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FRIwE: Fuzzy Rule Identification With Exceptions
Pablo Carmona, Juan Luis Castro, and José Manuel Zurita

Abstract—In this paper, the FRIwE method is proposed to iden-
tify fuzzy models from examples. Such a method has been devel-
oped trying to achieve a double goal:accuracy and interpretability.
In order to do that, maximal structure fuzzy rules are firstly ob-
tained based on a method proposed by Castro et al. In a second
stage, the conflicts generated by the maximal rules are solved, thus
increasing the model accuracy. The resolution of conflicts are car-
ried out by including exceptions in the rules. This strategy has been
identified by psychologists with the learning mechanism employed
by the human being, thus improving the model interpretability. Be-
sides, in order to improve the interpretability even more, several
methods are presented based on reducing and merging rules and
exceptions in the model. The exhaustive use of the training exam-
ples gives the method a special suitability for problems with small
training sets or high dimensionality. Finally, the method is applied
to an example in order to analyze the achievement of the goals.

Index Terms—Conflicting rules, fuzzy model identification, in-
terpretability, maximal rules, rule simplification.

I. INTRODUCTION

SYSTEM identification is a discipline dedicated to obtain a
model as near a system as possible from a set of examples.

These examples establish specific relations between the input
and the output of the system.

Out of the different existing techniques, fuzzy model identi-
fication [2]–[5] is noted for representing the model by means
of a collection of fuzzy rules. This representation technique,
whose universal approximator property has been demonstrated
by several authors (e.g., see [6] and [7]), also describes linguis-
tically the existing relation between the input and the output of
the system, thus taking care of the model interpretability as well
[8].

In order to achieve a high level of interpretability, the iden-
tification of rules as general as possible must be tried, so that
each rule covers the highest number of examples and, this way,
the size of the rule base could be diminished. Nevertheless, ob-
taining those general rules can provoke that conflicting zones
arise where rules with different consequents coexist, affecting
negatively to the aforementioned interpretability.

In this paper, a strategy is proposed to solve these conflicts
from the information available in the examples contained in the
conflicting zone. This resolution will be carried out by including
exceptions in the rules, which will allow to reduce the number of
rules in the model and to increase, this way, its interpretability.
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In Section II, the technique to obtain maximal rules to identify
the system is expounded. In Section III we introduce a method
for the conflict resolution and its representation by means of
exceptions. Section IV describes several strategies to increase
the model interpretability. Finally, the results obtained from ap-
plying the proposed FRIwE method to an example are analyzed
in Section V.

II. LEARNING MAXIMAL STRUCTURE FUZZY RULES

Castro et al. present in [1] a strategy to learn mul-
tiple-input–single-output systems from a set of

examples . Each example takes the form
, where is the value of the th input

variable and is the value of the output variable. Although the
strategy in [1] has been applied into classification problems, the
method can be extrapolated to other identification problems.
The identified model is represented by means of a set of
maximal rules of the form

if is and and is then is (1)

which, for short, we will sometimes denote as

Each is a set of labels associated disjunctively with the
th input variable and taken from their respective fuzzy domain

, and is the label associ-
ated with the output variable and taken from its fuzzy domain

. The rules described in this form will
be called compound rules. Furthermore, when using the notation
presented in (1) a premise will be omitted if the labels associ-
ated with the variable equals its entire fuzzy domain, since this
premise will be unnecessary.

The summary of the learning algorithm proposed in [1] is the
following.

1. Transform the examples in initial rules.
2. For each initial rule:

2.1. If the rule does not subsume in any definitive rule:
2.1.1. For each label in each input variable:

2.1.1.1. If the amplification of the rule is
possible, amplify it.

2.1.2. Store the amplified rule in the set of definitive
rules.

In order to transform the examples into initial rules each value
and is associated with the label having the highest mem-

bership degree out of all contained in the respective fuzzy do-
main.
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Fig. 1. Fuzzy domains of input and output variables.

TABLE I
R AMPLIFICATION REACHES REGIONS NOT COVERED BY R

Amplifying a rule consists in adding a label to one of its input
variables in the antecedent. An amplification from to is
possible if does not conflict with any initial rule, i.e., if no
initial rule exists so that , for all , and

.
As mentioned before, in this paper some modifications have

been added to the original algorithm. One of them is introduced
in the step 2.1 and consists in also trying to amplify the ini-
tial rules that subsume in other definitive rules. That way, some
regions of the input space not covered by the existing defini-
tive rules could be finally covered, since the amplification stems
from a region different from the previous ones.

Example 1: Suppose a system with two inputs and one
output whose domains have been partitioned as shown in
Fig. 1, and a training set from which four initial rules have
been derived [Table I, upper left section]: ,

, , and .
After the amplification of the initial rule , the
definitive rule will be obtained, due to
the initial rules with consequents different from located in
the input fuzzy regions ( , ) and ( , ) [see Table I, upper
right section]. Next, the initial rule , despite
subsuming in the previous definitive rule, will reach regions of
the input space not covered at this moment during its amplifi-
cation, obtaining the definitive rule as
illustrated in Table I, lower section.

However, it must be noticed that this improvement can cause
that the amplification of an initial rule that subsumes in some
definitive rule gives rise to a rule that also subsumes in it. There-

fore, in order to delete possible redundancies, it will be verified
if the previous situation occurs after every amplification, com-
paring the rule that has been just amplified with those rules in
which it initially subsumed, that is, before the amplification.

Furthermore, it must be regarded that the initial rules ob-
tained from the examples could come into conflict if they have
the same antecedents but different consequents. Therefore, it is
necessary to design a mechanism to determine which of those
conflicting initial rules must be amplified. The method con-
sists in working out the certainty degree of every initial rule
from the positive and negative examples that the rule presents
in the training set and processing all the initial rules in descen-
dant order according to their certainty degrees, rejecting any rule
with the same antecedent as another rule previously processed.
Besides, this order introduces a heuristic criterion for processing
the initial rules, amplifying the rules with highest certainty de-
gree first.

In this paper, a certainty degree measure is proposed which
extends the one presented in [9], adapted to rules with fuzzy
consequents.

Definition 1: Given a rule
( , ) and a set of examples

where each example takes the form
, the certainty degree of over is de-

fined as

(2)

where is the number of labels in the output fuzzy domain ,
and

Thus, this measure is based on the covering degrees
presented over the training set by

the rules that can be defined over the input fuzzy region
. A rule with covering degree

above the mean of the rest of the rules (rules with consequent
different from ) will take a positive certainty degree,
whereas the rule will take a negative certainty degree in the
opposite situation. If no examples cover the region delimited
by the antecedent a certainty degree equal to 0 will be assigned
to the rule, thus indicating a neutral certainty degree.

It must be noticed that this measure is defined on single rules
(i.e., with only one label associated to each input variable). Nev-
ertheless, this is not a problem, because the certainty degree will
only be necessary for this type of rules.

Thus, the identification algorithm over which we will work
in this article is the following.

LMSFR algorithm
1. Transform the examples in initial rules, removing
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TABLE II
TWO-INPUT, ONE-OUTPUT FUZZY MODEL

redundant rules and ordering the rest in descending
order according to their certainty degrees.

2. For each initial rule which does not conflict with any
initial rule previously processed:
2.1. For each label in each input variable:

2.1.1. If the amplification of the rule is possible,
amplify it.

2.2. If the amplified rule does not subsume in any
definitive rule, store it in the set of definitive rules.

Example 2: Suppose a system with two inputs and one
output consisting in the fuzzy relation generated by the model
in Table II. Next, it will be tried to identify this model stemming
from the following training set:

In order to do that, suppose that the model will use the fuzzy
partitions shown in Fig. 1 during the identification process.
First, the identification algorithm will obtain the following set
of initial rules and their associated certainty degrees:

This set will be reduced to the set of rules shown here once
the redundancies are removed and the rest of rules are ordered

As described in Example 1, the amplifications of the first and
the second initial rules give the definitive rules:

Due to the initial rules and , the rule can not
be amplified through the dimension of variable but it will

extend all over the domain of variable . Therefore, the am-
plified rule will be

Similarly, due to the initial rule , the rule will pro-
duce the amplified rule

The last rule will not be amplified, since it comes into
conflict with the previous initial rule.

III. ADDING EXCEPTIONS TO FUZZY RULES

In the previous algorithm, the search of rules as general as
possible causes that different consequents can coexist in some
fuzzy regions of the input space. Next, a strategy is proposed to
solve these conflicts.

During the learning process presented before, the informa-
tion contained in the examples is used only for the extraction
and ordering of the initial rules. From that moment, the ampli-
fication of a rule to a certain input fuzzy region only depends
on whether this region is or not occupied by any other initial
rule. Therefore, this process ignores the information that could
be contained in the training set about such a region. The basis
that will support the approach proposed here to solve the con-
flicts consists in taking advantage of this information.

A compound rule of the form presented in (1) is equivalent
to a conjunction of single rules with just one label associated to
each input variable. For example, the compound rule

if is and is then is

is equivalent to the single rules

if is and is then is

and

if is and is then is

Therefore, the set of single rules involved in a conflict can
be isolated in order to select one of them according to a certain
criterion. For this goal, a certainty degree for each single rule
involved in the conflict will be calculated from the number of
positive and negative examples that each rule presents in the
training set, using the same measure described in (2).

However, regarding the strategy to solve conflicts, it must be
noted that the main goal of the amplification is for the amplified
rules to be as general as possible linguistically. Thus, the finally
obtained consequents in an input subspace do not mean to be the
best, since their values are determined by initial rules that can be
far away from the subspace under consideration. For example, if
a rule located in a vertex of the input space reaches the opposite
vertex in the amplification, it does not seem that the single rule
obtained in this last vertex has to be better than any other single
rule located in that place.

Therefore, when solving a conflict, although it must be tried
to restrict the selection of the best consequent to those involved
in the conflicting rules in order to obtain maximal rules, it seems
desirable to extend the space of selection if none of those rules
has a sufficient degree of certainty. For that reason, a threshold
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is established on the certainty degree in order to decide whether
the search of the best rule must be extended to all the possible
rules for the fuzzy conflicting region.

Next, trying to delimit the range of possible values to that
threshold, two properties fulfilled by the measure in (2) are enu-
merated.

Property 1: The certainty degrees for all the possible rules
with the same antecedent add up to zero. That is

Proof: For clearness, we denote and

by means of and , respectively. Thus,
since

it results that

Property 2: Each rule having a consequent that is not cov-
ered by the output of any example covering its antecedent will
take a certainty degree equal to . That is

where .
Proof: Using the same notation adopted before, since

then

Proposition 1: Given the example set , a rule with a cer-
tainty degree higher or equal to is the rule

with the highest certainty degree among the possible rules with
the same antecedent. That is

then

Proof: Let be the number of consequents covered by the
examples in the input fuzzy region under consideration. Because
of Property 2, rules will take a certainty degree equal to

, and due to Property 1 the remaining rules will
comply with

i. For : Since

clearly if (respectively,
), then (respectively,

).
ii. Suppose the above proposition being true for . Given a

set where

and so that a exists, without
the loss of generality we can assume

, and thus
. Now, denote

Then

and, provided that the proposition is true for and there
exists ,
then is the rule with the highest certainty degree.
Therefore, the proposition is true for .

Based on these results, the interval will
be considered as the range of possible values for the threshold

. On the one hand, a threshold below 0 would be insufficient,
since it would allow the selection of rules with a weight below
the mean. On the other hand, a threshold over
would be inadequate, since it would not yield to a better result
when selecting the best rule and it would cause an increase in the
number of rules to be considered during the conflict resolution,
thus increasing the computational cost.

Once the best rule is selected, it will be necessary to modify
the rest of compound rules involved in the conflict. In this re-
spect, when several conflicting rules have the highest certainty
degree, the rule having the consequent with the highest number
of occurrences in the conflicting region will be selected, since it
can exist more than one rule with the same consequent between
the rules in conflict. This strategy tries to reduce the number of
compound rules to be modified as much as possible.



144 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 12, NO. 1, FEBRUARY 2004

The procedure to modify the compound rules consists in
adding exceptions to them. An exception is an -tuple of labels

that defines the fuzzy region of the input
space where the compound rule is not applied.

The use of exceptions entails an improvement in the model
expressiveness with respect to the traditional description
methods, since it allows to decrease the number of rules
necessary to describe the model.

Example 3: This fact can be observed in the example in
Table II. The number of single rules describing the model is

rules. A description using the usual technique,
which associates an input subspace having the same output
(consequent) with the antecedent of each rule gives at least six
fuzzy rules. For example

if is then is

if is and is then is

if is and is then is

if is and is then is

if is and is then is

if is and is then is

However, the same model can be described with only five
rules using exceptions

if is then is

if is and is

if is and is then is

if is and is then is

if is and is then is

if is and is then is

equivalent to

if is then is

excepting if is and is then is

if is and is then is

if is and is then is

if is and is then is

improving the interpretability of the model.
Moreover, several authors from the field of psychology

[10], [11] have supported that the human mental model for
the classification process (a type of identification) is based
on extracting a set of imperfect rules to which occasional
exceptions are added. This fact strengthens the belief that a
model describing the system by means of rules with exceptions
will be easier to interpret for the human being.

The following algorithm describes the proposed method to
solve conflicts.

FRIwE algorithm
1. For each fuzzy region of the input space where two or

more different consequents coexist do:
1.1. Work out the certainty degrees of the single rules

involved and select the highest .

TABLE III
CONFLICTS IN THE IDENTIFIED RULE BASE

1.2. If reaches a threshold , go to step 1.5.
Otherwise, continue on step 1.3.

1.3. Search among the rest of possible rules for one with
a certainty degree higher than .

1.4. If that rule exists, select it as the best rule (adding a
new compound rule) and go to step 1.6. Otherwise,
continue on step 1.5.

1.5. If there are more than one different single rule with
the highest certainty degree between the
conflicting rules, select the one appearing more
times in the conflicting region. If all appear the
same times, selectone of them (for example,
the first one).

1.6. Delete each single rule different from the selected
one.

1.7. For each deleted simple rule, form the appropriate
exception and add it to its respective compound
rule.

Example 4: Consider the rule base from Example 2 ob-
tained by means of the original identification algorithm without
solving conflicts. This rule base presents several conflicts, as
can be observed in the Table III.

In order to describe the procedure for solving conflicts, a
maximum threshold is selected in
this example. The algorithm proposed here begins solving the
conflict located in the fuzzy region ( , ), where the single
rules

coexist, corresponding to the amplified rules and , re-
spectively. Once their certainty degrees have been calculated
( and ) the rule with the
highest degree surpassing the threshold will be selected, there-
fore removing the single rule by adding an exception to the
rule

The next conflict ( , ) arises from the rules

and, thus, the rule is selected and the amplified rule
adds a new exception
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The next conflicting fuzzy region ( , ) is not covered by any
example. Then, the conflicting rules

take a certainty degree equals to 0. This causes a search expan-
sion to the rule , that will also present a
certainty degree 0 for the same reason. Since the available in-
formation does not allow to establish a preference among the
rules, the first rule initially in conflict is selected, giving rise to
the following modification:

Finally, the conflict between the rules

leads to a search expansion again, and now the rule
is selected, since its certainty degree sur-

passes 0.39, the highest degree between the previous ones.
This causes the inclusion of new exceptions into the rules
and and the addition of a new rule . This way, the final
rule base will be

obtaining a model as the one trying to be identified.

IV. IMPROVING THE INTERPRETABILITY

The model generated using the algorithm described in the pre-
vious section can still improve its interpretability in different
ways. Next, several strategies are described for that goal.

A. Reducing Fuzzy Rules

The interpretability of the compound rules can increase if the
set of exceptions of a rule is reduced by deleting labels from its
antecedent. This happens when the -dimensional sub-
space delimited by a label in the antecedent is totally excluded
due to a subset of rule exceptions. For example, the rule

if is and is then is

if is and is

if is and is

could be reduced to the rule

if is and is then is

since the subspace delimited in by the label of
is totally excluded due to the rule exceptions.

It must be taken into account that compound rules that ini-
tially do not subsume in other definitive rules could finally sub-
sume due to the rule reduction. Thus, this fact must be verified
after the reduction and, if it is the case, the redundant rule must
be removed.

Next, an algorithm is described that will be called whenever
an exception is added to a rule during the conflict resolution.
This algorithm will decide if a reduction can be carried out and,
if that is the case, will accomplish it.

Rule reduction algorithm
1. Given the compound rule

with exceptions
, where

is the new exception added to that rule.
2. For each from 1 to do:

2.1. Set up a set of exceptions taking in the
th element of every exception and taking the

different combinations of the labels from
, in the rest of

elements. That is,
.

2.2. If then set and
, and go to step 3.

3. If the reduced rule subsumes in some other compound
rule, delete it.

Although generally a rule could lose more than one label in
the reduction process, due to the order for solving conflicts es-
tablished by the algorithm in the previous section, this will never
happen. Hence, a jump to step 3 occurs when a reduction has
taken place.

Example 5: Suppose that the rule
with exceptions

adds a new exception ( , , )
during the conflict resolution, resulting in .

The spatial representation of this rule is shown in Fig. 2,
where the latest exception is marked with a star and the rest with
crosses.

Reduction begins taking the first label from the new ex-
ception and setting up a set of exceptions containing in the
first position and containing the different combinations from
the sets and in the rest of positions, that is,

. Since is not
included in , the label associated with is not removed.

Next, the second label from the exception is taken and the
set

is set up.
Since , the set is subtracted from and
the label from is removed, giving the reduced rule

with exceptions
.

Before ending the reduction process, it will be verified if the
reduced rule subsumes in some other rule, in order to remove it
if that is the case.
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Fig. 2. R rule before the reduction in Example 5.

Example 6: The rule base obtained from Example 4 can also
benefit from the reduction process, yielding to the rule base

easier to be interpreted.

B. Merging Fuzzy Rules

In the algorithm presented in Section III, a rule is added to
the set of definitive rules when the selected rule is not one of
the conflicting ones (step 1.4). This can lead to a considerable
increase in the number of rules with respect to the one obtained
by the original identification algorithm. In order to minimize
this increase, it must be tried to merge that rule with any of the
existing compound rules after the addition of a new rule.

Proposition 2: A rule with ex-
ceptions could be merged with another
rule with exceptions

if the following are fulfilled.

1) .
2) There exists an so that .
3) , for all .
The result will be a new rule

with exceptions .
Rule merging must also be tried after rule reduction, since the

merging condition could be satisfied if the rule loses a label in
the antecedent along the reduction process. Because of that, this
merging will be tried in step 3 of the algorithm presented in the
previous section, once it has been verified that the rule does not
subsume in other rules.

The method is recursive, since the merged rule could satisfy
the merging condition with respect to some other existing in
the rule base. The following algorithm describes the method for
merging rules.

Fig. 3. Rules to be merged: R (circles), R (squares), R (diamonds), and
R (pentagram).

Rule merging algorithm
1. Given the compound rule with

exceptions trying to be merged.
2. If there is another rule with

exceptions in the set of definitive
rules so that it is possible to be merged with :
2.1. Replace the rules and by the rule

with
exceptions .

2.2. Try to merge .

Example 7: Suppose a rule base containing the rules

excepting

and that the rule is added during
the conflict resolution (see Fig. 3).

The rules and can be merged, since they only
differ in the set of labels related to , resulting in

. Next, this rule can be merged
with , since they only differ in the set of labels associated
with , giving the rule .
Finally, this rule merges with , from which it only differs in
the set of labels related to , finally merging the four rules in

excepting

C. Merging Exceptions

Until now, exceptions have been described as -tuples of la-
bels that define fuzzy regions in the input space similar to the
ones defined by the antecedents of single rules. Therefore, the
exceptions expressed in that way can be considered single ex-
ceptions.
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Trying to increase the model interpretability, the concept of
compound rule can be translated to the representation of excep-
tions, giving rise to compound exceptions. Thus, a compound
exception can be defined as an -tuple ,
where .

In order to obtain a description as compact as possible by
means of exceptions, it is necessary to state a mechanism for
merging exceptions in a similar way to that for merging rules ex-
plained in the previous subsection. Nevertheless, whereas rule
merging runs on line (i.e., it is done during conflict resolution),
exception merging will run off line (i.e., once the final excep-
tions of every rule have been obtained). This is due to the use of
single exceptions in the rule reduction procedure.

Proposition 3: An exception could
merge with another one if the following
are fulfilled.

1) There exists an so that .
2) , for all .
The result of the merger will be a new exception

.
The following algorithm describes the method for merging

exceptions.

Exception merging algorithm
1. Given the set of exceptions and the

exception trying to be merged .
2. If there exists a , so that it is possible to merge

and :
2.1. Replace the exceptions and by the exception

.
2.2. Try to merge .

This recursive algorithm will be called for each rule while any
of its exceptions can be merged.

Example 8: Suppose that a rule with the set of the following
exceptions results from the conflict resolution:

The first run of the previous algorithm tries to merge . As
a result, this exception is with , producing the set of merged
exceptions:

In the second run, the exceptions and will be merged
firstly and, due to the recursive characteristic of the algorithm,
the resulting exception will be merged with , giving the set

Since the exceptions can not be merged anymore, this set will
be the final set of exceptions.

Fig. 4. Output surface for the generalized Rastrigin’s function.

V. EXPERIMENTAL RESULTS

In order to analyze the interpretability results of the FRIwE
method proposed in this paper, it was applied to the approxima-
tion of the two-dimensional system described by the generalized
Rastrigin’s function [12], and the possible gain obtained when
using exceptions will be illustrated. Furthermore, the approxi-
mation capacity of the method will be evaluated applying it to
the identification of an example designed by Friedman to eval-
uate MARS algorithm [13], an identification method based on
regression techniques. The example consists in a system with
four inputs and one output described by an alternating current
series circuit. The reason for selecting this example lies in the
considerable dimensionality of the input space, in order to an-
alyze the approximation ability of the method when applied to
systems that are difficult to identify. In order to check the ac-
curacy and interpretability levels achieved with respect to other
identification methods, the proposed method has been compared
with the identification method proposed by Wang and Mendel
[14], which is traditionally used to compare results and, thus,
allows to establish comparisons with other fuzzy model iden-
tification methods through it. Besides, the results from MARS
algorithm presented in [13] are shown for the second example,
although, in this case, the comparison is only feasible with re-
spect to the accuracy achieved by the model, due to the different
nature of the techniques.

A. Example 1: Generalized Rastrigin’s Function

The function to be identified is described by the following
equation:

(3)

This function is a multimodal function whose output surface
is shown in Fig. 4. The low dimensionality of the system will
help us to analyze the interpretability of the resulting models.

1) Data Base: The fuzzy model has two input and one
output fuzzy variables. The fuzzy domains for all the variables
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Fig. 5. Fuzzy domains of the input and output variables.

were defined using five linguistic labels with triangular mem-
bership functions, as it is shown in Fig. 5. The real domains of
the input variables were normalized by means of the appropriate
scale factors , , and , and the
shift constants , , and .

2) Experiments: The FRIwE method were compared with
the Wang and Mendel method [14]. The approximation capacity
of both was evaluated through the mean square error

In order to do that, five different test sets where used for each
model, each of them with 500 examples . With this
strategy, it can be provided, not only the global error as the mean
of those five errors, but the reliability degree of such an error by
means of the standard deviation.

The experiments were carried out using three training set
sizes: 10, 20, and 50 examples. For each size, 100 simulations
of the FRIwE and the Wang and Mendel method were run, using
a different training set in each of them.

In order to complete the rule base generated from the Wang
and Mendel method and, thus, to estimate the model error, an
average value was assigned to all the fuzzy regions to which
the identification algorithm did not assign a fuzzy output.

3) Results: In Table IV(top) the average global errors of the
models for each training set size are shown, along with the stan-
dard deviations for the different simulations (in parentheses).
The standard deviations represent the dependence of the results
from the specific training sets. Although results from the FRIwE
method were obtained for both minimum and maximum thresh-
olds ( and , respectively), the table only includes
the former since it always performs better.

It can be observed that the FRIwE method presents the best
accuracy results for all the training set sizes. Furthermore, the
decreasing standard deviation of FRIwE method shows the
largest independence from the training set.

Table IV (bottom) shows the average number of rules rep-
resenting the models obtained from Wang and Mendel’s and
FRIwE methods. Again, the FRIwE method achieves the best
results, besides presenting a smoother increase in the number
of rules along the training set size. It provides a degree of in-
terpretability better than the model by Wang and Mendel and
roughly independent from the training set size.

In order to illustrate the best interpretability of the FRIwE
method, Table V shows an instance of the fuzzy models
achieved with the FRIwE method one using a training set

TABLE IV
RESULTS FOR THE GENERALIZED RASTRIGIN’S FUNCTION

TABLE V
DESCRIPTION OF A MODEL OBTAINED FROM THE FRIwE METHOD USING

RULES WITH EXCEPTIONS (TOP) AND IN TABULAR FORM (BOTTOM)

with 50 examples. The model appears described by means
of rules with exceptions (Table V (top)) and in tabular form
(Table V (bottom)). Fig. 6 shows the output surface of the
model. The model is described with only seven rules and one
exception and provides an MSE equal to 0.0234. Moreover,
as can be observed, the antecedent of rule coincides with
the exception in rule and, therefore, the former could be
integrated as an extension of the exception in :

excepting

diminishing the number of input subspaces to be considered for
the model description.

B. Example 2: An Alternating Current Series Circuit

In this example, the system consists in the alternating current
series circuit represented schematically in Fig. 7. This system
involves a resistor , an inductor , and a capacitor . Besides,
a generator places a voltage
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Fig. 6. Output surface of a model obtained from the FRIwE method.

Fig. 7. Alternating current series circuit.

across the terminals and , where is the angular frequency.
The amplitude of the electric current is governed by the
impedance of the circuit, which can be obtained from the
component values in the circuit through the equation

(4)

The identification problem consists in approximating this
function in the input range

where .
1) Data Base: The fuzzy model used to describe the system

has four fuzzy input variables ( , , , and ) and one output
variable . The fuzzy domains for all the variables were the
same as in the previous example (Fig. 5). The real domains of the
input variables were normalized by means of the scale factors

, , , and and the
shift constants , , , and

TABLE VI
RESULTS FOR THE ALTERNATING CURRENT SERIES CIRCUIT

. The varying range of the impedance for the input subspace
under consideration could be determined from (4) and it was
normalized by means of a scale factor and a shift
constant .

2) Experiments: As mentioned previously, in this ex-
periments the results from FRIwE method were compared
additionally with the ones presented in [13] generated by the
MARS algorithm. The approximation capacity of the methods
was evaluated in this case through the scaled mean square error:

where is the variance, because it was the index used by
Friedman in his paper. As in the previous example, five different
test sets where used for each model, but now with 1000 exam-
ples each due to the higher dimensionality.

Training sets with 50, 100, 200, and 400 examples were con-
sidered and 20 simulations were run for each size. The results
obtained from MARS were extracted directly from [13], avail-
able for training sets with 100, 200, and 400 examples.

Again, for error estimation purposes, the models from the
Wang and Mendel’s method were completed with rules having
as consequents the central value of the output fuzzy domain.

3) Results: Table VI (top) shows the accuracy results ob-
tained for this example, using again a minimum threshold

in the FRIwE method. The results were similar to the ones
obtained in the previous example, achieving the FRIwE method
the best fitting with the system for all the training set sizes (re-
sults are not available for MARS algorithm with ).

Table VI (bottom) shows the interpretability results. The
MARS method is not compared, since it does not provide the
model as a set of rules. As in the previous example, the FRIwE
method achieves higher compactness in the description of the
model.

In order to assert the best fitting of the FRIwE method,
Fig. 8 shows the global error obtained for each simulation with

and the ones obtained from the Wang and Mendel’s
methodm, along with its standard deviations. In all the simula-
tions, the proposed method results in a better performance, and
the standard deviations provide a high degree of credibility for
the calculated errors. Similar results were obtained for the rest
of training set sizes.
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Fig. 8. SMSE variations (N = 400).

VI. CONCLUSION

In this paper, a method is proposed for fuzzy model identifi-
cation with maximal rules. On the one hand, this method tries to
extract as much as possible information from the training exam-
ples. For that aim, it makes use of them, firstly, for the extraction
of a set of initial rules and, secondly, for solving the conflicts
caused by the amplification of the initial rules. This maximum
exploitation of the training examples makes the method suitable
in situations where the training set reveals insufficient for other
methods, either due to the lack of examples, or because of the
high dimensionality of the input space.

On the other hand, the model interpretability must be consid-
ered essential in the fuzzy model identification framework, since
that linguistic interpretability is the feature that distinguishes
these techniques as opposed to others. In this sense, the inclu-
sion of exceptions into the rules is proposed as the method for
representing the resolution of conflicts, which leads to a more
compact model description. Furthermore, several strategies are
proposed that increase the model interpretability even more,
such as rule reduction, rule merging, and exception merging.

VII. FUTURE RESEARCH

One of the main research lines currently under consideration
is directed toward reducing the computational cost of the
method, mainly in systems with a high dimensionality (more
than five or six input variables). As possible solutions currently
under consideration, the authors propose a preprocessing that
allows to select the most significant input variables, or the use
of low-dimensional expansion techniques to decompose the
system in a set of simpler subsystems, each of them establishing
a relation between a subset of the inputs and the output.

The limitation in the number of exceptions that a rule have
associated is another issue to be considered. Rules with an

excessive number of exceptions could conflict with the inter-
pretability goal. With this aim, the inclusion of an exception to
a rule could be represented either by adding a new exception
to the rule or by dissecting the rule in two new rules with a
few exceptions attached, depending on some interpretability
criterium.

Other alternatives consist in either optimizing the proposed
method, perhaps achieving a compromise between the model
interpretability and the computational cost, or looking for cer-
tainty measures more efficient than the proposed by Ishibuchi et
al., which has a considerable computational cost when applied
to large training sets.
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[2] R. Babuška, Fuzzy Modeling for Control. Norwell, MA: Kluwer, 1998.
[3] J. Espinosa and J. Vandewalle, “Constructing fuzzy models with lin-

guistic integrity from numerical data-AFRELI algorithm,” IEEE Trans.
Fuzzy Syst., vol. 8, pp. 591–600, Oct. 2000.

[4] H. Hellendoorn and D. Driankov, Eds., Fuzzy Model Identifica-
tion. Berlin, Germany: Springer-Verlag, 1997.

[5] I. Rojas, H. Pomares, J. Ortega, and A. Prieto, “Self-organized fuzzy
system generation from training examples,” IEEE Trans. Fuzzy Syst.,
vol. 8, pp. 23–36, Feb. 2000.

[6] B. Kosko, “Fuzzy systems as universal approximators,” in Proc. 1st
IEEE Int. Conf. Fuzzy Systems, 1992, pp. 1153–1162.

[7] J. L. Castro, “Fuzzy logic controllers are universal approximators,”
IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 629–635, Aug. 1995.

[8] S. Guillaume, “Designing fuzzy inference systems from data: An
interpretability-oriented review,” IEEE Trans. Fuzzy Syst., vol. 9, pp.
426–443, June 2001.

[9] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Construction of
fuzzy classification systems with rectangular fuzzy rules using genetic
algorithms,” Fuzzy Sets Syst., vol. 65, pp. 237–253, 1994.

[10] R. M. Nosofsky and T. J. Palmeri, “A rule-plus-exception model for clas-
sifying objects in continuous-dimension spaces,” Psycho. Bullet. Rev.,
vol. 5, no. 3, pp. 345–369, 1998.

[11] R. M. Nosofsky, T. J. Palmeri, and S. C. McKinley, “Rule-plus-excep-
tion model of classification learning,” Psychol. Rev., vol. 101, no. 1, pp.
53–79, 1994.

[12] A. Törn and A. Zílinskas, Global Optimization. Berlin, Germany:
Springer-Verlag, 1989, vol. 350.

[13] J. Friedman, “Multivariate adaptive regression splines (with discus-
sion),” Ann. Statist., vol. 19, pp. 1–141, 1991.

[14] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from
examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1415–1427,
Dec. 1992.

Pablo Carmona was born in Badajoz, Spain, in 1969. He received the M.Sc. and
Ph.D. degrees in computer science from the University of Granada, Granada,
Spain, in 1994 and 2003, respectively.

He is currently a Research Professor with the Department of Computer Sci-
ence at the University of Extremadura, Badajoz, Spain, and was a Visiting Pro-
fessor with the Department of Electronics and Computer Science at the Univer-
sity of Southampton, U.K., in 1999, and with the Department of Computer Sci-
ence and Artificial Intelligence at the University of Granada, in 2001 and 2002.
His research interests include linguistic fuzzy modeling, machine learning, and
model-based fuzzy control.

Dr. Carmona is a Member of the European Society of Fuzzy Logic and Tech-
nology (EUSFLAT).



CARMONA et al.: FRIwE: FUZZY RULE IDENTIFICATION WITH EXCEPTIONS 151

Juan Luis Castro received the M.S. and Ph.D. degrees, both in mathematics,
from the University of Granada, Spain, in 1988 and 1991, respectively. His dis-
sertation was in logical models for artificial intelligence.

He is currently a Research Professor in the Department of Computer Science
at the University of Granada and is a Member of the Group of Intelligent Sys-
tems within this Department. He has published approximately 40 journal and 50
congress papers, and is the author of three books on computer science. His re-
search interests include neural networks, fuzzy systems, machine learning, and
related applications.

Dr. Castro is Co-Editor-in-Chief of the journal Mathware and Soft-Com-
puting, and serves as a reviewer for some journals and international conferences.
He is a Member of the Editorial Board of the European Society on Fuzzy Logic
and Technology (EUSFLAT), and he coordinates the Neuro-Fuzzy Working
Group of this Society.

José Manuel Zurita received the M.Sc. and Ph.D.
degrees in computer science, both from the Univer-
sity of Granada, Granada, Spain, in 1991 and 1994,
respectively.

He is currently a Research Professor with the
Department of Computer Science and Artificial
Intelligence at the University of Granada. His current
main research interests are in the fields of fuzzy
and linguistic modeling, fuzzy rules-based systems,
knowledge based systems, knowledge acquisition,
and fuzzy expert systems.

Dr. Zurita is a Member of the Group of Intelligent Systems with this Depart-
ment and a Member of the European Society of Fuzzy Logic and Technology
(EUSFLAT).


