pl(x)P(21x) + [1 - pl(x)]P(l lx  ). (2) 

Rewriting (1) in terms of r(x), the local Bayes risk 
[0 _< r(x)< 0.5], by replacing Pl(x) with r(x) and 
substituting into (2) yields 

k 
Z (k)[ r(x)i(1 -- r(x)) k+l-i  

i = k  ' 

+ (1 -- r(x))'r k+ z -i(x)] 
p(elx) = (3) 

k 
~, (k)[r(x)i (1 -- r(x)) k-~ 

i = k  ' 

+ (1 - -  r ( x ) ) i r  k -  i (x ) ]  

Due to the independence of each group this is equal to 
the proportion of deleted samples in a neighborhood 
of x. 

These results depend on the assumption that after 
editing the group containing the NN to x is arbitrarily 
close to x. To show this convergence it is assumed, 
without loss of generality, that any neighborhood N(x) 
around x has non-zero probability measure. It is shown 
by Cover and Hart m that x has this property with 
probability one. As the number of samples n ~ ~ the 
number of groups, m, within N(x) becomes arbitrarily 
large. The probability of editing a group is 

k ' - I  
P(ed[x) = ~ (~)ri(x)[1 - r(x)]k- '< 1. (4) 

i = k - k ' + l  

Since the editing of each group is independent, the 
probability of no groups remaining in N(x) is 
Pm(ed[x) ~ 0 as m --, ~ .  Thus the probability that x is 
not arbitrarily close to the group containing its NN 
approaches zero. 

Table 2. Tableofbounds (b) 
for the kNN rule 

(R* < R < b.R*).  

k b 

1 2 
3 1.31 
5 1.22 
7 1.17 
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Fig. 1. Probability of error for kk' editing of groups, k = 10. 

Bounds on the error rate in terms of the Bayes risk 
(R*) for this grouping rule are given in Table 1 for 
various k and k'. Comparisons are made to the bounds 
for the ordinary k - N N  rule given in Table 2. The results 
in Penrod and Wagner ~7) indicate that without the 

grouping modification performance may be slightly 
worse. We conjecture that as the dimensionality 
becomes arbitrarily large the editing of  each sample 
becomes independent, making the results in Table 1 
exact for the unmodified rule. 
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Fig. 2. Probabihty of deletion for kk' editing of groups, k = 10. 
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Fig. 3. P r o b a b i l i t y  o f  error for kk' editing of groups, k = 4. 
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The effect of varying k' with k fixed is shown in Figs 1 
and 2 for k = 10 and in Figs 3 and 4 for k = 4. As k' 
approaches k the error rate decreases toward the Bayes 
risk but the sample deletion rate increases greatly. In 

the finite sample case for classifiers with edited data 
sets it is necessary to compromise between the asymp- 
totic or infinite sample performance and the degree of 
editing. 
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SUMMARY 

An edited nearest  ne ighbor  (NN) rule has  been 
proposed by Wilson.  151 The procedure  tests a sample 
using the k-NN rule with the remain ing  data.  If it is 
misclassified the sample is discarded. The  classifier 
then uses the single N N  rule with the edited da ta  set. 
Penrod  and  Wagner  171 have pointed out  the difficulty 
in analyzing the performance with edited data.  By 
modifying the procedure  slightly they have ob ta ined  
exact results for one-d imens ional  patterns.  

In this paper  a general  class of editing and  relabeling 
schemes based on k-nearest neighbors is examined. It  is 
shown that  there is a trade-off between performance 
and  editing. A kk' rule is proposed to minimize the 
editing for a fixed level of performance.  A modif icat ion 
of the kk' rule is in t roduced  which makes  possible an 
exact analysis of the proposed rule for any dimension.  
Asymptot ic  results on the performance of kk' rules are 
compared  to the k-nearest  ne ighbor  rules showing 
that  editing can significantly improve  the level of 

performance.  The  results point  ou t  the inverse re- 
la t ionship  between asymptot ic  performance and  the 
p ropor t ion  of non-edi ted  data.  
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