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Abstract 

An on-line approach for rule-base evolution by 
recursive adaptation of rule structure and parameters in 
is described in the paper. An integral part of the 
procedure is to maximise the model transparency by 
simplifying the fuzzy linguistic descriptions of the 
input variables. The rule base evolves over time and 
utilising direct calculation approaches and hence 
minimising the reliance on the use of computationally 
expensive techniques, such as genetic algorithms, An 
on-line version of subtractive clustering recently 
introduced by the authors [ 11 is used for determination 
of the antecedent part of the fuzzy rules. Recursive 
least squares estimation [2]-[3] is employed to 
determine the parameters of the consequent part of 
each rule. The use of these efficient non-iterative 
techniques is the key to the low computational 
demands of the algorithm. The application of similarity 
measures improves the interpretability and 
compactness of the resulting eR model, with no 
significant detriment to the model precision. A time 
series prediction problem on data from a real indoor 
climate control (ICC) system has been considered to 
test and validate the proposed model simplification 
method. 

1. Introduction 

Fuzzy rule-based (IXB) models, and especially 
Takagi-Sugeno flS) models [4], are widely used to 
represent complex non-linear systems. These models 
are also (relatively) easy to identify and their structure 
can be readily analysed [5]. Effective identification 
techniques treating the antecedent and consequent 
parts of the model [6]-[8] and methods for analysis of 
the stability of controllers based on these models [9] 
has been developed. 

Alternative techniques for identification of both model 
structure and parameters that are, in principle, non- 
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linear optimisation problems, include direct use of 
genetic algorithms [lo]-[ 121 or gradient-based back- 
propagation [13]. The advantage of the latter is the 
higher precision that is gained by solving the 
parameter and structure identification simultaneously. 
These approaches include identification of the 
antecedent and the consequent part of fuzzy rules and 
their parameters [lo]-[ 113. The former approach ([ 11, 
[6] and [8]) is superior in terms of computational 
requirement. This is particularly evident when non- 
iterative clustering approaches (mountain [8] or 
subtractive [6] clustering instead of fuzzy-C-means 
[14]) are used. Both approaches are sometimes 
combined [ 11, [7] for this reason. 

All these methods could be classified as data-driven 
rulehowledge extraction. Expert knowledge plays a 
minor, if any role. This tendency in fuzzy model 
identification is typical in recent research, particularly 
over the past few years. One reason for the growing 
interest in these techniques could be due to the ease by 
which data can be gathered and distributed. At present, 
the real issue in many industries and organisations is 
how to effectively cope with the information in 
exponentially growing data-bases. This is especially so 
where the information is qualitative and imprecise. 

One important aspect of real problems is the necessity 
to adapt models and systems in accordance with the 
changing environmental conditions. Current techniques 
do not accommodate this requirement [ 151. Linear 
models and linear control theory have been developed 
to the point of effective solutions for these problems 
[16]. Complex, non-linear and linguistic models and 
systems have not. In [l] authors originally introduced 
an effective approach for recursive on-line 
identification of TS models. In this paper this approach 
is developed further by the application of a model 
simplification methodology. 

A brief summary of existing approaches for (off-line) 
identification of TS models is given with emphasis on 
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non-iterative combination of clustering and linear least 
squares. evolving Rule-based (eR) models are 
considered as a tool for intelligent adaptation of 
complex systems description. The basic mechanism for 
rule-base evolution is presented followed by the rnodel 
simplification procedure. In section 4 a time-series 
prediction problem is considered for testing and 
validation of the simplification methodology. After the 
analysis of the results conclusions are given. 

1. (Off-line) identification of TS models 

Takagi-Sugeno model [4] could be represented as: 

R ;: IF (XI  is LVi,) ... AND (x,, is LV;,,) 
THEN (yi= pilxl+. .. +pi,,x,,+qi); i=l , .  . .,NR , (1) 

where Ri denotes the irh fuzzy rule, NR is the number 
of rules, x is the input vector x=[x,,x Z . . . . , ~ , , ~ T  and L V ~  
denotes f h  linguistic variable of the antecedent part for 
the i'h fuzzy rule (j=1,2, ..., n). yi is the output of the i"l 
rule and pij and qi are parameters of the consequence. 
The model output is calculated by weighted averaging 
of the individual rule contributions using the centre of 
area de-fuzzification operator. 

TS models are quasi-linear in nature [17]; they result 
in smooth transition between linear sub-models, which 
are responsible for separate sub-space of states. This 
property allows separating the identification problem 
into two sub-problems: 

0 appropriate partitioning of the state space of 
interest by clustering; 
parameter identification of the consequent part. 

As the output functions yi are normally linear or 
singletons (constants), the second sub-problem is easy 
solvable by applying least square technique [21-[3]. 

The first sub-problem uses clustering since it is more 
efficient than grid partitioning. Intuitively grid 
partitioning is closer to the linguistic concept of fuzzy 
variables, but it is impractical for larger dimensions, 
due to the so-called curse of dimensionality [lo]-[ 111. 
Fuzzy C-means have been used [7], but requires 
iterations. Mountain clustering [8] and its 
modification, subtractive clustering [6] are therefore, 
preferred [I]. 

Subtractive clustering is based on the noti.on of 
potential of a data point to be a centre of a cluster. The 

following formula is used to express the potential as a 
sum of contributions of Euclidean distances between a 
given point and all other data points 161: 

N 
P i = C D i ,  

j =I 

++-zjjuz Qj =e , i=1,2,. . .N , 
where Pi is the potential of the data point zi,[xi,,yil to 
be a cluster centre, D, denotes the contribution of 
every single distance, N is the number of training data 
samples and a = 4 / 2 7  is the cluster radii. 

Inspection of Equations 2a and 2b show that the 
potential of a data point to be a cluster centre is higher 
when more data points are closer to a specific 
candidate. The highest potential is called reference 
potential [I]. 

The procedure called subtractive clustering 161 is 
based on the successive process of determination of the 
point with highest potential. Potential of all other 
points are then reduced with an amount proportional to 
the potential of the chosen point and to the distance to 
this point: 

(3) 

wherePk8denote the potential of the krh centre and 

0; is the modified contribution, which differs from Dk 
by the parameter a [ 11, [6]. 

When a data point is selected as a new cluster centre 
and its indices become the centres of new membership 
functions. The point is accepted as a centre if its 
potential is higher than certain threshold which is 
determined as a function of the reference. If the 
potential is less than a lower threshold (also a function 
of the reference potential) the point is rejected. If the 
potential falls between these limits and is sufficiently 
far away from the current centres, the point is also 
rejected. The distance criterion is based on the shortest 
of the distances (dmi,,) between the new candidate to be 
a cluster centre ( x:) and all previously found cluster 
centres. The following inequality, expresses the trade- 
off between the potential value and the closeness to the 
previous centres [ 11, [6]: 

Pinm = Pi"" - Pk*Dii i=1,2 ,..., N, 

(4) 
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Second sub-problem (this of parameters of the 
consequent part estimation) is easily solved by 
applying linear least square technique [1]-[31,[6]. It 
should be mentioned that parameters of the antecedent 
part can be further simplified and optimised, but only 
through the application of iterative non-linear 
approaches like GA [7], [IO]-[12] or gradient-based 
techniques [13]. It is possible to improve precision up 
to 2 times and the model structure could be further 
simplified and optimised. The disadvantage, however, 
is computational expense. 

guaranteed by using a non-linear numerical 
optimisation algorithm, such as a GA [7], [IO]-1111. 

FRB model simdification 
It is desirable, especially in fault diagnosis, to have 
transparent models that are as simple as possible while 
maintaining a desired level of precision. In order to 
maximise the transparency, which also minimises the 
memory cost, it is necessary to minimise the number of 
membership functions describing each input variable. 
This procedure is depicted in Figure 1. 

2. Zntelligent adaptation of rule-based models 

In real-life problems a non-linear model which adapts 
to the changes in the environment and adapts to the 
object of modellingkontrol could be the basis for 
building intelligent systems that are able to learn more 
effectively. e R  models (rule-based TS models evolving 
in structure and parameters) are seen as a promising 
candidate for this purpose [ 11. A procedure for on-line 
recursive identification of TS models has been 
developed in [ 11. Basically it consists of: 

calculation of the potential of new data points: 

where k denotes the on-line time sampling 

0 on-line recursive update of the potential of 
existing cluster (membership functions) centres: 

[e* ]'+I = A[P,*]"' +[P,*]'+' ; 1=1,2, ..., R (6) 

N + k  Dj( N+k+l) 
where A =  ; [&*Ik+' = + + N + k + l  

on-line recursive up-date of the reference potential 

= Inax(<*, PN+k+l ) (7) 

on-line recursive estimation of parameters of the 
consequent part. 

In order to avoid overloading of memory a moving 
window has been introduced [l]. This is critical only 
for calculation of the potential of the new data point 
(5). 
The fuzzy rule-based model depicted in Equation 1 is 
generated automatically, on-line. It is used as a good 
initial estimate of the non-linear mapping between 
inputs and the output(s). Its optimality could be 

With the on-line TS model identification, both the 
rules and parameters are considered [l]. The number 
of rules influences the precision of the model and is 
determined by the potential of data samples. The 
model simplification process seeks to ' minimise the 
number of membership functions associated with each 
input variable. 

The approach allows for the optimisation of the 
membership function parameters, if the process is 
considered to be beneficial to the model. Often, 
however, this process will lead to over-fitting, with no 
real gain in the model representation of the process. 
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After the on-line search has yielded a new centre, the 
similarity of the membership functions of the new data 
point is compared to the existing model. Since the 
spreads of the membership functions are the same, the 
similarity can be judged on the values of the centre 
parameters alone. The centres are deemed to be similar 
if the distance is less than a given threshold (which is a 
predetermined percentage of the variable range; 
10%+15% of the whole range seem to be reasonable 
values to use). Each membership function centre 
parameter in each input variable is sequentially 
checked against the new membership function. .If the 
new membership function is similar to one that is 
existing, the new rule is rewritten to reflect the 
existing, similar membership function. If no similar 
membership function exists, it is added to the model. It 
should be noted that the selection of the distance 
threshold in the simplification criterion should nlot be 
too stringent, or the model precision will suffer. 
Conversely, it should not be too low, otherwise there 
will not be sufficient simplification of the model. 

3. Results and Discussion 

To demonstrate the reduction in the number of model 
parameters, through similarity, the approach was 
applied to a time series prediction problem. Figwe 2 
shows the training data used in the problem. The data 
was collected from a real system. 

the principle loads on the coil is generated due to the 
supply of ambient air; required to maintain a minimum 
standard of indoor air quality. The test system is shown 
in Figure 3. 

r? -AI. 

W W h a r p b  

Figure 3 

The ambient air (T,) and supply air (T,) temperatures 
(shown in the bottom plot) are sampled and the current 
and previous time intervals, as is the control signal. 
These are the model inputs. The model is then used to 
predict the control signal 20 samples ahead of the 
current sample. The sample interval is 1 minute. Data 
from the same system, but from a different day was 
used to validate the models. 

Using a batch estimation approach on the training data, 
the subtractive clustering generated a model with 7 
rules and 7 membership functions describing each 
input variable. Figure 4 shows these functions for each 
input. The number of membership functions in the test 
case is 7x6=42. Applying the similarity simplification 
(with a threshold value of lo%), this number is 
reduced to 12, as shown in Figure 5. 

Figure 6 shows the correlation between the model 
predictions and the data for the training and validation 
cases. The correlation coefficients are noted on each 
plot. Figure 7 demonstrates the predictions compared 
to the measured data. The loss of precision of the 
model that this simplification results in is negligible. 
The root mean squared prediction error of the initial 
and simplified models on the training data was 0.030 
and 0,031 respectively (no units for control signal). 
Application to the validation data set yields errors of 
0.095 for both models. The correlation coefficients 
reflect similar results. 

The plot shows the control signal (top plot) to a valve 
that controls the mass flow rate of water through a heat 
exchanger. The heat exchanger cools the warm air that 
flows on to the coil. The cool air is used to maintain 
comfortable conditions in an occupied space. One of 
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Figure 6 

A further comment on the results is the similarity in the 
pairs of inputs. Each input pair consists of the variable 
value at the past (t-1) and current (t) sample, hence the 
data is very similar, and the results in Figures 4 and 5 
are to be expected. The simplified model has a number 
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Figure 7 

of advantages; 

0 it is more transparent, 
0 the linguistic terms are simpler, 
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lower memory requirements result in lower 
computational demands and hence a faster 
execution time. 

The application of the GA to optimise the parameters 
associated with this problem lead to over training with 
no improvement of captured process logic. 

4. Conclusions 

An approach for rule-base evolution by recursive 
adaptation of rule structure and parameters and 
simultaneous model simplification in on-line was 
presented. An on-line version of the subtractive 
clustering recently introduced by the authors [l] is 
demonstrated. Recursive linear least squares [2]-[3] 
was applied for each rule separately to determine in 
on-line mode parameters of the consequent part of the 
rules. Application of similarity measures additionally 
improves the transparency and simplicity of the model, 
without significant degradation in the model precision. 
Additional benefits are a reduction in execution time 
and memory requirements. 

Engineering applications to a time series prediction 
problem based on data from a real indoor climate 
control system has been considered to test and validate 
the model simplification method. 
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