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ABSTRACT. A major disadvantage of existing
methods for tuning descriptive fuzzy models is that
the usual constrains over the changes on the fuzzy
membership functions do not guarantee that no
radical changes in the definitions and Rence, no
unacceptable disruptions in the interpretability of
the original model would take place. This paper
proposes a new tuning method, called microtun-
ing, which avoids drastic changes by enforcing that
the possible loss in interpretability is kept to min-
imal. This is achieved by ensuring the modified
sets to have, ot least, a given degree of similar-
ity with their original. The paper focuses on the
issue of how accuracy increases as the similarity
constraint is relaved. It reveals the tradeoff between
losing interpretability and gaining precision in tun-
ing a descriptive model. Simulation results show
that most of the improvement in model accuracy
can be obtained without major changes in the orig-
inal set definitions, microtuning may be oll what is
required.

I. Introduction

Computing with words is a fundamental contri-
bution of fuzzy legic [13). This is feasible via the
utilisation of linguistic variables which are vari-
ables whose values can be words rather than num-
bers. These words can be interpreted as semantic
labels to the fuzzy sets employed within the fuzzy
models [12]. Thus, human comprehensible com-
puter representation of domain problems can be
created when desired.

However, a great majority of fuzzy sets used
in fuzzy models are created and tuned to best fit
the data available. They are not encoded to keep
the meaning of the semantic labels, following the
so-called approximative approach, or precise fuzzy
modelling. (Note that the word approzimative is
herein used instead of approximate to mirror the
word descriptive in descriptive modelling which is
itself an approximate approach.) They tend to cre-
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ate fuzzy sets that fit the data very well but that
usually lack features which are considered impor-
tant to make it easy for human users to interpret
the resulting model and its reasoning [10].

Opposing this stands the descriptive approach,
or linguistic fuzzy modelling. Here, semantics are
as important as accuracy. The definition of the
fuzzy sets is human given. For pure descriptive
modelling no changes to such definition are allowed
(1], [2], [11]. However, this harsh constraint leads
to coarse partitions of the underlying value ranges
of the linguistic variables and hence significantly
limits the accuracy of the model to be built.

To improve model flexibility, the pseudo-
descriptive approaches [5] try to regain inter-
pretability by aggregating approximative fuzzy sets
until some descriptive features are obtained. Qth-
ers impose certain restrictions over the tuning of
descriptive fuzzy sets by modifying the member-
ship function definitions. However, once such def-
initions are allowed to change mode! transparency
can not be guaranteed. Several modelling con-
strains have been proposed to avoid such poten-
tial loss of interpretability (e.g. keeping the rela-
tive order of the sets, and ensuring coverage and/or
distinguishability) {10].

Unfortunately, such restrictions, even applied
jointly, may lead to cases where the sets become
so different to the original that the intended inter-
pretative power is lost. In this paper a new pseudo-
descriptive method is proposed. This method,
called microtuning avoids drastic changes by en-
forcing that the possible loss in interpretability is
kept to minimal by ensuring the modified sets to
have, at least, a given degree of similarity with
their original. The tuning is implemented by differ-
ential evolution {8], an evolutionary method proven
to be very good at unconstrained membership func-
tion tuning [4]. The paper focuses on the issue of
how accuracy increases as the similarity constraint
is relaxed. Tt reveals the tradeoff between losing
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interpretability and gaining precision in tuning a
descriptive model.

The rest of the paper is organised as follows. Sec-
tion II gives an overview of the problem under in-
vestigation. Section III shows the induction algo-
rithm used to create descriptive fuzzy rules (though
other descriptive modelling methods may be used
as alternative). Section IV explains the differen-
tial evolution algerithm adopted to tune the mem-
bership functions. Section V reports on typical
simulation results, demonstrating the tradeoff be-
tween interpretability and accuracy. The paper is
concluded in section VI.

II. The Problem

The task of descriptive modelling is to find a
finite set of descriptive rules capable of reproduc-
ing the input-output behaviour of the system being
modelled. For classification problems, without los-
ing generality, the system is assumed to be MISO
{Multi-Input Single-Output), namely, a system of
M inputs and one output that can be described by
a set of K rules such as:

If £, is D} and ... and zps is DM
then y is Classy,

1)

where i indexes the number of a rule (1 <i < K),
z; is the jth input variable (1 <j < M), D! isa
descriptive fuzzy set for z;, and y is the output
variable to be assigned to one of the possible out-
put classes. The descriptive fuzzy sets involved are
human defined and fixed throughout the rule gen-
eration process, in order to yield readily human-
comprehensible models.

The information about the behaviour of the sys-
tem under consideration is assumed to be a set of
N input-output example pairs, with N usually be-
ing a large number:

{(ﬂftl,ﬁ?m,---,th,yt)st:1:---’N} (2)

The ruleset to be induced is required to approxi-
mate the function ¢ : X™ — Class Y (that the-
oretically underlies the system behaviour) in the
most consistently possible way with the given ex-
amples. Here XM = (X; x X2 x ... x Xp), with
X1,Xa,...,Xum being the domains of the inputs,
and Y is the domain of the output classes. The
rule induction task is to create the smallest pos-
sible subset of fuzzy rules that characterises the
dataset to a degree as high as possible.

After such a ruleset is found, it may be possi-
ble to improve its precision if some slight changes
are made to the definitions of the fuzzy sets given.
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However, unconstrained modifications of the fuzzy
sets may result in drastic changes that totally ruin
the semantic interpretation that the original rule-
set entails. The present work proposes to use a
similarity constraint imposed over the membership
function modification to minimise the potential of
such disruption.
The similarity measure used is defined as:

A(Fi N F)
(A(R) + A(R)) - A(Fi N Fy)

IR, F)= 3
with A(F) denoting the area of the fuzzy set F.
Thus, if @ is the minimal similarity to be enforced
a microtuning will ensure that:

I(Mp;,D}) <a (4)

where Mp,; denotes the modified (tuned) version

of the descriptive set D7

This measure is rather strong; high similarity
values are only obtainable when the two sets are
almost the same. Examples of the similarity mea-
sures between a fuzzy set and its shifts and those
between two different sets are shown in Figures 1
and 2, respectively.
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Fig. 1. Similarity values for the same set shifted
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Fig. 2. Similarity values for different sets

III. Rule Induction

In this research, to obtain the fuzzy ruleset, Lo-
zowski's pure descriptive induction algorithm [1] is
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used. This algorithm works by exhaustive search,
but the problems tested are small enough to allow
this. For scaled-up applications of the ideas given
here an alternative descriptive modelling method
may be necessary.

Lozowski’s algorithm generates a hyperplane of
candidate fuzzy rules (see Equation 1) by fuzzi-
fying the entire dataset using all permutations of
the inputs. Thus, a system with M inputs, each
of which has a domain fuzzified by f; fuzzy sets
{1 € j < M), the hyperplane is fuzzified into
Hj“il fi M-dimensional clusters, each represent-
ing one vector of rule preconditions. Each cluster
p = (DY, D?%,...,DM) may lead to a fuzzy rule,
provided that dataset examples support it.

To obtain a measure of what classification
applies to a cluster, fuzzy min-max composi-
tion is used. The input pattern of each ex-
ample is fuzzified according to the fuzzy sets
{p1,8p2, ..., ppu } that make up cluster p. For
each example z = {2, 3,...,2%p), the t-norm of
it with respect to cluster p and classification ¢ is
calculated as follows:

Trz = min (pp1 (21), tp2 (2), - - -, pm (2 1))
(3)
To give a measure of the applicability of a classi-
fication to cluster p, the maximum of ali t-norms
with respect to p and ¢ is then calculated and this
is dubbed an s-norm:

S = max {Tczz |zeC.} (6)
where C, is the set of all examples that can be
classified as ¢. This is iterated over all possible
classifications to provide a full indication of how
well each cluster applies to each classification.

A cluster generates at most one rule. The rule’s
preconditions are the cluster’s M co-ordinate fuzzy
sets. The conclusion is the classification attached
to the cluster. Since there may be t-norms for more
than one classification, it is necessary to decide on
one classification for each of the clusters. Such con-
tradictions are resolved by using the uncertainty
margin, £ (0 <& < 1). A t-norm assigns its classi-
fication on its cluster if and only if it is greater by
at least £ than all other t-norms for that cluster. If
this is not the case, the cluster is considered unde-
cidable and no rule is generated. The uncertainty
margin introduces a trade-off to the rule genera-
tion process between the size and the accuracy of
the resulfing ruleset. In general, the higher € is,
the less rules are generated, but classification er-
ror may increase. A fuller treatment of Lozowski’s
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algorithm in use for descriptive modelling can be
found in [11, [6].

IV. Differential Evolution

Evolutionary computation extends classical
search techniques by imitating the idea of natural
evolution. A “population” of set definitions com-
pete, mate and recombine, with only the ones that
“best” fit the data, thereby surviving in the next
generation. Differential evolution is a new evolu-
tionary heuristic approach [8]. A specific algorith-
matic implementation of this approach for tuning
fuzzy membership functions was introduced in [4].
To be self-contained, however, the following gives
an overview of how this algorithm works for the
present application.

A particular definition of the fuzzy sets used in
the rules is encoded as a vector of real parameters.
The vector is perturbed using differences of other
vectors present in the current population (hence
the name of this method). The perturbation is im-
plemented by applying the so-called move operator
on the vectors. The resulting vectors replace the
original if they each lead to a definition of the sets
that better fit the data available, adjudged by a fit-
ness function. In this work, the fitness function is
implemented by checking the model accuracy upon
which the population is sorted. The sorting is done
by taking preference those members that satisfy
the similarity restriction imposed (between each
pair of the modified and ‘original fuzzy sets that
are employed in the emerging ruleset, as measured
by Equation 3).

The move operator in differential evolution can
be generally represented by

VNew = MiI(VPreseﬂh pV1 C) (7)

where
W=V+Fx (VDiffereﬂce) (8)

In this definition, Vp,esen: is the parent vector; V
is another member of the population, either ran-
domly chosen or being the current best (depend-
ing on what detailed move scheme is adopted [7]);
VDif ference 18 a vector formed by differences among
some other vectors of the population, with actual
form again depending upon the scheme used; Fisa
constant acting as a “learning” factor, used to con-
trol the aggressiveness of the method; Viv.., is the
new vector that will replace Vpyegent if it is of bet-
ter quality; and Mix stands for a certain function
(see below for a specific instantiation of it) which
swaps between parts of Vp,czen: and W, subject to
the swapping probability of C.
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A. Scheme DE/Rand/1 (R1) - The Scheme Used

In this work, the following particular scheme is
adopted, where three different random members
Vi, Vi, and V3 are taken from the present popula-
tion, and the V., vector is generated using:

W=W+F-(V; - V) (9)

Note that no matter what scheme is used, the
random members taken are always required to be
different amongst themselves and from the par-
ent. The process of generating V.., in the scheme
DE/Rand/1 can be illustrated as shown in Figure
3.
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Fig. 3. Vector generation in Scheme DE/Rand/1

For computational simplicity, fuzzy sets used are
assumed to be of a trapezoidal membership func-
tion. Such a fuzzy set can be represented by four
parameters (see partition 2 of variable 1 in Fig-
ure 4 for example). The codification of the sets
in each chromosome is illustrated in Figure 4. As
can be seen the way they are encoded ensures that
the partition of the variables’ domains is strong:
At most any underlying real point can belong to
two different seis and the sum of the membership
values of any point within the variable’s domain is
1.

V. Simulation Results
A. Set-up

To demonstrate the proposed approach at work,
typical classification problems are used here. The
benchmark classification problems used are se-
lected from {9], including the Breast Cancer, Dia-
betes, Iris, and Wine datasets. Table I summarises
the set-ups of these datasets. Classification prob-
lems require the maximisation of the number of
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Fig. 4. Codification of membership functions in a chro-
mosome

correctly classified samples whilst minimising the
number of incorrectly or not covered cases.

TABLE I
CLASSIFICATION PROBLEMS
Name Input Classes Samples Rules
Breast C. 9 2 683 74
Diabetes 8 2 768 65
Iris 4 3 150 11
Wine 13 3 178 21

Fuzzification was carried out proportionally with
respect to the size of the universe of discourse of
the individual variables for each problem consid-
ered. That is, for each variable, the distance be-
tween its maximum and minimum value within the
data set is divided such that all of them approxi-
mately cover an equal range of the underlying real
values (with soft boundaries of course). The fuzzy
sets resulting from such a partition are regarded as
the given descriptive sets. This is not necessary in
practical applications where this can, and should,
be done by users or experts. For simplicity, each
variable is allowed to take 3 linguistic labels.

In the present investigation, the parameter ¢ in
Lozowski’s algorithmn is set up so as to obtain a sen-
sible number of rules versus accuracy. This num-
ber (of rules) is also shown in Table I. Once rules
are induced they are fixed and only the member-
ship functions are modified. Note that although
there exist tuning methods that may also mod-
ify rules this paper is focused on the tuning of
membership functions only. Whilst tuning rules
at the same time may improve model accuracy it
may also blur the effect of microtuning the fuzzy
sets, which is what is studied here. The goal of the
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present experiments is not to obtain the most ac-
curate model but to study how microtuning affects
a given model.

To avoid possible overfitting each dataset has
been separated into a training set containing 75%
of all the given data and a test set comprising the
remaining 256%. The similarity value o to be en-
forced was varied between ¢ {unconstrained) and
1 (no modification allowed) in 0.05 increments. A
hundred runs were executed for each problem and
each similarity value. The best and mean values
are shown in the results. Table II summarises the
classification error percentage for the most inter-
esting similarity values, where Trn and Tst stand
for training and testing, respectively. In particu-
lar, the classification error rates of using the un-
modified sets, which were used for pure descriptive
fuzzy rule generation in the first place, are listed
with respect to the similarity value of 1.

B. Results

Although the use of a particular similarity metric
may have an impact upon the shape of the rela-
tion between similarity relaxation and model ac-
curacy, a smooth and linear-like relation was ex-
pected. However, it has been very interesting to
discover that this relationship is highly non linear.
This result appears to be very similar for all prob-
lems tested, though it varies slightly as to where
exactly a significant improvement of model accu-
racy starts and/for ends. As examples, Figures 5
and 6 show the simulation cutcomes for the Breast
Cancer and Wine problems. It can be seen that
over the similarity value range from 0.65 to 0.85
the improvement is most significant. In particular,
the shape of the curves is very sharp between 0.7
and 0.8. These values reflect quite high similarities
between the modified and original fuzzy sets. This
supports the idea of using microtuning, instead of
free or weakly constrained tuning. Furthermore,
model accuracy does not get any further signifi-
cant improvement when the similarity value drops
down to less than 0.6.

Lozowski’s rule induction algorithm usually pro-
duces a fuzzy model that involves a high number
of rules in order to obtain a good accuracy. This
is, of course, expected from the use of any pure
descriptive algorithm [2], [11]. Nevertheless, even
though the number of rules has an impact upon
the model accuracy it is not expected to affect dra-
matically this experimentally identified non-linear
relation between accuracy and interpretability.
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VI. Conclusions

A major disadvantage of existing methods for
tuning descriptive fuzzy models is that the usual
constrains over the changes on the fuzzy member-
ship functions do not guarantee that no radical
changes in the ariginal set definitions and, there-
fore, no unacceptable disruption in model inter-
pretability would take place. However, by intro-
ducing a constraint over the similarity between the
original and the modified sets it is ensured that
the possible loss in model interpretability can be
kept to minimal. This is because the similarity
value represents the relaxation degree allowed in
the shape of fuzzy set definitions, so that no dif-
ficulties would arise in interpreting the semantics
conveyed by the fuzzy sets. Thus, the modified and
the original still refer to a similar concept. This
is confirmed by systematic simulation results over
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TABLE II
MODEL ACCURACY VS. SIMILARITY BETWEEN MODIFIED AND ORIGINAL FUZZY SETS

Breast Cancer Diabetes Tris Wine
Best Mean Best Mean Best Mean Best Mean
Sim { T Tst | Trn Tst | T'n Tst | Trn Tst | Trn Tst | Trm Tst | Trn Tst | Trn o Tst
1 10.3 15.2 | 10.3 15.2 | 387 40.6 | 38.7 406 | 4.4 105 | 4.4 105 | 39.8 444 | 39.8 444
095 { 10.3 15.2 {103 152 | 38.7 406 | 387 406 | 26 105 | 40 105 | 398 444 | 398 444
09 14.3 152 1 103 152 | 38.7 406 | 38.7 406 | 2.6 7.8 2.7 84 | 398 444 | 398 444
0.85 9.3 128 { 101 146 | 30.5 364 [ 37.8 40.1 1.7 7.8 1.7 7.8 398 444 ) 398 444
0.8 8 12.2 9.5 13.8 | 223 244 | 286 327 | 0.8 5.2 1.5 6.8 225 222 | 354 406
0.75 7 122 | 76 133 |18% 239 ] 258 30.0 0 2.6 1.2 41 6.7 155 | 149 224
0.7 3.5 10.5 4.1 10.1 | 16.8 30.7 | 20.2 26.9 0 2.6 1.3 3.3 3.0 8.8 6.9 12.4
0.65 2.7 8.7 35 9.3 15,7 31.7118.0 26.1 0 2.6 1.2 3.2 1.5 6.6 38 9.3
0.5 27 5.8 2.9 8.5 159 229 ( 16.7 26.0 0 2.6 1.1 3.2 1.5 4.4 2.6 7.6
a number of classification problems. Empirically, [3] J. Gémez Marin-Bldzquez and Q. Shen. Linguistic

the resulting model accuracy of microtuning with
a similarity value larger than 0.6 is statistically
undistinguishable from those obtained by free, un-
constrained tuning.

It has been noted that the similarity value at
which significant changes in model accuracy varies
slightly against different problems investigated. It
would be interesting to further examine whether
such slight differences are mainly caused by the
different number of rules generated or by the dif-
ferent cardinality of the input space. It would also
be useful to determine how sensitive the proposed
work would be to the similarity metric employed.
Finally, Lozowski’s algorithm is not the most ac-
curate pure descriptive induction algorithm. It
may be interesting to see how microtuning behaves
when applied to optimised descriptive rules that
use hedges [2], [3]. These tasks remain as impor-
tant future work.
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