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Abstract

This paper is concerned with FS-FOIL – an extension of Quinlan’s First-Order In-

ductive Learning Method (FOIL). In contrast to the classical FOIL algorithm, FS-

FOIL uses fuzzy predicates and, thereby, allows to deal not only with categorical

variables, but also with numerical ones, without the need to draw sharp boundaries.

This method is described in full detail along with discussions how it can be applied in

different traditional application scenarios – classification, fuzzy modeling, and cluster-

ing. We provide examples of all three types of applications in order to illustrate the

efficiency, robustness, and wide applicability of the FS-FOIL method.
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1. Introduction

There is no unique commonly accepted one-sentence definition of data

mining, machine learning, or the more general term information mining that has
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become fashionable in the last few years. In the authors’ humble opinion, ‘‘the

non-trivial extraction of implicit, previously unknown, and potentially useful in-

formation from data’’ [21] is a pretty good compromise between indispensable

generality and a precise description of the matter’s very core.

The fields of data mining and machine learning can roughly be divided into

two large parts. On the one hand, the analysis of causal relationships between

causes and effects is a major part. More specifically, one is often interested

which particular input features lead to specific output values (goals). Since

explicit goal information is available, such kinds of problems are often called

supervised (a term stemming from the neural networks world). Most impor-
tantly, classification, prediction, and, less traditionally, data-driven fuzzy

modeling fall into that category. On the other hand, it is often necessary to

identify regions of similarity or other dependencies from unstructured data

sets – without any explicit goal information. This class of data mining prob-

lems is often called unsupervised. Typical clustering problems like market

segmentation, etc. can be assigned to this category.

Quinlan’s First-Order Inductive Learning Algorithm (FOIL) [37,41] is usually

assigned to supervised machine learning. FOIL tries to build up a successive
coverage of those regions in the data which potentially imply a specific goal/

output predicate. Since FOIL relies on binary Boolean logic, it can only pro-

cess Boolean predicates. This means that non-categorical, in particular nu-

merical, variables have to be represented by a finite set of Boolean predicates.

In the case of numerical variables, this is almost always accomplished by

splitting the numerical domain into a finite partition consisting of intervals.

This ad-hoc granulation, however, often leads to a significant loss of infor-

mation and robustness – caused by artificially sharp boundaries between the
different predicates (particularly in case that the numerical data are noisy).

Moreover, it is not possible to extract smooth functional relationships between

numerical variables in a straightforward way. The common extension FFOIL

[43] is designed for learning functional relationships in a Prolog-like fashion,

however, it is also strictly based on binary logic and suffers from the same

difficulties in terms of instability caused by sharp boundaries.

The given paper presents the FS-FOIL algorithm – a fuzzy variant of FOIL

which overcomes these difficulties. By its ability to use fuzzy predicates instead
of only crisp ones, FS-FOIL allows to extract linguistically expressive (inter-

pretable) rules from both categorical and numerical data, while avoiding the

problem of artificially sharp boundaries. As another highly important effect,

FS-FOIL also allows to obtain smooth functional models from the rules it

generates.

This paper is organized as follows. After necessary basics provided in Sec-

tion 2, Sections 3 and 4 give a detailed description of FS-FOIL. Following that,

we elucidate practical settings in which FS-FOIL can be employed beneficially.
Section 5 is devoted to the straightforward application to classification prob-
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lems. In Section 6, we demonstrate FS-FOIL’s ability to model numerical

functions by means of fuzzy rules. Next, we will see, however, that possible
applications do not only arise in typical supervised settings, but also in unsu-

pervised ones – we apply FS-FOIL to the problem of finding interpretable

cluster descriptions in Section 7.

2. The basic setting

One of the most fundamental tasks in machine learning is the identification
of input–output relationships from data samples. Assume, therefore, that we

are given a set of K samples

X ¼ fx1; . . . ; xKg:
Each sample has the same (nþ m)-dimensional structure (for all i ¼ 1; . . . ;K):

xi ¼ ðxi1; . . . ; xin; xinþ1; . . . ; x
i
nþmÞ 2 X1 � 	 	 	 � Xn � Xnþ1 � 	 	 	 � Xnþm:

The first n dimensions/variables are the inputs; the latter m dimensions/vari-

ables are the outputs under investigation. In the following, we refer to the rth

dimension (r ¼ 1; . . . ; n) as rth input attribute. The other m dimensions are

called goal attributes. Ideally, the overall objective of this machine learning

problem is to find a function

f : X1 � 	 	 	 � Xn ! Xnþ1 � 	 	 	 � Xnþm

such that the inherent connection between the input attributes and the goal

attribute hidden in the data set X is modeled as well as possible. Therefore, such

machine learning problems can be regarded as some kind of data fitting.

To find such a function f, however, is not always the only objective. While

statistical regression [15] or neural networks [33,46,52] allow to solve such kinds
of machine learning problems, they leave the resulting function f as a black box,

i.e. a plain function whose internals are difficult or impossible to comprehend. In

many practical applications, however, qualitative insights into the structures of f

are desirable. For such tasks, rule-based systems are most appropriate. They

easily allow qualitative insight, since the function f is represented by logical rules

in a close-to-natural-language manner. In the following, assume that we are not

necessarily interested in the full function f, but at least in significant bits of

knowledge about f and their inherent structures – rules.
We have not mentioned so far how input and goal attributes look like. In

this paper, we would like to consider the following most important types:

Boolean categorical attributes. The domain Xi is an unstructured finite set of

labels, for instance, types of car engines (gasoline, Diesel, hydrogen, electric)

or classes of animals (birds, fish, mammals, etc.). The attribute values xir are

single elements of the label set Xi.
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Fuzzy categorical attributes. There is again an unstructured finite set of

labels, but with possible overlaps. Therefore, values of such kinds of vari-
ables may be fuzzy sets on this set of labels. For example, assume that we

are given a finite set consisting of different grape varieties. Then blended

wines (cuvees) cannot be assigned to single categories crisply.

Numerical attributes. The underlying domain Xi is the set of real numbers or

a subset of these (e.g. an interval). The attribute values xir are real numbers,

e.g. pressures, temperatures, incomes, ratios, etc.

Note that Boolean categorical attributes are special cases of fuzzy categori-

cal attributes, since any crisp label can be considered as a fuzzy set of labels,
too.

Beside different variants of decision trees [34,36,40,42], the First-Order In-

ductive Learning Algorithm (FOIL) and its variants [11,37,41,43,44] have

emerged as standard methodologies for rule-based machine learning. These

methods in their classical form, however, can only process Boolean cate-

gorical attributes. Numerical attributes can be processed in principle, but

have to be converted to Boolean categorical ones by splitting the domain into

a finite number of subsets (intervals most often) and assigning labels to
them.

FS-FOIL is a generalization of FOIL that is capable of processing all three

kinds of attributes without the need to convert any of them into Boolean

categorical attributes.

3. The language of FS-FOIL

Like in the original FOIL algorithm, the language of FS-FOIL consists of

first-order predicates. While FOIL works with Boolean predicates that are

canonically given, since the attributes are assumed to be Boolean categorical

ones, the situation in the setup of FS-FOIL is slightly more complicated. In

order to deal with numerical and fuzzy categorical attributes, FS-FOIL works

with fuzzy predicates instead of Boolean ones. Therefore, we have to consider
how the different kinds of fuzzy predicates are defined and interpreted. A fuzzy

predicate is a X1 � 	 	 	 � Xnþm ! ½0; 1� mapping that maps each element

x 2 X1 � 	 	 	 � Xnþm to a degree of fulfillment. Since the predicates in this paper

are induced by a certain kind of linguistic expressions, we will make an explicit

distinction between the expressions and their corresponding semantics: similar

to formal logics, we use a dummy function t to compute the actual truth value

to which a sample fulfills a given predicate.

All predicates we consider in this paper are either induced by a single at-
tribute (we call those ones atomic predicates in the following) or compound

predicates that are defined as compositions of atomic predicates by means of

fuzzy logical operations, such as conjunction or disjunction.
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Let us consider Boolean categorical attributes first. Assume that an arbi-

trary, but fixed, attribute with index r 2 f1; . . . ; nþ mg is belonging to that
class. Its domain is given as an unstructured set of Nr labels:

Xr ¼ fLr;1; . . . ; Lr;Nrg:
Then we can define 2 	 Nr atomic predicates for attribute r, all of which are

defined on the space X1 � 	 	 	 � Xnþm. Therefore, given a sample

x 2 X1 � 	 	 	 � Xn � Xnþ1 � 	 	 	 � Xnþm;

the truth values to which x fulfills the two predicates induced by label Lr;j

(j ¼ 1; . . . ;Nr) are given as

tðx is Lr;jÞ ¼
1 if xr ¼ Lr;j;
0 otherwise;

�

tðx is not Lr;jÞ ¼
1 if xr 6¼ Lr;j;
0 otherwise:

�

Now assume that attribute r is a fuzzy categorical one. In this case, we have an

unstructured set of Nr labels fLr;1; . . . ; Lr;Nrg again. As mentioned already,
however, the data samples are fuzzy sets of labels, i.e. 1

Xr ¼ F fLr;1; . . . ; Lr;Nrgð Þ ’ ½0; 1�Nr :

A single data sample xr 2 Xr, therefore, can be represented by an Nr-dimen-

sional vector of truth values from the unit interval:

xr ¼ ðtr;1; . . . ; tr;NrÞ: ð1Þ
Note that it is often useful, albeit not necessary, to require that

PNr
j¼1 tr;j ¼ 1.

Hence, we can define 2 	 Nr atomic fuzzy predicates for attribute r. For a sample

x 2 X1 � 	 	 	 � Xnþm, the truth values to which the two predicates induced by

the label Lr;j are fulfilled can be defined as follows (note that the rth component
of x is given as in (1)):

tðx is Lr;jÞ ¼ tr;j;

tðx is not Lr;jÞ ¼ 1 � tr;j:

To be able to handle numeric attributes as well, it is indispensable to define a

discrete set of predicates for these kinds of attributes, too. If this quantization
is done by means of partitions into crisp sets (intervals) as in traditional ma-

chine learning, small variations (e.g. noise) can cause large changes in the

classification quality and instable results. This entails the demand for admitting

vagueness in the assignment of samples to predicates. Fuzzy sets [49] perfectly

1 For a given non-empty set X, FðX Þ denotes the set of fuzzy sets on X, i.e. the set of X ! ½0; 1�
mappings.
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solve this problem of artificial preciseness arising from sharp interval bound-

aries.
Suppose that the rth attribute is numerical. This means that Xr � R and the

values in the rth component are real numbers. We assume that, for attribute r,

a family of Nr linguistic labels Mr;1; . . . ;Mr;Nr is defined. Depending on the

underlying context of the attribute under consideration, these labels can be

natural language expressions like very low, medium, large. To each label Mr;j,

we assign a fuzzy set with membership function lMr;j
2 FðXrÞ (j ¼ 1; . . . ;Nr).

There are different ways to define the membership functions of those fuzzy sets.

Firstly, it is possible to use equally sized fuzzy intervals (triangular fuzzy num-
bers or trapezoids). Secondly, an uneven distribution can be defined manually

in case that there is specific knowledge about the particular attribute available.

Thirdly, it is possible to use a clustering technique to generate unevenly dis-

tributed fuzzy sets according to the distribution of values in the data set X. In

our applications, we often use a modified c-means algorithm [30] with simple

neighborhood interaction [17,18] to compute the centers of the fuzzy sets. The

fuzzy sets are then arranged as trapezoids or bell-shaped functions around

these centers. In any case, we strongly suggest to define families of fuzzy sets
that form a partition and are in a proper order – to ensure highest interpret-

ability of the results [9,10,12].

Given a set of linguistic labels Mr;1; . . . ;Mr;Nr and their corresponding se-

mantics modeled by fuzzy sets, we can define 4 	 Nr atomic fuzzy predicates.

The degrees to which a sample x 2 X1 � 	 	 	 � Xnþm fulfills these predicates can

be computed as follows (j ¼ 1; . . . ;Nr):

tðx is Mr;jÞ ¼ lMr;j
ðxrÞ;

tðx is not Mr;jÞ ¼ 1 � lMr;j
ðxrÞ;

tðx is at least Mr;jÞ ¼ supflMr;j
ðuÞ ju6 xrg;

tðx is at most Mr;jÞ ¼ supflMr;j
ðuÞ juP xrg:

The two latter ordering-based predicates are not absolutely necessary, but help
to improve compactness, expressiveness, and interpretability of the results

[6,7,9,10,14].

For convenience, from now on, we will denote all predicates with uppercase

letters and use prefix notation. Assume, therefore, that we have a set of atomic

predicates A ¼ fA1; . . . ;Atg induced by the input attributes and a set of atomic

predicates C ¼ fC1; . . . ;Csg induced by the goal attributes.

It remains to clarify how compound predicates can be defined. Suppose that

we are given an appropriate couple consisting of a triangular norm and its dual
triangular conorm (t-norms and t-conorms are commutative, associative, and

non-decreasing binary operations on the unit interval with neutral elements 1

and 0, respectively [27]; a t-conorm S is dual to a t-norm T if the equality
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1 � Sðx; yÞ ¼ T ð1 � x; 1 � yÞ holds for all x; y 2 ½0; 1�). Two popular possible

choices are the min-max operations

TMðx; yÞ ¼ minðx; yÞ;
SMðx; yÞ ¼ maxðx; yÞ

or the Łukasiewicz operations:

TLðx; yÞ ¼ maxðxþ y � 1; 0Þ;
SLðx; yÞ ¼ minðxþ y; 1Þ:

In the following, we will restrict ourselves to the Łukasiewicz operations.

Conjunctions and disjunctions of two fuzzy predicates A and B (no matter

whether atomic or not), therefore, can be defined as follows:

t ðA ^ BÞðxÞð Þ ¼ TL tðAðxÞÞ; tðBðxÞÞð Þ;
t ðA _ BÞðxÞð Þ ¼ SL tðAðxÞÞ; tðBðxÞÞð Þ:

Note that, for obvious reasons, we strictly separate predicates belonging to
input attributes (resulting from the set of atomic predicates A) and goal at-

tributes (resulting from predicate set C).

4. The learning algorithm

The overall goal of FS-FOIL is the following: given a goal predicate �CC
(either from C or a compound of predicates out of C), we want to find a

predicate �AA (either from A or a compound of predicates out of A) that describes

those samples in the sample set X that fulfill �CC. FS-FOIL creates a sequential
coverage of these areas by means of a set S consisting of fuzzy predicates which

are conjunctions of atomic predicates (so-called Horn clauses). The final

predicate �AA is then given as the disjunction of the predicates in S, i.e. FS-FOIL

uses a kind of disjunctive normal form to represent the description [39]:

tð �AAðxÞÞ ¼
_
A2S

tðAðxÞÞ ¼ SL
A2S

tðAðxÞÞ:

Before we come to the very core of FS-FOIL, let us make a few definitions. The

degree of common fulfillment of a predicate A and the goal predicate �CC (for a
given sample x) is defined as tððA ^ �CCÞðxÞÞ. For a given finite sample set X, the

fuzzy set of samples fulfilling a predicate A, which we denote with AðXÞ, is de-

fined as (for all x 2 X)

lAðXÞðxÞ ¼ tðAðxÞÞ:

The cardinality of a fuzzy set N on an arbitrary non-empty set X with finite

cardinality is defined as the sum of lN ðxÞ, i.e.
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jN j ¼
X
x2X

lNðxÞ:

Hence, the cardinality of samples in X commonly fulfilling a predicate A and

the goal predicate �CC can be defined by

jðA ^ �CCÞðXÞj ¼
X
x2X

tððA ^ �CCÞðxÞÞ ¼
X
x2X

TLðtðAðxÞÞ; tð �CCðxÞÞÞ:

The objective of FS-FOIL is to find a set of predicates S that fulfill two specific

quality criteria – significance and accuracy. The significance of a predicate A is

defined as the common support of a predicate A and the goal predicate �CC, i.e.

the ratio between the cardinality of samples commonly fulfilling A and �CC and

the total number of samples:

suppðA; �CCÞ ¼ jðA ^ �CCÞðXÞj
jXj ¼ 1

K
	
XK
i¼1

TLðtðAðxiÞÞ; tð �CCðxiÞÞÞ:

The accuracy of a predicate A is associated with the confidence of predicate A

with respect to �CC, which is defined as

confðA; �CCÞ ¼ suppðA; �CCÞ
suppðAÞ ;

where suppðAÞ is defined as

suppðAÞ ¼ jAðXÞj
jXj ¼ 1

K
	
XK
i¼1

tðAðxiÞÞ:

Hence, the following holds:

confðA; �CCÞ ¼ jðA ^ �CCÞðXÞj
jAðXÞj ¼

PK
i¼1 tððA ^ �CCÞðxiÞÞPK

i¼1 tðAðxiÞÞ
:

In other words, the confidence of A with respect to �CC is the ratio between the

number of samples fulfilling �CC that are correctly described by A (i.e. jointly

fulfilling A and �CC) and the total number of samples fulfilling A.

Outline. FS-FOIL starts with the most general predicate >, the predicate
that always gives a truth value of 1, and successively expands it – thereby

generating more and more specific predicates – until an input predicate A is

found that covers a part of the area, where the goal predicate �CC is fulfilled,

accurately and significantly enough. This procedure is iteratively repeated as

long as there are undescribed samples remaining or no accurate and significant

predicates can be found anymore.

We now provide the full algorithm and discuss its internals in detail.
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Algorithm 1. (FS-FOIL)

Input: goal predicate �CC
samples X ¼ fx1; . . . ;xKg
set of atomic input predicates A

Output: predicate set S
final predicate set S ¼ ;
intermediate predicate set P ¼ f>g
set of predicates under consideration E ¼ A

open nodes O ¼ �CCðXÞ
do{

P0 ¼ best k predicates of P according to information gain measure G
P ¼ expansion of all predicates in P0 using E

prune predicate sets P and E

if a predicate A 2 P is accurate and significant

{

add predicate A to set S

remove nodes covered by A from the set of open nodes O
P ¼ f>g
E ¼ A

}

} while stopping condition is not fulfilled

As obvious, the final predicate set S is initialized with the empty set.

FS-FOIL works with an intermediate set of predicates P which are sequen-

tially expanded in each iteration. This set is initialized with the trivial pred-

icate >. Moreover, there is a set of predicates E which contains those atomic
predicates that may be considered for further expansions; it is initialized

with all atomic input predicates from the set A. The fuzzy set O corresponds

to the samples from X fulfilling �CC which have not yet been described by

a predicate in S. Clearly, O is initialized with all samples fulfilling �CC, i.e.
�CCðXÞ.

In contrast to the original FOIL algorithm, which performs a straightfor-

ward greedy hill climbing search, FS-FOIL employs a stepwise beam search

approach to find a description (i.e. not only a single candidate, but the best k
candidates are kept). This means concretely that, in the first step of the loop

body, we select the best k predicates in P (e.g., a typical value is k ¼ 10) ac-

cording to the following entropy-based information gain measure G. If P

contains less than k predicates, P0 is set to P (see [43] for a detailed explana-

tion):

GðAÞ ¼ jðA ^ �CCÞðXÞj 	 log2

jðA ^ �CCÞðXÞj
jAðXÞj

 
� log2

j �CCðXÞj
jXj

!
:
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Note that this is a slight adaptation of the original FOIL gain measure to the

beam search used in FS-FOIL in order to obtain a total ordering on the set of
all predicates [3].

In the next step, all predicates in P0 are expanded by all atomic fuzzy

predicates from E. The expansion of a predicate A with an atomic fuzzy

predicate B is done by means of conjunction, i.e. A ^ B. In case that P only

contains the initial trivial predicate >, the expansion by an atomic predicate B
is defined as > ^ B ¼ B.

As expanding with all predicates is computationally very expensive, the third

step is concerned with keeping the sets P and E as small as possible. This
‘‘pruning step’’ is done in the following way: all predicates A 2 P whose sup-

port is lower than a given threshold, i.e. suppðA; �CCÞ < suppmin are removed

from P. Moreover, all predicates that have not contributed to predicates with

sufficient support upon expansion are removed from E, i.e. we eliminate all

predicates B from the set E for which

suppðA ^ B; �CCÞ < suppmin

holds for all A 2 P0. We most often use a threshold of 1%, i.e. suppmin ¼ 0:01.

This pruning strategy does not eliminate predicates that possibly become im-

portant later, since the support of a predicate cannot increase by expansion
with additional predicates. Moreover, this strategy ensures that, in each step,

the set P only contains predicates whose supports are not smaller than suppmin.

Provided that there is a predicate A 2 P which fulfills reasonable require-

ments both in terms of support and confidence, i.e.

suppðA; �CCÞP suppmin; ð2Þ
confðA; �CCÞP confmin; ð3Þ

we can add A to the final predicate set S. In case that P contains more than one

predicate fulfilling the above two criteria, the one with the highest information

gain measure is selected. Consequently, we have to eliminate all those elements

from O that have been covered by A. This is accomplished by replacing O with

the intersection of the fuzzy set O and the fuzzy set of elements in X that have

not been described by the predicate A:

TLðlOðxÞ; 1 � lAðXÞðxÞÞ ¼ maxðlOðxÞ þ 1 � lAðXÞðxÞ � 1; 0Þ
¼ maxðlOðxÞ � lAðXÞðxÞ; 0Þ:

The loop terminates if either the percentage of remaining undescribed nodes

jOj=K falls under a certain threshold (we use a typical value of (10%) or no new

significant and accurate predicates can be found by expansion anymore.
Since �AA only involves interpretable atomic predicates and logical operations,

�AA can be regarded as a natural language expression which describes the set of

those input values which also fulfill goal predicate �CC. By applying the confi-
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dence criterion (3), FS-FOIL tries to avoid that there are samples which fulfill
�AA but do not fulfill �CC. Therefore, the final result can be considered as a rule

IF �AAðxÞ THEN �CCðxÞ

interpreted in the sense of Mamdani [31,32], i.e. as a kind of conditional as-

signment instead of an implication in the strict logical sense [19,20,23,38,39].

5. The typical application: classification

The classical application of supervised machine learning is classification.
Typically, the objective of classification is the following: given n input attri-

butes (feature values) and one Boolean categorical goal attribute (m ¼ 1) with

Nnþ1 different labels (classes), we have to find a set of rules that is able to assign

a sample to one of the Nnþ1 classes according to the feature values only. Of

course, this set of rules has to be constructed such that as many samples from

the sample data set X as possible are assigned to the correct class.

FS-FOIL can handle this task, no matter whether the goal attribute is

Boolean categorical or fuzzy categorical. The typical procedure is as follows:
we consider all classes independently by running FS-FOIL for Nnþ1 times with

the following Nnþ1 goal predicates (j ¼ 1; . . . ;Nnþ1):

�CCjðxÞ ¼ x is Lnþ1;j:

Then the result is a set of Nnþ1 predicate sets Sj (j ¼ 1; . . . ;Nnþ1) which can be

joined into Nnþ1 compound input predicates �AAj by means of disjunction. The

final result is a rule base of the following form (again j ¼ 1; . . . ;Nnþ1):

IF �AAjðxÞ THEN �CCjðxÞ:

Example 1 (Wine Data Set). This data set is taken from the UCI repository [5]

and contains the results of an analysis of 178 wines grown in the same region in
Italy, but coming from three different vineyards. We used 80% of the data for

training, i.e. K ¼ 141. The analysis determined the quantities of constituents

found in each of the three types of wines (attributes Alcohol, Malic Acid, Ash,

Alkalinity of Ash, Magnesium, Total Phenols, Flavonoids, Non-Flavonoid Phe-
nols, Proanthocyanin, OD280/OD315 of Diluted Wines, and Proline) and some

optical properties (attributes Color Intensity and Hue). All together, there are

n ¼ 13 input attributes, all of which are numerical. The goal predicate is

Boolean categorical with N14 ¼ 3 different classes/labels corresponding to the
three vineyards. Accordingly, we use fuzzy predicates induced by appropriate

fuzzy sets on the domains of the numerical input attributes (see Section 3).

Although the goal predicate is Boolean categorical, the use of fuzzy predicates
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for the input predicates is not meaningless. The reason is that using fuzzy sets

allows to model regions of overlapping goal classes easier and in a more nat-
ural way than splitting the numerical attributes into Boolean classes.

We applied a simple clustering technique to find a priori configurations of the

fuzzy sets (see Section 3 and [17,18]). For each input attribute, we computed

four cluster centers and generated trapezoidal fuzzy sets around these centers.

Fuzzy sets with insufficient support (i.e. covering too few samples from the data

set) were omitted. As a result, six fuzzy sets were created for the Proline attribute

and seven for the remaining twelve input attributes (see Fig. 1).
We ran FS-FOIL three times (once for each goal class) and, thereby, a

compact set of five clauses was created – one or two for each goal class with

thresholds of suppmin ¼ 0:1 and confmin ¼ 0:8. Finally, three rules were ob-

tained (see Table 1). The computations took 4 s on a Linux workstation with a

1 GHz Pentium III� processor.

To evaluate the quality of the results, we applied the rule base to an inde-

pendent set of 37 samples and compared the result (each sample was crisply

assigned to that class for which the highest degree of membership was ob-
tained) with the classes to which the samples actually belong. Table 2 shows the

cross validation matrix, that is, the matrix of proportions to which samples

belonging to three classes (rows) were assigned to classes 1–3 by the rules we

computed using FS-FOIL (columns). Out of the 37 test samples, 34 were

correctly classified, two were incorrectly classified, and one was contradictorily

assigned to two classes.

We compared the obtained results with those retrieved from a fuzzy variant

of Quinlan’s ID3 method [40], where we used the same data sets and fuzzy
predicates to generate a decision tree. It showed, that the quality of the results

obtained from the decision tree was slightly better (only two misclassified

samples), however, the obtained rule set was much larger (five leave nodes with

an average rule length of 3) compared to the results of FS-FOIL.

12 13 14 15
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2

3

4

5

Alcohol

250 500 750 1000 1250 1500

2

4
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8

Proline

Fig. 1. Fuzzy sets for the Alcohol and the Proline attributes; the histogram bars visualize the dis-

tribution of data samples.
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6. Applications in fuzzy modeling

Since their inception [50,51], the broadest success of fuzzy systems has been

witnessed in the control area. The practical scenario in fuzzy control is slightly

different from classification, since the goal is to model a (mostly continuous)

real-valued function instead of an assignment to abstract classes. The ap-

proximation/modeling of real-valued numerical functions by fuzzy systems has

emerged as a discipline in its own right and is nowadays commonly called fuzzy
modeling [2].

FS-FOIL is well-prepared for fuzzy modeling tasks. Assume that we have n
numerical input attributes and one numerical output attribute (m ¼ 1). If the

numerical domains of all nþ 1 attributes are covered by appropriate families of

fuzzy sets (inducing corresponding fuzzy predicates), FS-FOIL can be applied

as described above without any restriction: Let us assume that we have Nnþ1

linguistic labels Mnþ1;j for the goal attribute which are modeled by fuzzy sets

lMnþ1;j
(j ¼ 1; . . . ;Nnþ1). Then we can define Nnþ1 goal predicates

�CCiðxÞ ¼ x is Mnþ1;j

and run FS-FOIL Nnþ1 times – once for each goal predicate. We obtain a set of

Nnþ1 predicate sets Sj which can be joined into Nnþ1 compound input predicates
�AAj by means of disjunction (j ¼ 1; . . . ;Nnþ1). In the same way as for the clas-

sification task, the final result is a rule base:

IF �AAjðxÞ THEN �CCjðxÞ:

Table 1

Rule set computed for the Wine Data Set

IF THEN

Rule 1 (Flavonoids IstAtLeast High AND Proline

IsAtLeast High)

Class Is 1

Rule 2 (Alcohol IsAtMost Low) OR

(Flavonoids Is High AND Alcohol Is High AND

Proline IsAtMost Low) Class Is 2

Rule 3 (OD280OD315OfDilutedWines IsAtMost Low) Class Is 3

Table 2

Cross validation matrix of the Wine Data Set with 20% test cases

Rule 1 Rule 2 Rule 3

Class 1 1. 0. 0.

Class 2 0.071 0.727 0.119

Class 3 0. 0.061 0.859
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The only question that remains is how we can interpret this rule base as a real-

valued function. In a most straightforward manner, we can simply employ
classical Mamdani inference [2,16,29,31,32]; we only need to specify three

components: (1) a method for ‘‘scaling’’ the fuzzy sets on the right-hand side

with the truth values to which the antecedents of the rules are fulfilled (most

often cutting or scaling); (2) a method for aggregating the fuzzy sets obtained

by different firing rules (most often, maximum or sum); and (3) a defuzzifica-

tion method to convert the aggregated function into one representative crisp

value (e.g. center of gravity).

Due to their simplicity, easy implementation, and computational efficiency,
a different type of fuzzy modeling technique has become a de-facto standard

through the last few years: Sugeno fuzzy systems [2,48]. Such systems work with

a different type of fuzzy rules with crisp functions in the consequent part.

Translated to the notations of this paper, a Sugeno fuzzy system consists of a

set of Nnþ1 rules of the form

IF �AAjðxÞ THEN xnþ1 ¼ fjðxÞ;

where the functions fj : X1 � 	 	 	 � Xnþ1 ! Xnþ1 may only depend on the first n
variables. Given a sample x, the output of such a fuzzy system is computed as

the following weighted sum:

xnþ1 ¼
PNnþ1

j¼1 tð �AAjðxÞÞ 	 fjðxÞPNnþ1

j¼1 tð �AAjðxÞÞ

Most often, the functions fj are constants, i.e. fjðxÞ ¼ cj, or affine linear

functions:

fjðxÞ ¼ c0;r þ
Xn
r¼1

cj;r 	 xr:

For the latter case, the name Takagi–Sugeno–Kang (TSK) fuzzy system has

become common.

FS-FOIL cannot be applied to the induction of Sugeno fuzzy systems in a

direct manner. However, it is still possible to convert the result of FS-FOIL

into such a system. Assume that we construct a rule base in the same way as

described above for the Mamdani systems, i.e. such that we have Nnþ1 goal
predicates �CCj for the (nþ 1)st attribute and Nnþ1 compound input predicates �AAj.

Then one possible variant to convert the FS-FOIL rule base into a Sugeno

fuzzy system with constant functions fj is to defuzzify the membership func-

tions associated with the goal predicates, e.g., using center of gravity,

cj ¼
R
Xnþ1

y 	 lMnþ1;j
ðyÞdyR

Xnþ1
lMnþ1;j

ðyÞdy
: ð4Þ
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A second variant is to compute the values cj from the data samples as the

average of samples weighted by the degrees to which they belong to the goal
predicate �CCj. This allows to take the distribution of samples in the individual

data set into account:

cj ¼
PK

i¼1 tð �CCjðxÞÞ 	 xinþ1PK
i¼1 tð �CCjðxÞÞ

¼
PK

i¼1 lMnþ1;j
ðxinþ1Þ 	 xinþ1PK

i¼1 lMnþ1;j
ðxinþ1Þ

:

It is necessary to mention that FS-FOIL mainly aims at compact interpretable

descriptions instead of numerical accuracy. Therefore, the methods sketched

above are inferior to modern clustering-based fuzzy modeling techniques

[2,13,45,47] in terms of the approximation error. However, the interpretability

of the resulting rule base is much better.

Example 2 (A two-dimensional example). To briefly illustrate the potential of

the proposed method for fuzzy modeling, we tried to reconstruct the following

function from data (n ¼ 2, X1 ¼ X2 ¼ ½0; 100�, X3 ¼ ½�100; 100�):

f ðx1; x2Þ ¼ x2 	 sin
2px1

100

� 	
:

We selected K ¼ 500 random samples ðxi1; xi2Þ from the range
X1 � X2 ¼ ½0; 100�2. The final data set was constructed as

X ¼ xi1; x
i
2; f ðxi1; xi2Þ


 �
j i

�
¼ 1; . . . ; 400


:

Six fuzzy sets with bell-shaped membership functions were created for the first

input attribute x1 and two for the second input attribute x2. The domain X3 of

the goal attribute has been covered by three fuzzy sets with trapezoidal

membership functions (see Fig. 2).

Then FS-FOIL was executed to create the rule base shown in Table 3 using

thresholds of suppmin ¼ 0:01 and confmin ¼ 0:6. The computations took 6 s. In
order to create the final real-valued function from the rule base, we constructed

a Sugeno system by means of defuzzification of the goal fuzzy sets (employing

the center of gravity formula, cf. (4)). Fig. 3 shows plots of the original function
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Fig. 2. Fuzzy sets for the function approximation problem.
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f and the function defined by the resulting Sugeno system evaluated for a

regular 20 � 20 grid.

We compared the obtained results with those retrieved from a fuzzy variant

of Quinlan’s ID3 method, where we used the same data sets and slightly

modified fuzzy predicates to generate a decision tree. In this example, the de-

cision tree was not able to create a suitable model, as no appropriate binary

splits could be found. The overall prediction error was about 10 times larger

then from the model created using the FS-FOIL method.

7. Supervised goes unsupervised: finding interpretable cluster descriptions

As already mentioned, the task of extracting, displaying, and describing

previously unknown clusters of similarity in large data sets is another major

issue in data mining. While there is a vast number of different clustering al-

gorithms [1,4,25,35], interpretation of the results can be very difficult. While
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Fig. 3. Test function f (left) and the function defined by a Sugeno fuzzy system constructed by FS-

FOIL (right).

Table 3

Rule base extracted by FS-FOIL for the function approximation problem

IF THEN

Rule 1 (X2 Is High AND X1 Is VeryHigh AND

X1 IsAtLeast Low) X3 Is Low

Rule 2 (X2 Is Low) OR

(X1 Is High AND X1 IsAtMost Low AND

X1 IsAtMost VeryHigh) X3 Is Medium

Rule 3 (X2 Is High AND X1 Is VeryLow AND

X1 IsAtMost High) X3 Is High
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domain experts may be able to interpret cluster centers and distortion matrices,

the non-expert is still excluded from these insights. In order to demonstrate this
substantial need, let us consider the following example: a typical application of

clustering is market segmentation, i.e. the identification of significant groups of

customers from data (e.g. information about customer, transactional data,

order history). A salesman who is not an expert in data analysis needs to have a

compact and interpretable description of the customer groups (clusters) in

order to be able to take this information in his/her daily practice into account.

FS-FOIL can be used to overcome this knowledge representation bottle-

neck. Assume that we are given a data set consisting of K n-dimensional vec-
tors, i.e. we have n numerical attributes. A clustering algorithm usually

computes a finite set of clusters that are most often characterized by cluster

centers. More advanced methods additionally use distortion matrices to handle

non-spheric clusters, too [4,22,25].

Assume that we have obtained a certain number of clusters from the n-di-

mensional data set. Let us denote this number with Nnþ1. Moreover, we can

assign a label Lnþ1;j to each cluster. No matter which clustering method we have

employed, it is in any case possible to determine the degree tnþ1;jðxÞ to which a
given sample x belongs to the jth cluster. If the clustering method is crisp, we

can consider these functions as Boolean predicates over the set of cluster labels

fLnþ1;1; . . . ;Lnþ1;Nnþ1
g. Therefore, we can construct an nþ 1-dimensional data

set by adding the cluster memberships as (nþ 1)st attribute, i.e.

X ¼ ðxi1; . . . ; xin; xinþ1Þ j i
�

¼ 1; . . . ;K

; ð5Þ

where xinþ1 is the label of the cluster to which the ith sample xi belongs. If we
employ a fuzzy clustering method, we can add an (nþ 1)st fuzzy categorical

attribute instead of a Boolean one. More specifically, this means that the

construction (5) still applies, but each feature xinþ1 is a fuzzy set on the set of

cluster labels fLnþ1;1; . . . ;Lnþ1;Nnþ1
g that is defined as follows:

xinþ1 ¼ tnþ1;1ðxiÞ; . . . ; tnþ1;Nnþ1
ðxiÞ


 �
:

In order to summarize, this means that we have added the cluster membership
as a goal attribute. In case that the clustering method is crisp, this attribute is

Boolean categorical. If we use a fuzzy clustering method, this (nþ 1)st attribute

is fuzzy categorical. Then FS-FOIL can be employed without any restriction.

Applying it to all Nnþ1 goal predicates results in Nnþ1 compound input predi-

cates �AA1; . . . ; �AANnþ1
that describe the regions in the data that belong to the dif-

ferent clusters. Since FS-FOIL employs atomic predicates and fuzzy logical

operations to build up the predicates �AAj, these can be understood as close-to-

natural-language descriptions of the clusters.
In [17,18], an approach to descriptive data analysis is presented which

performs exactly this trick to create descriptions of the clusters. It is worth to

mention, however, that the clustering is not performed on the data set as is.
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Instead, a self-organizing map (SOM) [28] is computed first to reduce the

amount of data and to eliminate noise, missing values, and outliers. The node
values of the self-organizing map are then used as input data X. For more

details and examples, we refer to [17,18].

Example 3 (Image segmentation). A typical application of clustering in com-

puter vision is image segmentation. Therefore, it seemed interesting to apply

the three-stage approach to this problem, too. Moreover, the possibility to

describe segments with natural language expressions gives rise to completely

new opportunities in image understanding and content-based image retrieval.
The example in Fig. 4 shows a noisy RGB color image with 170 � 256 ¼

43520 pixels. As input attributes, the coordinates (attributes X and Y ), the

RGB values (Red, Green, and Blue), and HSL features (attributes Hue, Satu-
ration and Lightness) were used. First, the data were mapped onto a SOM with

10 � 10 ¼ 100 nodes. Hence, the data set consisted of K ¼ 100 samples with

n ¼ 8 attributes. By applying a modified fuzzy c-means method [17,18], a set of

four clusters was generated. After adding the cluster membership as the fuzzy

categorical goal attribute as described above, FS-FOIL was executed to
compute descriptions of the four clusters. Table 4 shows these descriptions.

They can be interpreted as follows: the first cluster corresponds to the blue sky.

The second cluster mainly contains the black pants of the two skiers. The snow

is contained in the third cluster. Finally, the jackets and faces are contained in

Fig. 4. Original image (left) and its segmentation (right).
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the fourth cluster. As easy to see, the descriptions in Table 4 perfectly describe

these four areas by means of their dominant colors.

The four segments can also be visualized using a segmentation image: we

assign four different gray values to the four clusters and mark each pixel with

the gray value that corresponds to the cluster to which the pixel belongs to the

highest degree. For the given example, the segmentation image is shown in Fig.

4 on the right-hand side.

Analogously to Example 1, Table 5 displays the evaluation matrix of the
cluster descriptions. These values show that the descriptions are accurate and

significant.

Finally, let us mention that the computation of the self-organizing map took

approximately 6 s, clustering 1 s, and the computation of the descriptions by

FS-FOIL took approximately 2 s.

8. Concluding remarks

This paper has presented FS-FOIL, an inductive learning method that is able

to construct interpretable fuzzy rules from data. In contrast to other inductive

learning methods based on FOIL, FS-FOIL is able to deal with numerical and

Table 4

Cluster descriptions for the image segmentation problem

Description

Cluster 1 (Blue Is High) OR

(Red IsAtMost Low AND Blue IsAtLeast VeryHigh)

Cluster 2 Lightness IsAtMost Dark

Cluster 3 Lightness IsAtLeast Light

Cluster 4 (Hue Is Orange) OR

(Hue Is Red) OR

(Hue Is Yellow) OR

(Hue Is Green AND Lightness Is Normal)

Table 5

Evaluation matrix for the image segmentation problem

Desc. 1 Desc. 2 Desc. 3 Desc. 4

Cluster 1 0.97 0. 0. 0.

Cluster 2 0. 0.98 0. 0.

Cluster 3 0.07 0. 0.98 0.

Cluster 4 0.02 0. 0. 0.99
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fuzzy categorical attributes as well. Three different application scenarios –

classification, fuzzy modeling, and descriptive clustering – have demonstrated
the wide application potential of the this method.

Future extensions of FS-FOIL will aim in two directions. Firstly, since FS-

FOIL can handle virtually any kind of input or goal predicate, it may be

beneficial to work with relational predicates that involve two or more attributes

as well. That would open completely new opportunities in terms of compact

and interpretable descriptions. More concretely, one may think of similarity

predicates like xi is similar to xj that may be modeled by fuzzy equivalence

relations [26,29] or ordering-based predicates like xi is at least as large as xj that
may be modeled by fuzzy orderings [7,8]. Secondly, an appropriate combina-

tion of FS-FOIL with optimization techniques for finding optimal configura-

tions of fuzzy sets (e.g. RENO [24]) might lead to significant improvements of

approximation accuracy in fuzzy modeling applications, while maintaining the

superior properties of FS-FOIL in terms of interpretability.
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