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Abstract. Discrete values have important roles in data mining and knowledge discovery. They are about intervals
of numbers which are more concise to represent and specify, easier to use and comprehend as they are closer to
a knowledge-level representation than continuous values. Many studies show induction tasks can benefit from
discretization: rules with discrete values are normally shorter and more understandable and discretization can
lead to improved predictive accuracy. Furthermore, many induction algorithms found in the literature require
discrete features. All these prompt researchers and practitioners to discretize continuous features before or during
a machine learning or data mining task. There are numerous discretization methods available in the literature. It is
time for us to examine these seemingly different methods for discretization and find out how different they really
are, what are the key components of a discretization process, how we can improve the current level of research for
new development as well as the use of existing methods. This paper aims at a systematic study of discretization
methods with their history of development, effect on classification, and trade-off between speed and accuracy.
Contributions of this paper are an abstract description summarizing existing discretization methods, a hierarchical
framework to categorize the existing methods and pave the way for further development, concise discussions of
representative discretization methods, extensive experiments and their analysis, and some guidelines as to how to
choose a discretization method under various circumstances. We also identify some issues yet to solve and future
research for discretization.
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1. Introduction

Data usually comes in a mixed format: nominal, discrete, and/or continuous. Discrete and
continuous data are ordinal data types with orders among the values, while nominal values do
not possess any order amongst them. Discrete values are intervals in a continuous spectrum
of values. While the number of continuous values for an attribute can be infinitely many, the
number of discrete values is often few or finite. The two types of values make a difference
in learning classification trees/rules. One example of decision tree induction can further
illustrate the difference between the two data types. When a decision tree is induced, one
feature is chosen to branch on its values. With the coexistence of continuous and discrete
features, normally, a continuous feature will be chosen as it has more values than features of
other types do. By choosing a continuous feature, the next level of a tree can quickly reach a
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“pure” state—with all instances in a child/leaf node belonging to one class. In many cases,
this is tantamount to a table-lookup along one dimension which leads to poor performance
of a classifier. Therefore it is certainly not wise to use continuous values to split a node.
There is a need to discretize continuous features either before the decision tree induction or
during the process of tree building. Widely used systems such as C4.5 (Quinlan, 1993) and
CART (Breiman et al., 1984) deploy various ways to avoid using continuous values directly.
There are many other advantages of using discrete values over continuous ones. Discrete
features are closer to a knowledge-level representation (Simon, 1981) than continuous ones.
Data can also be reduced and simplified through discretization. For both users and experts,
discrete features are easier to understand, use, and explain. As reported in a study (Dougherty
et al., 1995), discretization makes learning more accurate and faster. In general, obtained
results (decision trees, induction rules) using discrete features are usually more compact,
shorter and more accurate than using continuous ones, hence the results can be more closely
examined, compared, used and reused. In addition to the many advantages of having discrete
data over continuous one, a suite of classification learning algorithms can only deal with
discrete data. Discretization is a process of quantizing continuous attributes. The success
of discretization can significantly extend the borders of many learning algorithms.

This paper is about reviewing existing discretization methods, standardizing the dis-
cretization process, summarizing them with an abstract framework, providing a convenient
reference for future research and development. The remainder of the paper is organized
as follows. In the next section, we summarize the current status of discretization methods.
In Section 3, we provide a unified vocabulary for discussing various methods introduced
by many authors, define a general process of discretization, and discuss different ways of
evaluating discretization results. In Section 4, we propose a new hierarchical framework
for discretization methods; describe representative methods concisely; while describing
a representative method, we also provide its discretization results for a commonly used
benchmark data set (Iris). Section 5 shows the results of comparative experiments among
various methods and some analysis. The paper concludes in Section 6 with guidelines of
choosing a discretization method and further work.

2. Current status

In earlier days simple techniques were used such as equal-width and equal-frequency (or, a
form of binning) to discretize. As the need for accurate and efficient classification grew, the
technology for discretization develops rapidly. Over the years, many discretization algo-
rithms have been proposed and tested to show that discretization has the potential to reduce
the amount of data while retaining or even improving predictive accuracy. Discretization
methods have been developed along different lines due to different needs: supervised vs.
unsupervised, dynamic vs. static, global vs. local, splitting (top-down) vs. merging (bottom-
up), and direct vs. incremental.

As we know, data can be supervised or unsupervised depending on whether it has class
information. Likewise, supervised discretization considers class information while unsu-
pervised discretization does not; unsupervised discretization is seen in earlier methods
like equal-width and equal-frequency. In the unsupervised methods, continuous ranges are
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divided into subranges by the user specified width (range of values) or frequency (number
of instances in each interval). This may not give good results in cases where the distribution
of the continuous values is not uniform. Furthermore it is vulnerable to outliers as they
affect the ranges significantly (Catlett, 1991). To overcome this shortcoming, supervised
discretization methods were introduced and class information is used to find the proper inter-
vals caused by cut-points. Different methods have been devised to use this class information
for finding meaningful intervals in continuous attributes.

Supervised and unsupervised discretization have their different uses. If no class infor-
mation is available, unsupervised discretization is the sole choice. There are not many
unsupervised methods available in the literature which may be attributed to the fact that
discretization is commonly associated with the classification task. One can also view the
usage of discretization methods as dynamic or static. A dynamic method would discretize
continuous values when a classifier is being built, such as in C4.5 (Quinlan, 1993) while in
the static approach discretization is done prior to the classification task. There is a compar-
ison between dynamic and static methods in Dougherty et al. (1995). The authors reported
mixed performance when C4.5 was tested with and without discretized features (static vs.
dynamic).

Another dichotomy is local vs. global. A local method would discretize in a localized
region of the instance space (i.e. a subset of instances) while a global discretization method
uses the entire instance space to discretize (Chmielewski and Grzymala-Busse, 1994). So,
a local method is usually associated with a dynamic discretization method in which only a
region of instance space is used for discretization.

Discretization methods can also be grouped in terms of top-down or bottom-up. Top-down
methods start with an empty list of cut-points (or split-points) and keep on adding new ones
to the list by ‘splitting’ intervals as the discretization progresses. Bottom-up methods start
with the complete list of all the continuous values of the feature as cut-points and remove
some of them by ‘merging’ intervals as the discretization progresses.

Another dimension of discretization methods is direct vs. incremental. Direct methods di-
vide the range of k intervals simultaneously (i.e., equal-width and equal-frequency), needing
an additional input from the user to determine the number of intervals. Incremental methods
begin with a simple discretization and pass through an improvement process, needing an
additional criterion to know when to stop discretizing (Cerquides and Mantaras, 1997).

As shown above, there are numerous discretization methods and many different dimen-
sions to group them. A user of discretization often finds it difficult to choose a suitable
method for the data on hand. There have been a few attempts (Dougherty et al., 1995;
Cerquides and Mantaras, 1997) to help alleviate the difficulty. We carry on with this key
objective to make a comprehensive study that includes the definition of a discretization
process, performance measures, and extensive comparison. Contributions of this work
are:

1. An abstract description of a typical discretization process,
2. A new hierarchical framework to categorize existing discretization methods in the

literature,
3. A systematic demonstration of different results by various discretization methods using

a benchmark data set,
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4. A comparison of nine representative discretization methods chosen from the framework
along two dimensions: times and error rates of a learning algorithm for classification
over publically available benchmark data sets,

5. Detailed examination of comparative results, and
6. Some guidelines as to which method to use under different circumstances, and directions

for future research and development.

3. Discretization process

We first clarify some terms used in different works followed by an abstract description of
a typical discretization process.

3.1. Terms and notations

3.1.1. Feature. “Feature” or “Attribute” or “Variable” refers to an aspect of the data.
Usually before collecting data, features are specified or chosen. Features can be discrete,
continuous, or nominal. In this paper we are interested in the process of discretizing con-
tinuous features. Hereafter M stands for the number of features in the data.

3.1.2. Instance. “Instance” or “Tuple” or “Record” or “Data point” refers to a single
collection of feature values for all features. A set of instances makes a data set. Usually a
data set is in a matrix form where a row corresponds to an instance and a column corresponds
to a feature. Hereafter N is the number of instances in the data.

3.1.3. Cut-point. The term “cut-point” refers to a real value within the range of continuous
values that divides the range into two intervals, one interval is less than or equal to the cut-
point and the other interval is greater than the cut-point. For example, a continuous interval
[a, b] is partitioned into [a, c] and (c, b], where the value c is a cut-point. Cut-point is also
known as split-point.

3.1.4. Arity. The term “arity” in the discretization context means the number of intervals or
partitions. Before discretization of a continuous feature, arity can be set to k—the number
of partitions in the continuous features. The maximum number of cut-points is k − 1.
Discretization process reduces the arity but there is a trade-off between arity and its effect
on the accuracy of classification and other tasks. A higher arity can make the understanding
of an attribute more difficult while a very low arity may affect predictive accuracy negatively.

3.2. A typical discretization process

By “typical” we mean univariate discretization. Discretization can be univariate or multi-
variate. Univariate discretization quantifies one continuous feature at a time while multivari-
ate discretization considers simultaneously multiple features. We mainly consider univari-
ate discretization throughout this paper and discuss more about multivariate discretization
briefly at the end as an extension of univariate discretization.
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Figure 1. Discretization process.

A typical discretization process broadly consists of four steps (seen in figure 1): (1) sorting
the continuous values of the feature to be discretized, (2) evaluating a cut-point for splitting
or adjacent intervals for merging, (3) according to some criterion, splitting or merging
intervals of continuous value, and (4) finally stopping at some point. In the following we
discuss these four steps in more detail.

3.2.1. Sorting. The continuous values for a feature is sorted in either descending or ascend-
ing order. Sorting can be computationally very expensive if care is not taken in implementing
it with discretization. It is important to speed up the discretization process by selecting suit-
able sorting algorithms. Many sorting algorithms can be found in classic data structures and
algorithms books. Among these “Quick-sort” is an efficient sorting algorithm with a time
complexity of O(N log N ).

Another way to improve efficiency is to avoid sorting a feature’s values repeatedly. If
sorting is done once and for all at the beginning of discretization, it is a global treatment
and can be applied when the entire instance space is used for discretization. If sorting is
done at each iteration of a process, it is a local treatment in which only a region of entire
instance space is considered for discretization.

3.2.2. Choosing a cut-point. After sorting, the next step in the discretization process is to
find the best “cut-point” to split a range of continuous values or the best pair of adjacent
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intervals to merge. One typical evaluation function is to determine the correlation of a
split or a merge with the class label. There are numerous evaluation functions found in the
literature such as entropy measures and statistical measures. More about these evaluation
functions and their various applications is discussed in the following sections.

3.2.3. Splitting/merging. As we know, in a top-down approach, intervals are split while
for a bottom-up approach intervals are merged. For splitting it is required to evaluate ‘cut-
points’ and to choose the best one and split the range of continuous values into two partitions.
Discretization continues with each part (increased by one) until a stopping criterion is
satisfied. Similarly for merging, adjacent intervals are evaluated to find the best pair of
intervals to merge in each iteration. Discretization continues with the reduced number
(decreased by one) of intervals until the stopping criterion is satisfied.

3.2.4. Stopping criteria. A stopping criterion specifies when to stop the discretization
process. It is usually governed by a trade-off between lower arity with a better understanding
but less accuracy and a higher arity with a poorer understanding but higher accuracy. We
may consider k to be an upper bound for the arity of the resulting discretization. In practice
the upper bound k is set much less than N , assuming there is no repetition of continuous
value for a feature. A stopping criterion can be very simple such as fixing the number of
intervals at the beginning or a more complex one like evaluating a function. We describe
different stopping criteria in the next section.

3.3. Result evaluation for discretization

Assuming we have many methods and each provides some kind of discretized data, which
discretized data is the best? This seemingly simple question cannot be easily dealt with a
simple answer. This is because the result evaluation is a complex issue and depends on a
user’s need in a particular application. It is complex because the evaluation can be done in
many ways. We list three important dimensions: (1) The total number of intervals—
intuitively, the fewer the cut-points, the better the discretization result; but there is a limit
imposed by the data representation. This leads to the next dimension. (2) The number
of inconsistencies (inconsistency is defined later) caused by discretization—it should not
be much higher than the number of inconsistencies of the original data before discretization.
If the ultimate goal is to generate a classifier from the data, we should consider yet another
perspective. (3) Predictive accuracy—how discretization helps improve accuracy. In short,
we need at least three dimensions: simplicity, consistency, and accuracy. Ideally, the best
discretization result can score highest in all three departments. In reality, it may not be
achievable, or necessary. To provide a balanced view of various discretization methods in
terms of these measures is one of the objectives of this paper.

Simplicity is defined by the total number of cut-points. Accuracy is usually obtained
by running classifier in cross validation mode. Consistency is defined by having the least
inconsistency count which is calculated in three steps: (in the following description a pattern
is a set of values for a feature set while an instance is a pattern with a class label) (1) two
instances are considered inconsistent if they are the same in their attribute values except for



DISCRETIZATION 399

their class labels; for example, we have an inconsistency if there are two instances (0 1, a)
and (0 1, ā)—class label is separated by “,”—because of different classes a and ā. (2) the
inconsistency count for a pattern is the number of times it appears in the data minus the
largest number of class label: for example, let us assume there are n instances that match
the pattern, among them, c1 instances belong to label1, c2 to label2, and c3 to label3 where
c1 + c2 + c3 = n. If c3 is the largest among the three, the inconsistency count is (n − c3).
(3) the total inconsistency count is the sum of all the inconsistency counts for all possible
patterns of a feature subset.

4. Discretization framework

There are numerous discretization methods available in the literature. These methods can
be categorized in several dimensions as discussed earlier. We restate them here: dynamic
vs. static, local vs. global, splitting vs. merging, direct vs. incremental, and supervised vs.
unsupervised. One can construct different combinations of these dimensions to group the
methods. But arbitrary combinations will not help in advancing the research of discretiza-
tion. We wish to create a hierarchical framework that is systematic and expandable, and
attempts to cover all existing methods. Each discretization method found in the literature
discretizes a feature by either splitting the interval of continuous values or by merging the
adjacent intervals. Both splitting and merging categories can further be grouped as super-
vised or unsupervised depending on whether class information is used. To repeat, supervised
discretization methods use the available class information while the unsupervised methods
do not.

With these considerations in mind, we propose a hierarchical framework in figure 2. We
describe different discretization measures according to two approaches: splitting and merg-
ing (level 1). We then consider whether a method is supervised or unsupervised (level 2).
We further group together methods that use similar discretization measures (level 3) e.g.
binning and entropy. As is suggested in figure 2, the supervised and unsupervised division
determines different (non-overlapping) measures used. Hence this conceptually useful di-
vision will not be discussed in detail below. We will discuss the use of various measures

Figure 2. A hierarchical framework for discretization methods.



400 LIU ET AL.

under the categories of splitting and merging as shown in the table below (X indicates
that a measure is not available in the category. We may find variations of these measures
like Mantaras distance (Cerquides and Mantaras, 1997) which we categorize under entropy
measure for their similarity.)

Splitting Merging

Binning X

Entropy X

Dependency Dependency

Accuracy X

In the following two subsections, some representative methods are chosen for in depth
discussion. Their related or derived measures are also briefly mentioned. For each measure
we give: (1) the definition of the measure; (2) its use in some discretization methods; (3) the
stopping criteria used; and (4) its discretization results for the Iris data: cut-points for each
attribute, how many of them, and how many inconsistencies resulted from discretization.
The Iris data is used as an example in illustrating results of different discretization methods.
The data is obtained from the UC Irvine data repository (Merz and Murphy, 1996). It
contains 150 instances with four continuous features and three class labels.

4.1. Splitting methods

We start with a generalized algorithm for splitting discretization methods.

Splitting Algorithm
S = Sorted values of feature f

Splitting(S){
if StoppingCriterion() == SATISFIED

Return
T = GetBestSplitPoint(S)
S1 = GetLeftPart(S, T)
S2 = GetRightPart(S, T)
Splitting(S1)
Splitting(S2)

}

The splitting algorithm above consists of all four steps in the discretization process,
they are: (1) sort the feature values, (2) search for a suitable cut-point, (3) split the range of
continuous values according to the cut-point, and (4) stop when a stopping criterion satisfies
otherwise go to (2). Many splitting discretization measures are found in the literature: for
example, binning (Holte, 1993), entropy (Quinlan, 1986; Catlett, 1991; Fayyad and Irani,
1992; Van de Merckt, 1990; Cerquides and Mantaras, 1997), dependency (Ho and Scott,
1997), and accuracy (Chan et al., 1991).
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4.1.1. Binning. It is the simplest method to discretize a continuous-valued attribute by
creating a specified number of bins. The bins can be created by equal-width and equal-
frequency.

4.1.1.1. Equal width or frequency. In both methods, arity k is used to determine the number
of bins. Each bin is associated with a distinct discrete value. In equal-width, the continuous
range of a feature is evenly divided into intervals that have an equal-width and each interval
represents a bin. In equal-frequency, an equal number of continuous values are placed in
each bin.

The two methods are very simple but are sensitive for a given k. For equal-frequency,
for instance, many occurrences of a continuous value could cause the occurrences to be
assigned into different bins. One improvement can be after continuous values are assinged
into bins, boundaries of every pair of neighboring bins are adjusted so that duplicate values
should belong to one bin only. Another problem is outliers that take extreme values. One
solution can be to remove the outliers using a threshold.

Stopping criterion. as the number of bins is fixed there is no need for any other stopping
criterion.
Results. We discretized the Iris data using equal-width and equal-frequency methods with
arity k = 4. Thus we obtained three cut-points for each attribute using both methods as
shown in the following tables.

Equal-width

Feature Cut points Number of points

F1 5.2, 6.1, 7.0 3

F2 2.6, 3.2, 3.8 3

F3 1.9, 3.9, 5.4 3

F4 0.6, 1.3, 1.9 3

Equal-frequency

Feature Cut points Number of points

F1 5.1, 5.8, 6.4 3

F2 2.8, 3.0, 3.3 3

F3 1.6, 4.4, 5.1 3

F4 0.3, 1.3, 1.8 3

As values are not evenly distributed, in most cases, cut-points obtained by the two methods
are different.

4.1.1.2. 1R. Binning methods mentioned above do not use class information even if it
is available. 1R (Holte, 1993) is a supervised discretization method using binning. After
sorting the continuous values, 1R divides the range of continuous values into a number of
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disjoint intervals and adjusts the boundaries based on the class labels associated with the
continuous values. Each interval should contain a minimum of 6 instances with the exception
for the final interval which would contain the remaining instances not yet grouped in any
interval. The adjustment at the boundary does not allow to terminate an interval if the next
instance has the same class label as the majority class label seen until then in that interval.
This can be made clearer with the following simple example. The first row in the example is
the values of a feature after sorting while the second row stands for the class label (R or C).

11 14 15 18 19 20 21 22 23 25 30 31 33 35 36

R C C R C R C R C C R C R C R
C C R

1R would form an interval of class C stretching from 11 to 21, another interval of class C
from 22 to 35, and the last of class R including just 36. The two leftmost intervals would
then be merged, as they predict the same class based on row 3 above. There are 6 misclas-
sifications after discretization.

Stopping criterion. The stopping criterion is indirectly specified by the minimum number
of instances each interval should contain. The default value is 6.
Results. Discretization results of the Iris data set are shown below:

Feature Cut points Number of points

F1 4.9, 5.5, 6.1, 6.6, 7.7, 7.9 6

F2 2.7, 3.2, 4.2, 4.4 4

F3 1.9, 6.9 2

F4 0.6, 1.6, 2.5 3

4.1.1.3. Summary. Equal-width and equal-frequency are simple and easy to implement.
This does not come without a price. First, arity k has to be specified beforehand. Because we
usually do not know what a proper value k is, we need to resort to trial-and-error or specify
a value randomly as we did for the Iris data. Second, even if class information is available,
these two measures cannot make use of it. 1R is one way to improve in this regard. It relies
on class information to overcome such problems that occur with equal-frequency which
forces to put two instances with the same class label in two different intervals. Maximum
marginal entropy (Dougherty et al., 1995) is another way to improve equal-frequency by
using class information when adjusting boundaries of neighboring bins.

For the Iris data, we provide the discretization results for equal-width, equal-frequency,
and 1R. The three methods give different cut-points. Their numbers of inconsistency are
also different. The measures (number of cut-points and number of inconsistencies) are
summarized in the following table. For the Iris data with k = 4, equal-frequency seems the
best. For other k values more investigation will be needed.
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Methods Inconsistency Number of points

Equal-width 10 12

Equal-freq 6 12

1R 7 15

4.1.2. Entropy measure. Entropy is one of the most commonly used discretization mea-
sures in the literature. Shannon defines entropy of a sample variable X as (Shannon and
Weaver, 1949; Thornton, 1992)

H (X ) = −
∑

x

px log px

where x represents a value of X and px its estimated probability of occurring. It is the
average amount of information per event where information of an event is defined as:

I (x) = − log px .

Information is high for lower probable events and low otherwise. Hence, entropy H is the
highest when each event is equi-probable, i.e., pxi = px j for all i , j ; and it is the lowest
when px = 1 for one event and 0 for all other events. Entropy measure is used in various
applications. When used in discretization, entropy is usually used in a supervised manner.

4.1.2.1. ID3 type. ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) are two popular algo-
rithms for decision tree induction that use entropy measure. They construct an inductive
decision tree by selecting a feature if its branching results in the overall minimum entropy
at the next layer of the decision tree. A continuous feature has to be discretized to avoid
creating too many branches for a node. ID3 employs a greedy search to find the potential
cut-points within the existing range of continuous values using the following formula:

H = −pleft

m∑

j=1

pj,left log pj,left − pright

m∑

j=1

pj,right log pj,right.

In this equation, m is the number of classes, pleft and pright are probabilities that an instance is
on the left or right side of a cut-point respectively. pj,side denotes the probability that an
instance in the side (left or right) belongs to class j . The cut-point with the lowest entropy is
chosen to split the range into two parts. Splitting continues with the each part until a
stopping criterion is satisfied. In fact, it binarizes a range at every split.

Stopping criterion. When every leaf node is pure (all instances in the node belong to one
class), it stops. The condition can be relaxed based on the needs.
Results. We do not provide discretization results here for two reasons. One is that classifi-
cation algorithms like ID3 and C4.5 do discretization (binarization) for continuous features
under any circumstances. They do that at each branching node. The other reason is that the
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cut-points thus obtained are usually only good for the classification algorithm. We discuss
this discretization method (binarization) here because it is a base for its many successors
such as D2, MDLP.

4.1.2.2. D2. This discretization method (Catlett, 1991) applies entropy measure to find
a potential cut-point to split a range of continuous values into two intervals. Unlike ID3
which binarizes a range of values while building a decision tree, D2 is a static method that
discretizes the whole instance space. Instead of finding only one cut-point, it recursively
binarizes ranges or subranges until a stopping criterion is met. The discretized data is then
used for building a classifier. So, D2 is a successor of ID3 discretization. A stopping criterion
is essential to avoid over-splitting.

Stopping criterion. The stopping conditions used in D2 can be one of the following:

1. Stop if the number of instances to split is less than 14,
2. Stop if the number of intervals is more than 8,
3. Stop if the information gains on all cut-points are the same, or
4. Stop if all instances in the interval to be split belong to the same class.

One of the problems is that these stopping conditions are rather ad hoc. The next method
(MDLP) provides a more principled way of determining when the recursive splitting should
stop.
Results. For the Iris data, D2 gave the following results:

Feature Cut points Number of Points

F1 4.9, 5, 5.5, 5.6, 5.8, 6.3, 7, 7.9 8

F2 2.3, 2.5, 2.8, 2.9, 3, 3.3, 3.4, 4.4 8

F3 1.9, 4.5, 4.8, 5.1, 6.9 5

F4 0.6, 1.4, 1.5, 1.8, 2.5 5

4.1.2.3. Entropy (MDLP). In Fayyad and Irani (1993), they propose that potential cut-
points are those that form boundaries between classes after sorting the continuous feature
values. Using the example for 1R, we can see that the number of boundaries is 12 which is
less than (k − 1 = 14). Therefore, its efficiency increases as fewer potential cut-points need
to be checked.

11 14 15 18 19 20 21 22 23 25 30 31 33 35 36

R C C R C R C R C C R C R C R

However, not all boundaries are needed to serve as cut-points for discretization. A min-
imum description length principle (MDLP) is used to choose useful cut-points. When the
selection is done, the discretization process completes. A generalization of this measure is
used for discretizing continuous features while learning Bayesian networks in Fayyad and
Irani (1996).
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Stopping criterion. MDLP is used as stopping criterion. MDLP is usually formulated as
a problem of finding the cost of communication between a sender and a receiver. It is
assumed that the sender has the entire set of instances while the receiver has the class labels
of the instances. The sender needs to convey the proper class labeling of the instances to the
receiver. It says that the partition induced by a cut-point for a set of instances is accepted if
and only if the cost or length of the message required to send before partition is more than
the cost or length of the message required to send after partition. A detailed account how
this is done can be found in Fayyad and Irani (1993).
Results. Entropy (MDLP) discretized the Iris data as shown below.

Feature Cut points Number of points

F1 5.4, 6.1 2

F2 4.4 1

F3 1.9, 4.9, 6.9 3

F4 0.6, 1.6, 2.5 3

4.1.2.4. Mantaras distance. Cerquides and Mantaras (1997) introduced a distance mea-
sure (Mantaras Distance (Mantaras, 1991)) to evaluate the cut-points. Let us consider two
partitions Pa and Pb on a range of continuous values, each containing n and m number of
classes. The Mantaras distance between two partitions due to a single cut-point is given
below.

Dist(Pa, Pb) = I (Pa |Pb)+I (Pb|Pa )
I (Pa∩Pb)

Since,

I (Pb | Pa) = I (Pb ∩ Pa) − I (Pa)

Dist(Pa, Pb) = 2 − I (Pa )+I (Pb)
I (Pa∩Pb)

where,

I (Pa) = − ∑n
i=1 Pi log2 Pi

I (Pb) = − ∑m
j=1 Pj log2 Pj

I (Pa ∩ Pb) = − ∑n
i=1

∑m
j=1 Pij log2 Pi j

Pi = |Ci |
|N |

|Ci | = total count of class i
|N | = total number of instances

Pi j = Pi × Pj

It chooses the cut-point that minimizes the distance.

Stopping criterion. It also uses the minimum description length principle discussed in
Entropy (MDLP) as its stopping criterion to determine whether more cut-points should be
introduced.
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Results. Using this distance, we obtained results for the Iris data below.

Feature Cut points Number of points

F1 5.7, 7.9 2

F2 3, 4.4 2

F3 1.9, 4.4, 5.1, 6.9 4

F4 0.6, 1.3, 1.8, 2.5 4

4.1.2.5. Summary. ID3 type applies binarization to discretize continuous values while
building a tree. D2 does better by separating discretization from tree building and by recur-
sively binarizing ranges and/or subranges. Its problem is that there is no principled way to
stop its recursive process of binarization. Entropy (MDLP) uses the minimum description
length principle to determine when to stop discretization. It also suggests that potential cut-
points are those that separate different class values. Based on the summary of results in the
following table for the Iris data, MDLP is an obvious winner as it produces comparatively
low inconsistencies and cut-points.

Methods Inconsistency Number of points

D2 1 26

MDLP 3 9

Mantaras 8 12

Another work using entropy can be found in Van de Merckt (1990). A contrast measure
is introduced that uses the clustering concept to get the cut-point to induce a decision tree.
The idea is to search for clusters that are contrasted as much as possible from the instance
space proximity point of view. The cut-point for the maximum contrast is chosen. But the
cut-point selected must be an informative one, i.e., it is uninformative to select a cut-point
that separates instances belonging to the same class. So, an entropy measure is proposed to
select cut-points further. As it is mainly suggested in the context of tree building, we stop
short of discussing it here and refer the interesting reader to Van de Merckt (1990) for more
details.

4.1.3. Dependency

4.1.3.1. Zeta. It is a measure of strength of association between the class and a feature. In
Ho and Scott (1997), it is defined as the maximum accuracy achievable when each value
of a feature predicts a different class value. We use a simple case to illustrate how Zeta is
calculated. Assume that there is a continuous feature X with two classes (C1 and C2). The
task is to find one cut-point (two intervals) at a time with the highest Z (zeta) value.
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Feature X1 X2

C1 n11 n12

C2 n21 n22

A modal class in interval i is determined as follows:

C1 is the modal class, if max(n1i , n2i ) = n1i

C2 is the modal class, if max(n1i , n2i ) = n2i

where

i takes a value (1 or 2) if there are two intervals, and
n1i is the number of instances in interval i that belong to C1.

A Zeta value for a cut-point is:

Z =
k∑

i=1

n f (i),i

where

k = number of prespecified intervals (2 by default),
f (i) = a class index that has the highest count of instances in interval i, and
n f (i),i = number of instances in interval i with class index f (i) (modal class index).

For a feature with arity k, there could be k − 1 potential cut-points. A cut-point with the
highest Z value is selected if no neighboring pair of partitions predicts the same class (or
two distinct class values should be predicted). This method continues binarizing subranges
in the same spirit until the stopping criterion is met. A more complicated version of this
method is when k > 2 which may incur an intractable discretization process (Ho and Scott,
1997). Therefore, in practice k is set to 2.

Stopping criterion. The process stops when the specified number of intervals is reached for
each continuous feature.
Results. The number of final intervals of a feature was specified as 4 (i.e., 3 cut-points).
Zeta discretized the Iris data as follows:

Feature Cut points Number of points

F1 5.4, 6.1, 7.9 3

F2 2.9, 3, 4.4 3

F3 1.9, 4.7, 6.9 3

F4 0.6, 1.6, 2.5 3
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Method Inconsistency Number of points

Zeta 3 12

Zeta obtained reasonable discretization results for this data. Clearly, with a different
number of final intervals, the results will certainly change. We could also allow different
features to have different final intervals if we have some prior knowledge about them.

4.1.4. Accuracy. Accuracy measure usually means the accuracy of a classifier. An example
of using accuracy for discretization is Adaptive Quantizer (Chan et al., 1991). It considers
how well one attribute predicts the class at a time. For each attribute, its continuous range is
split into two partitions either by equal-frequency or by equal-width. The splitting is tested
by running a classifier to see if the splitting helps improve accuracy. It continues binarizing
subranges and the cut-point which gives the minimum rate is selected. As it involves training
a classifier, it is usually more time consuming than those without using a classifier.

Stopping criterion. For each attribute, the discretization process stops when there is no
improvement in accuracy.
Results. We used C4.5 as the classifier to see the improvement while splitting the attribute
values using equal-width.

Feature Cut points Number of points

F1 5.20, 6.10 2

F2 2.60, 3.20 2

F3 2.47, 3.95, 5.42 3

F4 0.70, 1.30, 1.90 3

Method Inconsistency Number of points

Accuracy 10 10

The choice of a classifier depends on a user’s preferences. However, as the classifier
need to be trained many times, it is necessary to choose one with small time complexity.
For example, C4.5 runs reasonably fast with time complexity O(N log N ) where N is the
number of instances.

4.2. Merging methods

We start with a generalized algorithm for discretization methods adopting the merging or
bottom-up approach.
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Merging Algorithm
S = Sorted values of feature f
Merging(S){

if StoppingCriterion() == SATISFIED
Return

T = GetBestAdjacentIntervals(S)
S = MergeAdjacentIntervals(S, T )
Merging(S)

}

The above algorithm consists of the four important steps in the discretization process.
They are: (1) sorting the values, (2) finding the best two neighboring intervals, (3) merging
the pair into one interval, and (4) stop when the chosen stopping criterion satisfies. Methods
in this category (Kerber, 1992; Liu and Setiono 1995; Wang and Liu, 1998) use the χ2

statistic as one of the evaluation measures. Hence, we describe the measure first.

4.2.1. χ2 measure. χ2 is a statistical measure that conducts a significance test on the
relationship between the values of a feature and the class. Kerber (1992) argues that in an
accurate discretization, the relative class frequencies should be fairly consistent within an
interval (otherwise the interval should be split to express this difference) but two adjacent
intervals should not have similar relative class frequency (in that case the adjacent intervals
should be merged into one). The χ2 statistic determines the similarity of adjacent intervals
based on some significance level. It tests the hypothesis that two adjacent intervals of
a feature are independent of the class. If they are independent, they should be merged;
otherwise they should remain separate. The formula for computing the χ2 value is:

χ2 =
2∑

i=1

p∑

j=1

(Ai j − Ei j )2

Ei j

where:

p = number of classes,
Ai j = number of distinct values in the i th interval, j th class,
Ri = number of examples in i th interval = ∑p

j=1 Ai j ,

C j = number of examples in j th class = ∑m
i=1 Ai j ,

N = total number of examples = ∑p
j=1 C j and

Ei j = expected frequency ofAi j = (Ri × C j )/N .

4.2.2. ChiMerge. It is a supervised, bottom-up discretization procedure (Kerber, 1992).
Initially each distinct value of the attribute is considered to be one interval. χ2 tests are
performed for every pair of adjacent intervals. Adjacent intervals with the least χ2 value are
merged together till the chosen stopping criterion satisfies. A higher value of significance
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level for χ2 test causes over discretization while a lower value causes under discretization.
The recommended procedure is to set the significance level between 0.90 to 0.99 and have
a max-interval parameter set to 10 or 15. This max-interval parameter can be included to
avoid the excessive number of intervals from being created.

Stopping criterion. The merging of adjacent intervals is repeated until χ2 values of all pairs
of adjacent intervals are smaller than a specified threshold value which is determined by a
chosen significance level. The parameter max-interval is used to impose a constraint that
the number of discretized intervals should be less than or equal to max-interval.
Results. Discretization results over all four features of the Iris data set are shown below:

Feature Cut points Number of points

F1 4.3, 4.9, 5.0, 5.5, 5.8, 6.3, 7.1 7

F2 2.0, 2.5, 2.9, 3.0, 3.4 5

F3 1.0, 3.0, 4.5, 4.8, 5.0, 5.2 6

F4 0.1, 1.0, 1.8 3

4.2.3. Chi2. It is an automated version of ChiMerge. In Chi2 (Liu and Setiono, 1997), the
statistical significance level keep changing to merge more and more adjacent intervals as
long as the inconsistency criterion (Liu and Setiono, 1995) is satisfied. By inconsistency, it
means that two patterns match but belong to different categories. The algorithm not only dis-
cretizes the continuous data set but also selects a subset of relevant features. Like ChiMerge,
χ2 statistic is used to discretize the continuous features until some inconsistencies are found
in the data. Doing so some features are removed as irrelevant and hence a subset of relevant
features is retained that is consistent.

Stopping criterion. The merging continues until the inconsistency is not more than the set
limit. The inconsistency limit is 0 by default.
Results. Discretization results over all four features of the Iris data set with 0 inconsistency
are shown below:

Feature Cut points Number of points

F1 4.3, 4.9, 5.5, 5.8, 6.1, 7.1 6

F2 2.0, 2.4, 2.9, 3.2, 3.4, 3.9 6

F3 1.0, 1.9, 3.0, 3.6, 4.8, 5.2, 5.4 7

F4 0.1, 1.0, 1.3, 1.8 4

One distinct feature of Chi2 is its capability to remove irrelevant attributes that do not
help in classification. If we are allowed to tolerate some inconsistency, it is possible to
merge the whole range of some attributes which are completely independent to the class.
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The following table shows that, by allowing 3% inconsistency, we could merge the first two
attributes that are irrelevant.

Feature Cut points Number of points

F1 Merged 0

F2 Merged 0

F3 1.0, 3.0, 4.8, 5.2 4

F4 0.10, 1.00, 1.80 3

A method very similar to Chi2 is ConMerge (Wang and Liu, 1998) which also uses the
χ2 statistic and the inconsistency measure. Instead of considering one attribute at a time,
ConMerge chooses the lowest χ2 value among the intervals of all continuous features. It
requires more dynamic space.

4.2.4. Summary. ChiMerge is one of the first methods that moves away from a splitting
approach. It specifically considers the relations between a feature and the class using the χ2

statistic. The basic idea is that if a merge of two continuous values or two intervals does not
affect the differentiation of class values, the merge should be approved. χ2 statistic allows
some noise tolerance. The problem is how to set a proper threshold for each feature. Chi2
suggests to automate the threshold tuning via the inconsistency measure. Another advantage
of using Chi2 is to allow noise tolerance which leads to removal of irrelevant features. As
seen in the case of allowing 3% inconsistency in the Iris data, the values of its first two
features are merged into one value only. This means these two features take a constant value
and can thus be removed. The following table summarizes the discretization results. In this
particular case, Chi2 with 3% inconsistency yields the best results: 4 inconsistencies and 7
cut-points.

Method Inconsistency Number of points

ChiMerge 4 21

Chi2 0 23

Chi2(3%) 4 7

4.3. Remarks

We have reviewed representative discretization methods under two categories: splitting and
merging. The majority of methods are found in the splitting category. We used the Iris
data as an example to show the different results obtained by various discretization methods
without resorting to any classification algorithms. An intuitive relation between the two
evaluation measures (number of inconsistencies and number of cut-points) is that the more
the cut-points, the fewer the inconsistencies. So a good set of results should be the one with
low values in both evaluation measures. We indeed observe that some methods did better
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Table 1. Representative discretization methods in multiple dimensions. Double horizontal lines separate different
combinations.

Global/ Supervised/ Direct/ Splitting/ Static/
Methods local unsupervised incremental merging dynamic

Equal-width Global Unsupervised Direct Splitting Static

Equal-frequency Global Unsupervised Direct Splitting Static

1R Global Supervised Direct Splitting Static

D2 Local Supervised Incremental Splitting Static

Entropy (MDLP) Local Supervised Incremental Splitting Static

Mantaras Local Supervised Incremental Splitting Static

ID3 Local Supervised Incremental Splitting Dynamic

Zeta Global Supervised Direct Splitting Static

Accuracy Global Supervised Direct Splitting Static

ChiMerge Global Supervised Incremental Merging Static

Chi2 Global Supervised Incremental Merging Static

ConMerge Global Supervised Incremental Merging Static

than others for the Iris data: for example, Entropy (MDLP) was the best in the category of
splitting; Chi2 in the category of merging showed that it is possible for a trade-off between
the two measures. That is, in addition to discretization, Chi2 can also remove features if
some level of inconsistency is allowed.

The proposed framework has served one purpose so far: it helps us organize many dis-
cretization methods so that we can describe the methods in groups and observe their per-
formance. Its other aspects are:

1. providing an overall picture of various methods and indicating their relations among
them;

2. suggesting what is missing according to this framework and what methods are more
similar than others; and

3. offering a starting point to think of new measures or methods; in other words, we hope
that this framework makes the design of new methods easier.

If we reorganize the discretization methods according to the five different dimensions
reviewed in Section 2, namely, global vs. local, supervised vs. unsupervised, direct vs. in-
cremental, splitting vs. merging, and static vs. dynamic, we obtain another type of groupings
in a multi-dimensional view as seen in Table 1.

5. Experiments and analysis

Using the Iris data, we clearly see that discretization simplifies data (continuous values
are quantized into intervals) without sacrificing the data consistency much (only a few
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inconsistencies occur after discretization). We are now ready to evaluate the ultimate objec-
tive of discretization—whether discretization helps improve the performance of learning
and understanding of the learning result. The improvement can be measured in three aspects
through before/after discretization comparison: (1) accuracy, (2) time for discretization and
for learning, and (3) understandability of the learning result. Thus, we need a classification
learning algorithm. A critical constraint for choosing such a learning algorithm is that it
should be able to run with both data types, i.e., continuous as well as discrete. Not ev-
ery learning algorithm can do so. Naive Bayes Classifier (Domingos and Pazzani, 1996;
Kontkaren, et al., 1998), as an example, can only run on discrete data. C4.5 (Quinlan, 1993)
is chosen for experiments because it can handle both data types and it is conveniently avail-
able and widely used so that a reader can easily repeat the experiments here. Furthermore,
C4.5 has become a de facto standard for comparison in machine learning. We have reimple-
mented the discretization methods used in the experiments based on the descriptions of the
published papers. The programs of these discretization algorithms are available through
ftp or web access free of charge upon request. We will examine the effect of discretization
on C4.5 through comparisons before/after discretization. Before doing so, we outline the
specific meaning of each aspect of evaluation.

• Accuracy—we wish to see if discretization would result in the decrease or increase of
accuracy. The usual 10-fold cross validation procedure will be used.

• Time for discretization—we wish to see if a discretization method that takes more time
would result in better accuracy.

• Time for learning with different data types of the same data—with which data types the
learning requires more time to complete.

• Understandability—the learning result of C4.5 is a decision tree. This aspect is indirectly
measured through the number of nodes in a tree.

5.1. Experiment set-up

Eleven data sets are selected from the UC Irvine machine learning data repository (Merz
and Murphy, 1996) with all numeric features and varying data sizes. A summary of data sets
can be found in Table 2. A total of 8 discretization methods excluding ID3 type are chosen
to compare according to Table 1 excluding Equal-width, and Accuracy. Accuracy method
takes too long time as every selection of a cut-point evokes a decision tree learning. ID3 type
is used as the base for comparison, as we use C4.5 (an improved version of ID3) to provide
the figures of performance before discretization. Equal-width is similar to Equal-Freq. We
choose the latter based on our experience gained in Section 4.

Each experiment is conducted as follows:

• for each data set

– test each discretization method by 10-fold cross validation of C4.5

1. take every 9/10 of the data in each round (10 in total)
2. run a discretization method to get cut-points, measure the time needed
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Table 2. Summary of data sets.

Data Total number of instances Number of features

1 Australian 690 14

2 Breast 699 9

3 Glass 214 10

4 Heart 270 13

5 Vehicle 846 18

6 Iris 150 4

7 Wine 178 13

8 Pima 768 8

9 Bupa 345 6

10 Thyroid 215 5

11 Ionos 351 34

3. use these cut-points to discretize the rest 1/10 data
4. use the above 9/10 data for training and the rest data for testing

– report the average error rate and time of C4.5.

For the results without discretization, we skip steps 2 and 3 in the above procedure.

5.2. Results and analysis

C4.5 results are shown in Tables 3 and 4. Each result consists of mean and deviation of the
reported error rates of 10-fold cross validation. The results of C4.5 without discretization are
listed in the column “Continuous” in Table 3 for comparison with the results after applying
various discretization methods. The results are grouped in terms of the characteristics of
discretization methods for easy comparison. Averages at the last rows of Tables 3 and 4 give
an indication how the discretization methods affect predictive accuracy. Most discretization
methods do not significantly increase error rates. In the meantime, we also need to look at
other dimensions for performance evaluation.

Table 5 reports the time taken by each discretization method. It is clear that each method
takes varying amount of time. This also serves only as an indication because of the flexibility
shown in each method’s stopping criterion. What is interesting to us is whether the more
time spent on discretization for a method, the less error rate for C4.5. Figure 3 suggests that
there is such a relation. A similar finding is reported in Ho and Scott (1997) we measure the
time only taken by the discretization step while they measure the time taken by discretization
and by classification. The values in this figure are averaged over all data sets and taken from
the last rows of Tables 3–5. The idea is to see if there is any trade off between error rate
of C4.5 on discretized data vs. speed of a discretization method. The three methods that
spent least amount of time produced highest average error rates on the data sets. As seen in
figure 3, in general, the extra amount of time is worthy for the sake of keeping error rates
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Table 3. C4.5 error rates and standard deviations. For the column “Continuous”, C4.5 obtained results without
any static discretization. Average error rates of all data sets are shown at the last row (continued in Table 4).

Data Continuous Zeta ChiMerge Chi2

Australian 15.28 ± 5.84 15.60 ± 4.13 14.42 ± 5.42 13.50 ± 5.14

Breast 4.72 ± 1.25 13.05 ± 5.83 4.92 ± 2.75 5.01 ± 2.43

Glass 1.86 ± 2.28 2.31 ± 4.20 1.90 ± 2.28 3.20 ± 1.22

Heart 22.16 ± 4.14 16.85 ± 4.66 20.21 ± 4.10 20.00 ± 4.12

Vehicle 26.87 ± 4.57 29.00 ± 3.54 30.87 ± 4.57 33.33 ± 2.13

Iris 4.34 ± 2.84 8.24 ± 6.67 5.02 ± 3.48 4.01 ± 3.32

Wine 6.22 ± 6.84 6.82 ± 6.58 7.92 ± 5.80 6.90 ± 4.04

Pima 26.22 ± 2.65 37.70 ± 5.97 27.31 ± 4.43 26.91 ± 3.12

Bupa 33.13 ± 5.70 34.73 ± 6.45 33.99 ± 8.39 32.09 ± 5.55

Thyroid 8.00 ± 4.31 23.77 ± 9.16 8.91 ± 4.43 9.21 ± 2.22

Ionos 9.14 ± 3.78 11.37 ± 6.29 8.94 ± 4.52 8.52 ± 3.22

Average 14.36 18.13 14.95 14.79

Table 4. C4.5 error rates and standard deviations (continued from Table 3).

Data Eq-Freq 1R D2 MDLP Mantaras

Australian 14.51 ± 6.08 13.00 ± 5.47 14.13 ± 5.96 14.00 ± 5.90 13.82 ± 5.64

Breast 7.65 ± 3.59 13.27 ± 3.32 5.30 ± 3.09 6.37 ± 4.07 7.79 ± 3.03

Glass 22.43 ± 11.09 18.79 ± 8.04 2.79 ± 4.18 2.31 ± 3.08 2.77 ± 4.27

Heart 22.86 ± 6.42 20.00 ± 7.17 22.13 ± 4.71 20.35 ± 5.75 16.07 ± 4.29

Vehicle 31.39 ± 5.00 28.57 ± 3.97 27.90 ± 4.26 29.47 ± 5.03 29.81 ± 6.44

Iris 8.14 ± 5.75 6.07 ± 6.73 5.13 ± 5.79 4.25 ± 4.58 10.23 ± 5.10

Wine 7.96 ± 5.17 6.84 ± 6.67 6.78 ± 5.49 7.95 ± 7.27 7.53 ± 8.35

Pima 27.68 ± 4.67 25.17 ± 4.20 24.42 ± 4.32 25.21 ± 4.23 22.91 ± 8.65

Bupa 43.96 ± 8.96 36.32 ± 6.40 34.32 ± 6.07 34.29 ± 8.27 31.90 ± 8.39

Thyroid 12.69 ± 8.90 6.44 ± 3.08 8.98 ± 6.00 4.23 ± 4.44 7.90 ± 5.11

Ionos 9.67 ± 5.74 11.98 ± 6.23 8.58 ± 5.10 9.15 ± 5.38 10.69 ± 5.32

Average 18.99 16.95 14.59 14.33 14.69

low, except for the case of Mantaras. Other things being equal, a user may choose a method
that gives less error rates.

How discretization affects the learning of a decision tree? As we suggested earlier, in
addition to error rates, we can check learning time of C4.5 on the discretized data and
number of nodes of a resulted decision tree with respect to one built from the original
data. Tables 6 and 7 summarize the experimental results in these two aspects. The learning
time is reduced to as much as less than half of the time on learning from continuous data.
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Table 5. Time taken for discretization.

Data Eq-Freq 1R D2 MDLP Mantaras Zeta ChiMerge Chi2

Australian 0.87 0.68 1.43 1.51 5.97 0.72 1.16 2.01

Breast 0.79 0.78 0.92 0.74 1.85 0.77 0.72 0.92

Glass 0.29 0.28 0.45 0.71 1.40 0.36 0.37 0.41

Heart 0.33 0.37 0.51 0.45 0.93 0.34 0.46 0.55

Vehicle 1.85 1.88 2.74 1.90 16.55 2.04 2.08 2.10

Iris 0.71 0.76 1.00 0.65 2.25 0.80 0.96 1.02

Wine 0.29 0.30 0.42 0.45 1.76 0.33 0.43 0.55

Pima 0.70 0.75 0.92 0.91 5.62 0.73 0.55 0.61

Bupa 0.24 0.26 0.33 0.33 0.46 0.28 0.29 0.31

Thyroid 0.13 0.15 0.21 0.22 0.80 0.18 0.19 0.21

Ionos 1.62 1.75 2.10 1.87 7.41 1.79 2.08 2.32

Average 0.71 0.72 1.00 0.89 4.09 0.76 0.84 1.00

Table 6. Time required to learn by C4.5 before and after discretization.

Data Continuous Eq-Freq 1R D2 MDLP Mantaras Zeta ChiMerge Chi2

Australian 0.43 0.31 0.27 0.27 0.31 0.26 0.22 0.28 0.10

Breast 0.13 0.06 0.09 0.15 0.10 0.10 0.14 0.13 0.15

Glass 0.10 0.03 0.07 0.04 0.06 0.06 0.06 0.10 0.05

Heart 0.19 0.04 0.08 0.12 0.11 0.09 0.08 0.12 0.04

Vehicle 0.89 0.46 0.57 0.53 0.85 0.54 0.57 0.71 0.82

Iris 0.01 0.02 0.02 0.01 0.01 0.03 0.02 0.01 0.01

Wine 0.12 0.06 0.07 0.05 0.06 0.04 0.04 0.09 0.02

Pima 0.31 0.23 0.21 0.20 0.20 0.30 0.10 0.16 0.11

Bupa 0.11 0.12 0.12 0.07 0.15 0.11 0.04 0.11 0.09

Thyroid 0.05 0.04 0.02 0.06 0.04 0.02 0.02 0.09 0.02

Ionos 1.12 0.75 0.34 0.24 0.34 0.75 0.22 0.20 0.24

Average 0.31 0.19 0.16 0.15 0.20 0.20 0.13 0.18 0.15

All discretization methods contribute to time saving in learning. This is consistent with
some theoretical findings in Utogoff (1989) and Oates and Jensen (1999) that numeric data
typically requires repetitive sorting, so it needs a log N factor at each node for C4.5; but
not so for discrete data. The average number of nodes in a decision tree for all the data sets
is also reduced.

In order to facilitate our understanding of different discretization methods in their groups,
we show the eight discretization methods in figure 4(a)–(c) using the result of C4.5 without
discretization as the reference. A negative difference means an improvement in accuracy.
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Figure 3. Error rate of C4.5 vs. time of discretization methods. Error rates and times are shown as average values
over data sets.

Several points can be noted from figure 4: (1) similar discretization methods show the
same trend of increase or decrease of error rates for the 11 data sets. Eq-Freq and 1R,
D2 and MDLP, ChiMerge and Ch2 behave similarly in pairs with the exception that Man-
taras and Zeta have their distinct behaviors. (2) some methods change drastically (exceed-
ing 7% difference)—Eq-Freq, 1R, Mantaras, and Zeta. Some change mildly (withing 7%
difference)—Chi2. Some change a little (within 5% difference)—D2, MDLP, ChiMerge.
In this regard, D2 is the most stable with a difference less than 2% for all data sets. (3)
No one discretization method can ensure a negative difference for all data sets. Combining
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Table 7. Number of nodes in C4.5 before and after discretization.

Data Continuous Eq-Freq 1R D2 MDLP Mantaras Zeta ChiMerge Chi2

Australian 63 30 57 35 35 27 23 60 30

Breast 11 23 5 17 21 11 19 21 15

Glass 11 23 17 11 11 11 11 11 18

Heart 23 4 25 35 33 13 37 35 11

Vehicle 195 157 189 143 149 156 187 190 185

Iris 9 9 5 9 7 7 5 9 4

Wine 9 13 9 13 15 10 15 9 15

Pima 43 19 35 31 27 57 17 39 40

Bupa 51 61 51 29 51 51 19 51 51

Thyroid 17 11 17 17 15 15 13 17 19

Ionos 35 31 35 25 19 29 15 27 20

Average 42 34 40 33 34 35 32 42 37

the findings in figures 3 and 4, we recommend D2, MDLP for a splitting approach and
ChiMerge and Chi2 for a merging approach.

Table 8 shows the summary of results across the data sets and across the discretization
methods. As per Table 8, in 29 out of a total of 88 cases (11 ‘data sets’ times 8 ‘methods’)
the error rate was less than or equal to that of C4.5 without discretization. The Entropy
(MDLP) method gave the best results for error rate (6 out of 11 data sets) whereas Equal-
freq and Zeta methods gave the worst results (1 out of 11 data sets). Similarly among the
data sets, Australian and Heart showed most improvement after discretization (7 out of 8
methods) while Breast, Glass, Vehicle, and Wine showed least improvement (0 out of 8
methods).

6. Conclusion and future work

We present a survey of discretization methods and discuss various dimensions in which
discretization methods can be categorized. A typical discretization process is described
after introducing some common terms and notations. We then propose a hierarchical frame-
work for discretization methods by considering some important dimensions. Representative
methods are given from the perspective of splitting and merging and are further discussed
according to the measures used. For each method, we discuss the method and the stopping
criterion used, and present the discretization results for the Iris data in terms of number of
inconsistencies and number of cut-points.

Experiments for chosen discretization methods have been conducted on 11 data sets with
C4.5. The performance of discretization methods is evaluated with several dimensions: time
for discretization and for learning, C4.5 error rates on discretized data with reference to
C4.5 on original data, and number of nodes in a decision tree. It is observed that in general,
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Figure 4. Error rates of C4.5 Classifier before and after discretization. The error rates are shown relative to the
classification error before discretization. The serial number of data sets are as given in Table 2. The results are
summarized in Table 8.
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Table 8. Summary of results for C4.5: Column (a) shows the number of methods for each data set for which
C4.5 performs better than without discretization. Column (b) shows the number of data sets for each method for
which C4.5 performs better than without discretization.

a b

Data set Number of MethodBetter Method Number of DataBetter

1. Australian 7/8 Eq-Freq 1/11

2. Breast 0/8 1R 4/11

3. Glass 0/8 D2 4/11

4. Heart 7/8 MDLP 6/11

5. Vehicle 0/8 Mantaras 5/11

6. Iris 2/8 Zeta 1/11

7. Wine 0/8 ChiMerge 3/11

8. Pima 4/8 Chi2 5/11

9. Bupa 2/8

10. Thyroid 3/8

11. Ionos 4/8

more time on discretization leads to better accuracy for C4.5. Our findings in Sections 4 and
5 are pretty consistent as both point toward Entropy (MDLP) being identified as the first
choice. However, choosing a suitable discretization method is generally a complex matter,
and largely depends on a user’s need and other considerations of discretization, as well as
on what kind of data to be discretized. If the data does not have class information, only
unsupervised methods can be applied. When class information is available, a supervised
method should be employed. Do we wish to remove redundant/irrelevant features? If so,
Chi2 is a choice. If we need to incorporate discretization into a learning process, dynamic
discretization methods such as ID3, Contrast should be considered. To reiterate, if we simply
want to discretize data, other things being equal, Entropy (MDLP) should be the first choice
to consider.

A reader may notice that every discretization method discussed takes it for granted that
each feature independently determines the class. Therefore, all these methods are univariate
methods for the sake of efficiency. As we know, the assumption may not be valid. When
we discretize, we may need to consider multiple features at a time, the so-called multivari-
ate discretization. Doing so would inevitably increase time complexity for discretization.
Using the inconsistency measure in Chi2 is one effort towards taking into account the joint
contribution of features. With the availability of more powerful parallel computers or com-
puter clusters, we may investigate the possibility of using these computers for multivariate
discretization. Parallel discretization algorithms are surely welcome when a large number
of continuous features should be quantized. Can we extend the methods here to parallelized
versions? With the feature independence assumption, it seems practical. Sometimes, a data
set consists of various types of features. In Chi2, concepts of over/under discretization are
suggested to account for mixed types of features (Liu and Setiono, 1997). Again, mixed
types of features would not cause a problem if the feature independence assumption is
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acceptable. It is obviously not the case in the context of multivariate discretization. Noise
handling is another important issue of discretization in practice. To allow a certain degree of
tolerance via thresholding is a common practice for noise handling in the methods discussed
here. Chi2 suggests to use the number of inconsistencies as a way to handle one type of
noise. However, it seems an impasse when no prior knowledge about noise is available. All
in all, this paper is not about a conclusion of discretization research. Instead, it is about a
start of a new phase of discretization research. As we can see, a lot of work has been done,
still many issues remain unsolved, and new methods are needed. We hope that this paper
will provide a reference point to facilitate researchers and practitioners to embark on further
research, development and application.
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