Journal Contributions: Published
Jump to Year: 2007 2006 2005 2004 2003 2002 2001 2000 1998
2007 |
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning 44:1 (2007) 4-31 |
|
|
bib |
|
|
E. Van Broekhoven, V. Adriaenssens, B. De Baets. Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning 44:1 (2007) 65-90 |
|
|
bib |
|
2006 |
|
K.H. Quah, C. Quek. FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation. IEEE Transactions on Systems, Man and Cybernetics, Part B 36:1 (2006) 166-178 |
|
|
bib |
|
|
S.M. Zhou, J.Q. Gan. Constructing accurate and parsimonious fuzzy models with distinguishable fuzzy sets based on an entropy measure. Fuzzy Sets and Systems 157:8 (2006) 1057-1074 |
|
|
bib |
|
2005 |
|
|
|
|
bib |
|
|
L.J. Herrera, H. Pomares, I. Rojas, O. Valenzuela, A. Prieto. TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy. Fuzzy Sets and Systems 153:3 (2005) 403-427 |
|
|
bib |
|
|
|
|
|
bib |
|
|
H. Wang, S. Kwong, Y.C. Jin, W. Wei, K.F. Man. Multi-objective hierarchical genetic algorithm for interpretable fuzzy. Fuzzy Sets and Systems 149:1 (2005) 149-186 |
|
|
bib |
|
|
H. Wang, S. Kwong, J. Yaochu, W. Wei, K.F. Man. Agent-based evolutionary approach for interpretable rule-based knowledge extraction. IEEE Transactions on Systems, Man and Cybernetics, Part C 35:2 (2005) 143-155 |
|
|
bib |
|
2004 |
|
P. Carmona, J.L. Castro, J.M. Zurita. Learning maximal structure fuzzy rules with exceptions. Fuzzy Sets and Systems 146:1 (2004) 63-77 |
|
|
bib |
|
|
P. Carmona, J.L. Castro, J.M. Zurita. FRIwE: fuzzy rule identification with exceptions. IEEE Transactions on Fuzzy Systems 12:1 (2004) 140-151 |
|
|
bib |
|
|
M.Y. Chen, D.A. Linkens. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems 142:2 (2004) 243-265 |
|
|
bib |
|
|
S. Guillaume, B. Charnomordic. Generating an interpretable family of fuzzy partitions from data. IEEE Transactions on Fuzzy Systems 12:3 (2004) 324-335 |
|
|
bib |
|
|
S.Y. Ho, H.M. Chen, S.J. Ho, T.K. Chen. Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space. IEEE Transactions on Systems, Man and Cybernetics, Part B 34:2 (2004) 1031-1044 |
|
|
bib |
|
|
M. Jamei, M. Mahfouf, D.A. Linkens. Elicitation and fine-tuning of fuzzy control rules using symbiotic evolution. Fuzzy Sets and Systems 147:1 (2004) 57-74 |
|
|
bib |
|
|
K. Maertens, T.A. Johansen, R. Babuska. Engine load prediction in off-road vehicles using multi-objective nonlinear identification. Control Engineering Practice 12:5 (2004) 615-624 |
|
|
bib |
|
|
R.P. Paiva, A. Dourado. Interpretability and learning in neuro-fuzzy systems. Fuzzy Sets and Systems 147:1 (2004) 17-38 |
|
|
bib |
|
|
W. Pedrycz. Heterogeneous fuzzy logic networks: fundamentals and development studies. IEEE Transactions on Neural Networks 15:6 (2004) 1466-1481 |
|
|
bib |
|
|
L.P. Tan, A. Lotfi, E. Lai, J.B. Hull. Soft computing applications in dynamic model identification of polymer extrusion process. Applied Soft Computing 4:4 (2004) 345-355 |
|
|
bib |
|
2003 |
|
J. Abonyi, F. Szeifert. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24:14 (2003) 2195-2207 |
|
|
bib |
|
|
|
|
|
bib |
|
|
R. Babuska, H. Verbruggen. Neuro-fuzzy methods for nonlinear system identification. Annual Reviews in Control 27:1 (2003) 73-85 |
|
|
bib |
|
|
|
|
|
bib |
|
|
M. Drobics, U. Bodenhofer, E.P. Klement. FS-FOIL: an inductive learning method for extracting interpretable fuzzy descriptions. International Journal of Approximate Reasoning 32:2-3 (2003) 131-152 |
|
|
bib |
|
|
D.D. Nauck. Fuzzy data analysis with NEFCLASS. International Journal of Approximate Reasoning 32:2-3 (2003) 103-130 |
|
|
bib |
|
|
J.A. Roubos, M. Setnes, J. Abonyi. Learning fuzzy classification rules from labeled data. Information Sciences 150:1-2 (2003) 77-93 |
|
|
bib |
|
|
T. Sudkamp, A. Knapp, J. Knapp. Model generation by domain refinement and rule reduction. IEEE Transactions on Systems, Man and Cybernetics, Part B 33:1 (2003) 45-55 |
|
|
bib |
|
2002 |
|
G. Bortolan, W. Pedrycz. Fuzzy descriptive models: an interactive framework of information granulation [ECG data]. IEEE Transactions on Fuzzy Systems 10:6 (2002) 743-755 |
|
|
bib |
|
|
G. Castellano, A.M. Fanelli, C. Mencar. A neuro-fuzzy network to generate human-understandable knowledge from data. Cognitive Systems Research 3:2 (2002) 125-144 |
|
|
bib |
|
|
F.J. de Souza, M.M.R. Vellasco, M.A.C. Pacheco. Hierarchical neuro-fuzzy quadtree models. Fuzzy Sets and Systems 130:2 (2002) 189-205 |
|
|
bib |
|
|
|
|
|
bib |
|
2001 |
|
|
|
|
bib |
|
|
S. Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems 9:3 (2001) 426-443 |
|
|
bib |
|
|
A. Krone, H. Taeger. Data-based fuzzy rule test for fuzzy modelling. Fuzzy Sets and Systems 123:3 (2001) 343-358 |
|
|
bib |
|
|
|
|
|
bib |
|
|
T. Suzuki, T. Kodama, T. Furuhashi, H. Tsut. Fuzzy modeling using genetic algorithms with fuzzy entropy as conciseness measure. Information Sciences 136:1-4 (2001) 53-67 |
|
|
bib |
|
2000 |
|
Y.C. Jin. Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems 8:2 (2000) 212-221 |
|
|
bib |
|
|
R. Silipo, M.R. Berthold. Input features impact on fuzzy decision processes. IEEE Transactions on Systems, Man and Cybernetics, Part B 30:6 (2000) 821-834 |
|
|
bib |
|
1998 |
|
M. Setnes, R. Babuska, H. Verbruggen. Complexity reduction in fuzzy modeling. Mathematics and Computers in Simulation 46:5-6 (1998) 507-516 |
|
|
bib |
|
|
M. Setnes, R. Babuska, H. Verbruggen. Rule-based modeling: precision and transparency. IEEE Transactions on Systems, Man and Cybernetics, Part C 28:1 (1998) 165-169 |
|
|
bib |
|
|
J. Yen, L. Wang, C.W. Gillespie. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Transactions on Fuzzy Systems 6:4 (1998) 530-537 |
|
|
bib |
|
Conference Contributions
Jump to Year: 2004 2003 2002 2001 2000 1999 1998 1997 1996
2004 |
|
J. Casillas, M. Mucientes. Obtaining a fuzzy controller with high interpretability in mobile robots navigation. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004). Budapest (Hungary, 2004) 1637-1642 |
|
|
bib |
|
|
C. Moraga. A metasemantics to refine fuzzy if-then rules. 34th International Symposium on Multiple-Valued Logic (ISMVL 2004). Toronto (Canada, 2004) 148-153 |
|
|
bib |
|
|
S.M. Zhou, J.Q. Gan. Improving the interpretability of takagi-sugeno fuzzy model by using linguistic modifiers and a multiple objective learning scheme. IEEE International Joint Conference on Neural Networks (IJCNN04). Budapest (Hungary, 2004) 2385-2390 |
|
|
bib |
|
2003 |
|
S. Chang, S. Greenberg. Syllable-proximity evaluation in automatic speech recognition using fuzzy measures and a fuzzy integral. 12th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'03). St Louis (USA, 2003) 828-833 |
|
|
bib |
|
|
S.R. Cuesta, I. Diaz, A.A. Cuadrado, A.B. Diez. A visual approach for fuzzy rule induction. IEEE Conference Emerging Technologies and Factory Automation (ETFA'03). Lisbon (Portugal, 2003) 761-767 |
|
|
bib |
|
|
D.D. Nauck. Measuring interpretability in rule-based classification systems. The 12th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'03). St Louis (USA, 2003) 196-201 |
|
|
bib |
|
|
S. Nefti, K. Djouani. Extended fuzzy clustering algorithm based on an inclusion concept. 12th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'03). St Louis (USA, 2003) 869-874 |
|
|
bib |
|
2002 |
|
J.F.M. Amaral, R. Tanscheit, M.A.C. Pacheco, M.M.R. Vellasco. Evolutionary fuzzy system design and implementation. 9th International Conference on Neural Information Processing (ICONIP '02). (Singapore, 2002) 1872-1876 |
|
|
bib |
|
|
U. Bodenhofer. Application perspectives of fuzzy orderings. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'02). Honolulu (USA, 2002) 1357-1362 |
|
|
bib |
|
|
M.R. Delgado, F. Von Zuben, F. Gomide. Multi-objective decision making: towards improvement of accuracy, interpretability and design autonomy in hierarchical genetic fuzzy systems. 2002 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'02). Honolulu (USA, 2002) 1222-1227 |
|
|
bib |
|
|
|
|
|
bib |
|
|
O. Kaynak, K. Jezernik, A. Szeghegvi. Complexity reduction of rule based models: a survey. IEEE International Conference on Fuzzy Systems ( FUZZ-IEEE'02). Honolulu (USA, 2002) 1216-1221 |
|
|
bib |
|
|
Q. Shen, J.G. Marin-Blazquez. Microtuning of membership functions: accuracy vs. interpretability. 2002 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'02). Honolulu (USA, 2002) 168-173 |
|
|
bib |
|
2001 |
|
P. Angelov, R. Buswell. Evolving rule-based models: A tool for intelligent adaptation. Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver (Canada, 2001) 1062-1067 |
|
|
bib |
|
|
M.R. Berthold. Subsampling conflicts to construct better fuzzy rules. Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver (Canada, 2001) 1098-1103 |
|
|
bib |
|
|
M.Y. Chen, D.A. Linkens. A systematic method for fuzzy modeling from numerical data. IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC '01). Tucson (USA, 2001) 28-33 |
|
|
bib |
|
|
T. Furuhashi, T. Suzuki. On interpretability of fuzzy models based on conciseness measure. The 10th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'01). Melbourne (Australia, 2001) 284-287 |
|
|
bib |
|
|
S. Guillaume, B. Charnomordic, A. Titli. A distance metric suitable for fuzzy partitioning. 10th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'01). Melbourne (Australia, 2001) 264-267 |
|
|
bib |
|
2000 |
|
G. Castellano, A.M. Fanelli. A staged approach for generation and compression of fuzzy classification rules. Ninth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2000). San Antonio (USA, 2000) 42-47 |
|
|
bib |
|
|
F. Hoppner, F. Klawonn. Obtaining interpretable fuzzy models from fuzzy clustering and fuzzy regression. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies (KES00). Brighton (UK, 2000) 162-165 |
|
|
bib |
|
1999 |
|
H. Ishibuchi, T. Nakashima. Genetic-algorithm-based approach to linguistic approximation of nonlinear functions with many input variables. 1999 IEEE International Fuzzy Systems Conference ( FUZZ-IEEE '99). Seoul (Korea, 1999) 779-784 |
|
|
bib |
|
|
R. Kowalczyk. On numerical and linguistic quantification in linguistic approximation. IEEE International Conference on Systems, Man, and Cybernetics ( IEEE SMC '99). Tokyo (Japan, 1999) 326-331 |
|
|
bib |
|
1998 |
|
P. Baranyi, S. Mizik, L.T. Koczy, T.D. Gedeon, I. Nagy. Fuzzy rule base interpolation based on semantic revision. IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC '98). San Diego (USA, 1998) 1306-1311 |
|
|
bib |
|
1997 |
|
G.V. Tan, X. Hu. More on designing fuzzy controllers using genetic algorithms: guided constrained optimisation. Sixth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE97). Barcelona (Spain, 1997) 497-502 |
|
|
bib |
|
1996 |
|
O. Nelles, M. Fischer, B. Muller. Fuzzy rule extraction by a genetic algorithm and constrained nonlinear optimization of membership functions. Fifth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 96). New Orleans (USA, 1996) 213-219 |
|
|
bib |
|
|