
Annual Reviews in Control 27 (2003) 73–85

Review

Neuro-fuzzy methods for nonlinear system identification�

Robert Babuška∗, Henk Verbruggen

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

Most processes in industry are characterized by nonlinear and time-varying behavior. Nonlinear system identification is becoming an
important tool which can be used to improve control performance and achieve robust fault-tolerant behavior. Among the different nonlinear
identification techniques, methods based on neuro-fuzzy models are gradually becoming established not only in the academia but also in
industrial applications. Neuro-fuzzy modeling can be regarded as a gray-box technique on the boundary between neural networks and qualitative
fuzzy models. The tools for building neuro-fuzzy models are based on combinations of algorithms from the fields of neural networks, pattern
recognition and regression analysis. In this paper, an overview of neuro-fuzzy modeling methods for nonlinear system identification is given,
with an emphasis on the tradeoff between accuracy and interpretability.
© 2003 Published by Elsevier Science Ltd.

Keywords:Neuro-fuzzy systems; Nonlinear identification; ANFIS network; Takagi–Sugeno fuzzy system; Clustering

1. Introduction

The design of control systems is currently driven by a
large number of requirements posed by increasing competi-
tion, environmental requirements, energy and material costs
and the demand for robust, fault-tolerant systems. These
considerations introduce extra needs for effective process
modeling techniques. Many systems are not amenable to
conventional modeling approaches due to the lack of precise,
formal knowledge about the system, due to strongly non-
linear behavior, high degree of uncertainty, or time-varying
characteristics.

Neuro-fuzzy modeling has been recognized as a powerful
tool which can facilitate the effective development of models
by combining information from different sources, such as
empirical models, heuristics and data. Neuro-fuzzy models
describe systems by means of fuzzyif–thenrules represented
in a network structure, to which learning algorithms known
from the area of artificial neural networks can be applied.
Thanks to this structure, neuro-fuzzy models are to a certain

� Partly based on: Babuška, R. (2000). Neuro-fuzzy methods for mod-
eling and identification. In A. Abraham, L. C. Jain, & J. Kacprzyk (Eds.),
Recent advances in intelligent paradigms and applications(pp. 161–186).
Heidelberg: Springer-Verlag. Reprinted with permission.

∗ Corresponding author. Tel.:+31-15-27-85117; fax:+31-15-27-86679.
E-mail address:r.babuska@dcsc.tudelft.nl (R. Babuška).

degree transparent to interpretation and analysis, i.e. they can
be better used to explain solutions to users than completely
black-box models such as neural networks.

The paper is organized as follows: an overview of fuzzy
systems and neural networks is first given inSection 2.
Neuro-fuzzy systems are then addressed inSection 3. Var-
ious methods for parameter estimation are presented in
Section 4and two numerical examples can be found in
Section 5: approximation of a static function and dynamic
modeling of the pH process.Section 6concludes the paper.

2. Fuzzy systems and neural networks

Both neural networks and fuzzy systems are motivated by
imitating human reasoning processes. In fuzzy systems, re-
lationships are represented explicitly in the form of if–then
rules. In neural networks, the relations are not explicitly
given, but are ‘coded’ in the network and its parameters. In
contrast to knowledge-based techniques, no explicit knowl-
edge is needed for the application of neural networks.

Neuro-fuzzy systems combine the semantic transparency
of rule-based fuzzy systems with the learning capability of
neural networks. This section gives the background on non-
linear input–output modeling, fuzzy systems and neural net-
works, which is essential for understanding the rest of this
article.

1367-5788/$ – see front matter © 2003 Published by Elsevier Science Ltd.
doi:10.1016/S1367-5788(03)00009-9

74 R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85

2.1. Nonlinear system identification

A wide class of nonlinear dynamic systems with an in-
put u and an outputy can be described in discrete time by
the NARX (nonlinear autoregressive with exogenous input)
input–output model:

y(k + 1) = f(x(k)), (1)

wherey(k + 1) denotes the output predicted at the future
time instantk+1 andx(k) is theregressorvector, consisting
of a finite number of past inputs and outputs:

x(k) =

y(k)

...

y(k − ny + 1)

u(k)

...

u(k − nu + 1)

. (2)

The dynamic order of the system is represented by the num-
ber of lagsnu andny. Although for simplicity stated with a
scalar input and output, the NARX model can also be used
for multivariable systems. In that case, however, the number
of regressors usually becomes large and one may prefer the
nonlinear state-space description:

ξ(k + 1) = g(ξ(k),u(k)), y(k) = h(ξ(k)). (3)

The problem of nonlinear system identification is to infer
the unknown functionf in (1) or the functionsg and h in
(3) from some sampled data sequences{(u(k), y(k))|k =
1,2, . . . , N}.

In black-box modeling, these functions are approximated
by some general function approximators such as neural net-
works, neuro-fuzzy systems, splines, interpolated look-up
tables, etc. If the aim of modeling is only to obtain an ac-
curate predictor fory, there is not much difference between
these models, as they all can approximate smooth nonlin-
ear systems arbitrarily well. Often, however, besides accu-
rate predictions, one wants to have a model that can be
used to learn something about the underlying system and
analyze its properties. From this point of view, fuzzy and
neuro-fuzzy systems are more transparent than most other
black-box techniques.

2.2. Fuzzy models

A mathematical model which in some way uses fuzzy sets
is called afuzzy model. In system identification, rule-based
fuzzy models are usually applied. In these models, the rela-
tionships between variables are represented by means of if–
then rules with imprecise (ambiguous) predicates, such as:

If heating is highthentemperature increase is fast.

This rule defines in a rather qualitative way the relationship
between the heating and the temperature in a room, for in-

stance. To make such a model operational, the meaning of
the terms ‘high’ and ‘fast’ must be defined more precisely.
This is done by using fuzzy sets, i.e. sets where the mem-
bership is changing gradually rather than in an abrupt way.
Fuzzy sets are defined through their membership functions
(denoted byµ) which map the elements of the considered
universe to the unit interval [0, 1]. The extreme values 0
and 1 denote complete membership and non-membership,
respectively, while a degree between 0 and 1 means partial
membership in the fuzzy set. Depending on the structure of
the if–then rules, two main types of fuzzy models can be
distinguished: the Mamdani (or linguistic) model and the
Takagi–Sugeno model.

2.2.1. Mamdani model
In this model, the antecedent (if-part of the rule) and the

consequent (then-part of the rule) are fuzzy propositions:

Ri : If x isAi theny isBi, i = 1,2, . . . , K. (4)

HereAi andBi are the antecedent and consequent linguistic
terms (such as ‘small,’ ‘large,’ etc.), represented by fuzzy
sets, andK is the number of rules in the model. The linguistic
fuzzy model is useful for representing qualitative knowledge,
illustrated in the following example.

Example 1. Consider a qualitative description of the rela-
tionship between the oxygen supply to a gas burner (x) and
its heating power (y):

R1 : If O2 flow rate isLow then power isLow.
R2 : If O2 flow rate isOK then power isHigh.
R3 : If O2 flow rate isHigh then power isLow.

The meaning of the linguistic terms{Low, OK, High} and
{Low, High} is defined by membership functions such as
the ones depicted inFig. 1. Membership functions can be
defined by the model developer based on prior knowledge
or by using data (in this example, the membership functions
and their domains are selected quite arbitrarily).

The meaning of the linguistic terms is, of course, not uni-
versally given. In this example, the definition of the fuzzy
set OK, for instance, may depend on the flow rate of the
fuel gas, the type of burner, etc. When input–output data of
the system under study are available, the membership func-
tions can be constructed or adjusted automatically, as dis-
cussed later on. Note, however, that the qualitative relation-
ship given by the rules is usually expected to be valid for a
range of conditions.

2.2.2. Takagi–Sugeno model
The Mamdani model is typically used in knowledge-based

(expert) systems. In data-driven identification, the model due
to Takagi and Sugeno has become popular. In this model, the
antecedent is defined in the same way as above, while the
consequent is an affine linear function of the input variables:

Ri : If x isAi thenyi = aT
i x + bi, (5)

R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85 75

Fig. 1. Membership functions for the Mamdani model of Example 1.

whereai is the consequent parameter vector,bi is a scalar
offset andi = 1, . . . , K. This model combines a linguis-
tic description with standard functional regression: the an-
tecedents describe fuzzy regions in the input space in which
the consequent functions are valid. The outputy is computed
by taking the weighted average of the individual rules’ con-
tributions:

y =
∑K

i=1βi(x)yi∑K
i=1βi(x)

=
∑K

i=1βi(x)(a
T
i x + bi)∑K

i=1βi(x)
, (6)

where βi(x) is the degree of fulfillmentof the ith rule.
For the rule (5),βi(x) = µAi(x), but it can also be a
more complicated expression, as shown later on. The an-
tecedent fuzzy sets are usually defined to describe distinct,
partly overlapping regions in the input space. The param-
etersai are then (approximate) local linear models of the
considered nonlinear system. The TS model can thus be
regarded as a smooth piece-wise linear approximation of
a nonlinear function or a parameter-scheduling model.
Note that the antecedent and consequent variables may be
different.

Example 2. Consider a static characteristic of an actuator
with a dead-zone and a non-symmetrical response for posi-
tive and negative inputs. Such a system can conveniently be
represented by a TS model with three rules each covering
a subset of the operating domain that can be approximated
by a local linear model, seeFig. 2. The corresponding rules

Fig. 2. A Takagi–Sugeno fuzzy model as a piece-wise linear approximation
of a nonlinear system.

and the input–output equation are:

R1 : If u isNegativetheny1 = a1u+ b1
R2 : If u isZerotheny2 = a2u+ b2
R3 : If u isPositivetheny3 = a3u+ b3

and

y = µNeg(u)y1 + µZero(u)y2 + µPos(u)y3

µNeg(u)+ µZero(u)+ µPos(u)
.

As the consequent parameters are first-order polynomials in
the input variables, model (5) is in the literature also called
the first-order TS model. This is in order to distinguish it
from the zero-order TS model whose consequents are simply
constants (zero-order polynomials):

Ri : If x isAi thenyi = bi, i = 1,2, . . . , K. (7)

For this model, the input–outputEq. (6)reduces to:

y =
∑K

i=1βi(x)bi∑K
i=1βi(x)

. (8)

The above model can also be obtained as a special case of
the Mamdani system (4) in which the consequent fuzzy sets
degenerate to singletons (real numbers):

µBi(y) =
{

1, if y = bi,

0, otherwise.
(9)

2.2.3. Fuzzy logic operators
In fuzzy systems with multiple inputs, the antecedent

proposition is usually represented as a combination of terms
with univariate membership functions, by using logic oper-
ators ‘and’ (conjunction), ‘or’ (disjunction) and ‘not’ (com-
plement). In fuzzy set theory, several families of operators
have been introduced for these logical connectives.Table 1
shows the two most common ones.

Table 1
Common fuzzy logic operators

A and B A or B not A

Zadeh min(µA, µB) max(µA, µB) 1 − µA

Probabilistic µA·µB µA + µB − µA·µB 1 − µA

76 R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85

As an example, consider theconjunctive formof the an-
tecedent, which is given by:

Ri : If x1 isAi1 and. . .andxp isAip thenyi = aT
i x + bi

(10)

with the degree of fulfillment:

βi(x) = min(µAi1(x1), . . . , µAip(xp)) or

βi(x) = µAi1(x1) · µAi2(x2) · · ·µAip(xp) (11)

for the minimum and product conjunction operators, respec-
tively. The complete set of rules (10) divide the input do-
main into a lattice of overlapping axis-parallel hyperboxes.
Each of these hyperboxes is a Cartesian product intersection
of the corresponding univariate fuzzy sets.

2.2.4. Dynamic fuzzy models
In the modeling of dynamic systems, fuzzy models are

used to parameterize of the nonlinear functionsf in (1) or g
andh in (3). Consider, for instance, the TS NARX model:

Ri : If x(k) isAi thenyi(k + 1)

=
ny∑
j=1

aijy(k − j + 1)+
nu∑
j=1

biju(k − j + 1)+ ci, (12)

where the antecedent regressorx(k) is generally given by
(2), but it may of course contain only some of the past inputs
and outputs or even other variables thanu andy. Similarly,
state-space models can be represented in the TS framework
by:

Ri : If ξ(k) isAi andu(k) isBi

then

{
ξ i(k + 1) = Φiξ(k)+ Γ iu(k)+ ai

yi(k) = Ciξ(k)+ ci.
(13)

An advantage of the state-space modeling approach is that
the structure of the model can easily be related to the physical
structure of the real system, and, consequently, the model
parameters are physically relevant. This is not necessarily the
case with input–output models. In addition, the dimension
of the regression problem in state-space modeling is often
smaller than with input–output models.

2.3. Artificial neural networks

Artificial neural networks (ANNs), originally inspired by
the functionality of biological neural networks can learn
complex functional relations by generalizing from a limited
amount of training data. Neural networks can thus serve as
black-box models of nonlinear, multivariable static and dy-
namic systems and can be trained by using input–output data
observed on the system. The most common ANNs consist
of several layers of simple processing elements called neu-
rons, interconnections among them and weights assigned
to these interconnections. The information relevant to the
input–output mapping of the net is stored in the weights.

Fig. 3. A feedforward with one hidden layer.

2.3.1. Multi-layer neural network
A feedforward multi-layer neural network (MNN) has one

input layer, one output layer and an number of hidden layers
between them. For illustration purposes, consider a MNN
with one hidden layer (Fig. 3).

The input-layer neurons do not perform any computations,
they merely distribute the inputsxi to the weightswh

ij of the
hidden layer. In the neurons of the hidden layer, first the
weighted sum of the inputs is computed:

zj =
p∑
i=1

wh
ijxi = (wh

j)
Tx, j = 1, . . . , m. (14)

It is then passed through a nonlinearactivation function,
such as the tangent hyperbolic:

vj = 1 − exp(−2zj)

1 + exp(−2zj)
, j = 1,2, . . . , m. (15)

Other typical activation functions are the threshold function
(hard limiter) and the sigmoidal function. The neurons in
the output layer are linear, i.e. only compute the weighted
sum of their inputs:

yl =
h∑

j=1

wo
jlvj = (wo

j)
Tx, l = 1, . . . , n. (16)

Training is the adaptation of weights in a multi-layer net-
work such that the error between the desired output and the
network output is minimized. Two steps are distinguished
in this procedure:

(1) Feedforward computation. From the network inputsxi,
the outputs of the first hidden layer are first computed.
Then using these values as inputs to the second hidden
layer, the outputs of this layer are computed, etc. Finally,
the output of the network is obtained.

(2) Weight adaptation. The output of the network is com-
pared to the desired output. The difference of these two
values, the error, is then used to adjust the weights first in
the output layer, then in the layer before, etc., in order to
decrease the error (gradient-descent optimization). This

R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85 77

backward computation is called error backpropagation
(Rumelhart, Hinton, & Williams, 1986).

A network with one hidden layer is sufficient for most ap-
proximation tasks. More layers can give a better fit, but the
training takes longer. Choosing the right number of neurons
in the hidden layer is essential for a good result. Too few
neurons give a poor fit, while too many neurons result in
over-training of the net (poor generalization to unseen data).
A compromise is usually sought by trial and error methods.

2.3.2. Dynamic neural networks
A dynamic network can be realized by using a static feed-

forward network combined with an external feedback con-
nection. The output of the network is fed back to its input
through delay operatorsz−1. This is in fact a realization
of the NARX model (1).Fig. 4a shows an example of a
first-order systemy(k + 1) = fnn(y(k), u(k)).

Another possibility is to use recurrent networks in which
neurons are arranged in one or more layers and feedback is
introduced either internally in the neurons, to other neurons
in the same layer, or to neurons in preceding layers. Exam-
ples of these networks are the Elman network (Fig. 4b) or
the Hopfield network.

2.3.3. Error backpropagation
Consider for simplicity a MNN with one output. A set

of N input–output data pairs{(xk, y∗
k)|k = 1,2, . . . , N} is

available. We represent this set as a matrixX ∈ R
N×p,

having the input vectorsxk in its rows, and a column vector
y∗ ∈ R

N , containing the desired outputsy∗
k :

X = [x1, . . . , xN]T, y∗ = [y∗
1, . . . , y

∗
N]T. (17)

Fig. 4. Neural network models of dynamic systems.

The difference between the desired outputy∗ and the output
of the networky is called the error. This error is used to
adjust the weights in the net via the minimization of the
following cost function:

J = 1

2

N∑
k=1

e2
k with ek = y∗

k − yk.

Note that the network’s outputy is nonlinear in the weights
w (for notational convenience, all the weights are lumped
in a single vectorw). The training of a MNN is thus a
nonlinear optimization problemto which various methods
can be applied:

• Error backpropagation (first-order gradient).
• Newton, Levenberg–Marquardt methods (second-order

gradient).
• Genetic algorithms and many others techniques.

First-order gradient methods are based on the following
general update rule for the weights:

w(n+ 1) = w(n)− α(n)∇J(w(n)), (18)

wherew(n) is the weight vector at iterationn, α(n) is a (vari-
able) learning rate (a parameter) and∇J(w) is the Jacobian
of the network:

∇J(w) =
[
∂J(w)

∂w1
,
∂J(w)

∂w2
, . . . ,

∂J(w)

∂wM

]T

. (19)

The nonlinear optimization problem is thus solved by using
the first term of its Taylor series expansion (the gradient).
Second-order gradient methods make use of the second term
as well:

J(w)≈ J(w0)+ ∇J(w0)
T(w − w0)

+ 1
2(w − w0)

TH (w0)(w − w0),

whereH (w0) is the Hessian. Second-order methods are usu-
ally more effective than first-order ones.

2.3.4. Radial basis function network
The radial basis function (RBF) network is a two-layer

network with an architecture depicted inFig. 5. This network
is represented by the following function:

y = f(x) =
m∑
i=1

wiφi(x), (20)

Fig. 5. Radial basis function network.

78 R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85

where the usual choice for the basis functionsφi(x) is the
Gaussian function:

φi(x) = exp

(
−||x − ci||2

2σ2
i

)
.

Note that adjustable weights are only present in the out-
put layer. The connections from the input layer to the hid-
den layer are fixed to unit weights. The free parameters
of RBF networks are the output weightswi and the pa-
rameters of the basis functions (centersci and radii σi).
Since the network’s output (20) is linear in the weightswi,
these weights can be estimated by least-squares methods.
For each data pointxk, first the outputs of the neurons are
computed:

vki = φi(xk)

and put in the matrixV = [vki]. Introducing the weight
vectorw = [w1, w2, . . . , wm], we can write the following
matrix equation for the whole data set:

y∗ = Vw.

The least-square estimate of the weightsw that minimize
the network errore = y∗ − y is:

w = [V TV]−1V Ty∗. (21)

The adaptation of the RBF parametersci andσi is a non-
linear optimization problem that can be solved by the
gradient-descent method (18).

3. Neuro-fuzzy modeling

At the computational level, a fuzzy system can be seen
as a layered structure (network), similar to artificial neural
networks of the RBF-type (Jang & Sun, 1993). In order
to optimize parameters in a fuzzy system, gradient-descent
training algorithms known from the area of neural networks
can be employed. Hence, this approach is usually referred
to as neuro-fuzzy modeling (Brown & Harris, 1994; Jang,
1993; Jang, Sun, & Mizutani, 1997).

Consider first a simple example of a zero-order TS fuzzy
model with the following two rules:

If x1 isA11 andx2 isA21 theny = b1
If x1 isA12 andx2 isA22 theny = b2.

Fig. 6shows a network representation of these two rules.
The nodes in the first layer compute the membership degree
of the inputs in the antecedent fuzzy sets. The product nodes
% in the second layer represent the antecedent connective
(here the ‘and’ operator). The normalization node N and
the summation node& realize the fuzzy-mean operator (6).
This system is called adaptive neuro-fuzzy inference system
(ANFIS; Jang, 1993).

Fig. 6. An example of a zero-order TS fuzzy model with two rules
represented as a neuro-fuzzy network.

Typically, smooth antecedent membership functions are
used, such as the Gaussian functions:

µAij (xj; cij , σij) = exp

(
− (xj − cij)

2

2σ2
ij

)
. (22)

The input–output equation of a general zero-order TS model
with the conjunctive form antecedent is:

y =
K∑
i=1

γi(x)bi (23)

with

γi(x) =
∏p

j=1exp(−(xj − cij)
2/2σ2

ij)∑K
i=1
∏p

j=1exp(−(xj − cij)2/2σ2
ij)
.

The first-order TS fuzzy model can be represented in a sim-
ilar fashion. Consider again the example with two rules:

If x1 isA11 andx2 isA21 theny1 = a11x1 + a12x2 + b1
If x1 isA12 andx2 isA22 theny2 = a21x1 + a22x2 + b2

for which the corresponding network is given inFig. 7.
The input–output equation of this first-order TS model is:

y =
K∑
i=1

γi(x)(a
T
i x + bi) (24)

with γi(x) given by (23).

Fig. 7. An example of a first-order TS fuzzy model with two rules
represented as a neuro-fuzzy network called ANFIS.

R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85 79

3.1. Constructing neuro-fuzzy networks

Both prior knowledge and process data can be used to
construct neuro-fuzzy systems. Prior knowledge can be of a
rather approximate nature (qualitative, heuristics). Two main
approaches to the integration of knowledge and data can be
distinguished:

(1) Expert knowledge is formulated as a collection of
if–then rules. In this way, an initial model is created.
The parameters of this model (the membership func-
tions, consequent parameters) are then fine-tuned by
using process data.

(2) Fuzzy rules (including the associated parameters) are
constructed from scratch by using numerical data. In this
case, the advantage of using a neuro-fuzzy model is the
possibility to interpret the obtained result (which is not
possible with truly black-box structures like neural net-
works). An expert can confront the information stored
in the rule base with his own knowledge, can modify the
rules, or supply additional ones to extend the validity of
the model, etc.

The above techniques can, of course, be combined, depend-
ing on the problem at hand.

3.2. Structure and parameters

The two basic steps in system identification arestructure
identificationandparameter estimation. The choice of the
model’s structure is very important, as it determines the flex-
ibility of the model in the approximation of (unknown) sys-
tems. A model with a rich structure can approximate more
complicated functions, but, at the same time, will have worse
generalization properties. Good generalization means that a
model fitted to one data set will also perform well on an-
other data set from the same process. In neuro-fuzzy models,
the structure selection process involves the following main
choices:

• Selection of input variables. This involves not only the
physical inputsu but also the dynamic regressors, defined
by the input and output lags,ny andnu, respectively. Prior
knowledge, insight in the process behavior and the pur-
pose of the modeling exercise are the typical sources of
information for the choice of an initial set of possible in-
puts. Automatic data-driven selection can then be used to
compare different structures in terms of some specified
performance criteria.

• Number and type of membership functions, number of
rules. These two structural parameters are mutually re-
lated (for more membership functions more rules must
be defined) and determine the level of detail, called the
granularity, of the model. The purpose of modeling and
the amount of available information (knowledge and data)
will determine this choice. Automated, methods can be
used to add or remove membership functions and rules.

3.3. Gradient-based learning

It is quite straightforward to derive the gradient-descent
learning rule for thebi cij andσij parameters. The procedure
is identical to the derivation of the backpropagation formulas
for neural networks. Consider the zero-order ANFIS model,
given by rules (7). For the consequent parametersbi, we
have the Jacobian (19):

∂J

∂bi
= ∂J

∂e

∂e

∂bi
= −γie, i = 1, . . . , K (25)

and the update law:

bi(n+ 1) = bi(n)+ α(n)γie. (26)

For the centers and spreads of the Gaussian membership
functions (22), we apply the chain rule for differentiation
and after some algebra, the following update formulas are
obtained:

cij (n+ 1) = cij (n)+ 2α(n)γie
xj − cij

σ2
ij

[bi − y]

and

σij (n+ 1) = σij (n)+ 2α(n)γie
(xj − cij)

2

σ3
ij

[bi − y].

The parameter-update equations for the first-order ANFIS
model can be derived in a similar fashion.

4. Hybrid learning techniques

We have already noticed that the output-layer parameters
in RBF networks can be estimated by linear least-squares
(LS) techniques (21). As LS methods are more effective than
the gradient-based update rule (26), hybrid methods are of-
ten applied that combine one-shot least-squares estimation of
the consequent parameters with iterative gradient-based op-
timization of the membership functions (Mathworks, 2001).

In terms of error minimization, the choice of a particular
least-squares estimation method is not crucial. If, however,
the consequent parameters are to be interpreted as local mod-
els, for instance, great care must be taken in the choice of the
estimation method. The problem is that the ANFIS models,
especially the first-order one, tend to be over-parameterized
for most approximation problems. This may lead to numer-
ical problems, over-fitting and meaningless parameter esti-
mates. The following example demonstrates this problem.

Example 3. Assume we wish to approximate a second-
order polynomialy = fs(u) = 3u2 −5u+6 by a first-order
ANFIS model. First we choose two pointst1 andt2 and de-
fine initial triangular membership functions fort1 ≤ u < t2:

µA1(u) = u− t1

t2 − t1
, µA2 = 1 − µA1. (27)

The model consists of two rules:

Ri : If u isAi thenyi = aiu+ bi, i = 1,2.

80 R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85

By substituting the membership functions (27) into (6), the
output of the TS model is obtained (after some elementary
algebra):

y = a1 − a2

t2 − t1
u2 + t2a2 − t1a1 + b1 − b2

t2 − t1
u+ t2b2 − t1b1

t2 − t1
.

As this is a second-order polynomial inu, our model
can perfectly represent the given nonlinear system. How-
ever, it has four free parameters (a1, a2, b1 and b2)
while three are sufficient to fit the polynomial—it is thus
over-parameterized. This is a very simple example, but the
essence of the over-parameterization problem remains the
same when approximating complex unknown systems.

4.1. Consequent parameter estimation

To circumvent over-parameterization, the basic least-
squares criterion can be combined with additional criteria
for local fit, or with constraints on the parameter values. In
the following, several techniques are discussed.

4.1.1. Global least-squares estimation
The global least-squares estimation method yields param-

eters that minimize the following prediction error criterion:

θ = arg min
K∑
k=1

(
y∗
k −

K∑
i=1

γi(xk)[xT
k 1]θ i

)2

,

where θT = [θT
1 , . . . , θ

T
K] is the concatenation of all the

individual rules’ parameter vectors. For the data matrices
(17), this criterion can be rewritten in a matrix form:

θ = arg min(y∗ − Λθ)T(y∗ − Λθ) (28)

with Λ = [Γ1ϕ, . . . , ΓKϕ] where ϕ = [X 1] and
Γ i = diag(γi(x1), . . . , γi(xN)), i.e. a diagonal matrix
having �i(xk) as its kth diagonal element. The optimal
solution of (28) is then directly obtained by using matrix
pseudo-inverse:

θ = (ΛTΛ)−1ΛTy∗. (29)

4.1.2. Local least-squares estimation
While the global solution gives the minimal prediction

error, it may bias the estimates of the consequents as param-
eters of local models. If locally relevant model parameters
are required, a weighted least-squares approach applied per
rule should be used. This is done by minimizing a set ofK
weighted local LS criteria:

θ i = arg min(y∗ − ϕθ i)
TΓ i(y

∗ − ϕθ i), i = 1,2, . . . , K

(30)

for which the solutions are:

θ i = (ϕTΓ iϕ)
−1ϕTΓ iy

∗, i = 1,2, . . . , K.

Fig. 8. The result of local (top) and global (bottom) estimation of the
consequent parameters. The dashed line is the output of the model.

In this case, the consequent parameters of the individual
rules are estimated independently of each other, and there-
fore the result is not influenced by the interactions of the
rules. At the same time, however, a larger prediction error
is obtained than with global least squares.

Example 4. The application of local and global estimation
to the TS model from Example 3 results in the consequent
models given inFig. 8. Note that the consequents estimated
by local least squares describe properly the local behavior
of the function, but do not give a good fit. For global least
squares, the opposite holds—a perfect fit is obtained, but the
consequents are not relevant for the local behavior of the
system.

When interpreting ANFIS models obtained from data, one
has to be aware of the tradeoffs between local and global
estimation. Constrained and multicriteria optimization can
also be applied to restrict the freedom in the parameters.

4.1.3. Constrained estimation
Knowledge about the dynamic system such as its stabil-

ity, minimal or maximal static gain, or its settling time can
be translated into convex constraints on the consequent pa-
rameters (seeFig. 9). By using input–output data, optimal
parameter values are then found by means of quadratic pro-
gramming, instead of least squares. There are two types of
constraints, global and local. Local constraints represent de-
tail knowledge pertaining to each specific rule, while global
constraints apply to the entire model and should thus refer
to some global system properties such as the overall stabil-
ity. To see this, realize that the affine TS model (5) can be
regarded as one quasi-linear system:

y =
(

K∑
i=1

γi(x)a
T
i

)
x +

K∑
i=1

γi(x)bi = aT(x)x + b(x) (31)

R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85 81

Fig. 9. Convex constraints on the consequent parameters.

with input-dependent ‘parameters’a(x), b(x) which are con-
vex linear combinations of the individual consequent param-
etersai andbi, i.e.:

a(x) =
K∑
i=1

γi(x)ai, b(x) =
K∑
i=1

γi(x)bi. (32)

This property allows us to define global convex constraints
for the entire model. Besides, it also facilitates the analysis
of TS models in the framework of poly-topic systems (linear
differential inclusions). Methods have been developed to de-
sign controllers with desired closed loop characteristics and
to analyze their stability (Tanaka, Ikeda, & Wang, 1998).

4.1.4. Multi-objective optimization
Another possibility is to regularize the estimation by pe-

nalizing undesired local behavior of the model. This can
dramatically improve the robustness of the construction al-
gorithm, eventually leading to more relevant (interpretable)
parameter estimates. One way is to minimize the weighted
sum of the global and local identification criteria (28) and
(31):

θ = arg min

{
(y∗ − Γ θ)T(y∗ − Γ θ)

+
K∑
i=1

δi(y
∗ − ϕθ i)

TΓ i(y
∗ − ϕθ i)

}
.

The weighting parametersδi ≥ 0 parameterize the set of
Pareto-optimal solutions of the underlying multi-objective
optimization problem and thus determine the tradeoff be-
tween the possibly conflicting objectives of global model
accuracy and local interpretability of the parameters.

4.2. Initialization of antecedent membership functions

For a successful application of gradient-descent learning
to the membership function parameters, good initialization
is important. Several initialization methods are briefly re-
viewed in this section.

4.2.1. Template-based membership functions
With this method, the domains of the antecedent variables

are a priori partitioned by a number of membership func-
tions. These are usually evenly spaced and shaped. The rule
base is then established to cover all the combinations of the
antecedent terms. A severe drawback of this approach is that
the number of rules in the model grows exponentially. Fur-
thermore, if no knowledge is available as to which variables
cause the nonlinearity of the system, all the antecedent vari-
ables are usually partitioned uniformly. However, the com-
plexity of the system’s behavior is typically not uniform.
Some operating regions can be well approximated by a local
linear model, while other regions require a rather fine par-
titioning. In order to obtain an efficient representation with
as few rules as possible, the membership functions must be
placed such that they capture the non-uniform behavior of
the system.

4.2.2. Discrete search methods
Iterative tree-search algorithms can be applied to de-

compose the antecedent space into hyper-rectangles by
axis-orthogonal splits. In each iteration, the region with the
worst local error measure is divided into two halves (or
other portions). Splits in all dimensions of the input are
tested and the one with the highest performance improve-
ment is chosen. This successive partitioning stops when a
specified error goal is met or when the desired number of
rules is reached. The first four steps of such an algorithm
are illustrated inFig. 10. An advantage of this approach is
its effectiveness for high-dimensional data and the trans-
parency of the obtained partition. A drawback is that the
tree building procedure is sub-optimal (greedy) and hence
the number of rules obtained can be quite large (Nelles,
Fink, & Babuška, 2000).

4.2.3. Fuzzy clustering
Construction methods based on fuzzy clustering originate

from data analysis and pattern recognition, where the con-
cept of fuzzy membership is used to represent the degree
to which a given data object is similar to some prototypical
object. The degree of similarity can be calculated by using
a suitable distance measure. Based on the similarity, data

Fig. 10. Antecedent space decomposition by a heuristic search algorithm.
The dark areas represent rules with the worst local fit in the given step.

82 R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85

Fig. 11. Identification of membership functions through fuzzy clustering.

vectors are clustered such that the data within a cluster are
as similar as possible, and data from different clusters are
as dissimilar as possible.

Fig. 11gives an example of two clusters inR2 with pro-
totypesv1 andv2. The partitioning of the data is expressed
in the fuzzy partition matrixU = [µij] whose elements are
the membership degrees of the data vectorsxk in the fuzzy
clusters with prototypesvj. The antecedent membership
functions are then extracted by projecting the clusters onto
the individual variables. For the initialization of first-order
ANFIS models, the prototypes can be defined as linear sub-
spaces or the clusters are ellipsoids with adaptively deter-
mined shape. The number of clusters in the data can either be
determined a priori or sought automatically by using cluster
validity measures and merging techniques (Babuška, 1998).

5. Simulation examples

In this section, two simulation examples are given to il-
lustrate several important issues related to the training of
neuro-fuzzy systems. The first example is a simple fitting
problem of a univariate static function. It demonstrates the
typical construction procedure of a neuro-fuzzy model. Nu-
merical results show that an improvement in performance is
achieved at the expense of obtaining if–then rules that are
not completely relevant as local descriptions of the system.

The second example, the modeling of a nonlinear dynamic
system, illustrates that the performance of a neuro-fuzzy
model does not necessarily improve after training. This is
due to over-fitting which in the case of dynamic systems can
easily occur when the data only sparsely cover the domains.

5.1. Static function

Let us approximate a univariate functiony = sin(7u)
by the ANFIS model with linear consequent functions. We
choose the number of rules to be five and construct an initial
model by clustering the dataU × Y , using a methodology

based on the Gustafson–Kessel algorithm (Babuška, 1998).
The following rules are obtained:

If u isA1 theny = 5.721u+ 0.030
If u isA2 theny = 0.035u+ 0.904
If u isA3 theny = −5.302u+ 2.380
If u isA4 theny = 0.734u− 1.413
If u isA5 theny = 6.283u− 5.623.

The fit of the function with this initial model is shown in
Fig. 12a. The membership functions and the corresponding
local models are given inFig. 12b. The membership func-
tions are denoted from left to right byA1 throughA5.

Note that this initial model can easily be interpreted in
terms of the local behavior (the rule consequents) and it is
already reasonably accurate (the root-mean-squared error is
RMS = 0.0258). However, by using the ANFIS method,
the model parameters can be fine-tuned and the approxi-
mation accuracy can be significantly improved. A model

Fig. 12. Approximation by the initial TS fuzzy model. The root-mean-
squared error is RMS= 0.0258.

R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85 83

obtained after 100 learning epochs of hybrid learning using
the anfis function of the Matlab Fuzzy Logic Toolbox
(Mathworks, 2001) is described by the following fuzzy rules:

If u isA′
1 theny = 5.275u+ 0.065

If u isA′
2 theny = 0.442u+ 0.899

If u isA′
3 theny = −3.206u+ 1.405

If u isA′
4 theny = 0.977u− 1.693

If u isA′
5 theny = 5.062u− 4.388.

The performance has improved to that degree that
no approximation error is visible (not shown). The
root-mean-squared error is now RMS= 0.0011, which is
about 23 times better than the initial model. The member-
ship functions have only been slightly modified, but the
change in the local models is more apparent.

After learning, the local models are much further from the
true local description of the function. To quantify this, we
can compute the difference between the consequent param-
eters of the fuzzy models, denoted byθ , and the ‘true’ local
estimatesθ0, computed by least squares for the data in core
(Ai). For the initial fuzzy model, we have||θ − θ0|| = 1.81,
while the ANFIS model gives||θ − θ0|| = 5.30. The rules
of the fine-tuned neuro-fuzzy model are thus less accurate
in describing the system locally. This contradiction between
local and global approximation accuracy is inherent to TS
fuzzy systems with linear consequents (Abonyi & Babuška,
2000) and thus also to the ANFIS network. Great care must
be exercised when one attempts to interpret rules in trained
neuro-fuzzy models.

5.2. pH neutralization process

A neutralization tank with three influent streams (acid,
buffer and base) and one effluent stream is considered. The
identification and validation data sets are obtained by sim-
ulating the model byHall and Seborg (1989)for random
changes of the influent base stream flow rateQ. The influent
buffer stream and the influent acid stream are kept constant.
The output is the pH in the tank. The identification data
set, containingN = 499 samples with the sampling time of
15 s, is shown inFig. 13. This data set was obtained from
Johansen (1994).

The process is approximated as a first-order discrete time
NARX model:

pH(k + 1) = f(pH(k),Q(k)),

wherek denotes the sampling instant, andf is an unknown
relationship approximated by a neuro-fuzzy model. Based
on prior knowledge about the process, it was decided to
include onlyQ(k) in the antecedent (it is known that the
main source of nonlinearity is the titration curve, which is
the steady-state characteristic relatingQ to pH). The number
of membership functions (and thus also rules) was set to
three. The initial membership functions were evenly spread
over the domain, as shown in the left panel ofFig. 14.

Fig. 13. Identification data.

The initial rule base, with the consequent estimated by
weighted local least squares (31), is given by:

If Q(k) isLow then
pH(k + 1) = 0.83pH(k)+ 0.09Q(k)+ 0.03

If Q(k) isMediumthen
pH(k + 1) = 0.83pH(k)+ 0.09Q(k)+ 0.10

If Q(k) isHigh then
pH(k + 1) = 0.46pH(k)+ 0.02Q(k)+ 5.09.

After 1000 epochs of hybrid learning using the ANFIS
function of the Matlab Fuzzy Logic Toolbox (Mathworks,
2001), the following rule base has been obtained:

If Q(k) isLow′ then
pH(k + 1) = 0.37pH(k)− 0.05Q(k)+ 2.14

If Q(k) isMedium′ then
pH(k + 1) = 0.91pH(k)+ 0.06Q(k)− 0.23

If Q(k) isHigh′ then
pH(k + 1) = 0.40pH(k)+ 0.03Q(k)+ 5.63.

Note that the consequent model in the first rule has a negative
coefficient forQ(k). As this is a physically impossible value,
not interpretation can be given to these parameters and this
trained model has become a complete black-box. Also notice
in Fig. 14 that the membership functions were adjusted in

Fig. 14. Membership functions before (left) and after training (right). The
membership functions are denoted from left to right by ‘Low,’ ‘Medium’
and ‘High.’

84 R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85

Table 2
RMS before and after training

Before training After training

Training data set 0.90 0.82
Validation data set 0.81 0.89

Fig. 15. Performance of the initial and trained model on the validation
data set (solid line: data; dashed line: model).

a very peculiar way by the gradient-descent optimization
method.

Table 2shows that while the numerical performance in
terms of the RMS error improved for the training data, it
has become worse for the validation data. This is a typi-
cal example of over-training. This can also be observed in
Fig. 15 where the predictions generated by the model are
less accurate after training than before. Clearly, this kind of
behavior is difficult to predict for a new problem at hand.
The importance proper model validation can thus hardly be
overemphasized.

6. Concluding remarks

Neuro-fuzzy modeling is a flexible framework in which
different paradigms can be combined, providing, on the one
hand, a transparent interface with the designer and, on the
other hand, a tool for accurate nonlinear modeling and con-
trol. The rule-based character of neuro-fuzzy models allows
for the analysis and interpretation of the result. Conventional
methods for numerical validation can be complemented by

human expertise, which often involves heuristic knowledge
and intuition.

A drawback of neuro-fuzzy modeling is that the current
techniques for constructing and tuning fuzzy models are
rather complex, and their use requires specific skills and
knowledge. In this sense, neuro-fuzzy modeling will prob-
ably never become a ‘one-button,’ fully automated identifi-
cation technique. It should rather be seen as an interactive
method, facilitating the active participation of the user in a
computer-assisted modeling session. This holds, to a certain
degree, also for other, more established methods. Modeling
of complex systems will always remain an interactive ap-
proach.

6.1. Further reading

More details on the different methods and tools can be
found in referencesBrown and Harris (1994), Jang et al.
(1997), andHellendoorn and Driankov (1997), among oth-
ers. A large number of works are being regularly published
in fuzzy systems oriented journals (IEEE Transactions on
Fuzzy Systems, Fuzzy Sets and Systems) and alsoIEEE
Transactions on Systems, Man& Cybernetics.

6.2. Software

Various tools have been developed for Matlab. Examples
are the Fuzzy Logic Toolbox (http://www.mathworks.com/
products/fuzzylogic) and the Fuzzy Modeling and Identifica-
tion Toolbox by R. Babuška (http://dcsc.tudelft.nl/∼babuska).
These tools were used to generate the solutions of the
examples in this paper.

References

Abonyi, J., & Babuška, R. (2000). Local and global identification and
interpretation of parameters in Takagi–Sugeno fuzzy models. InPro-
ceedings of the 9th IEEE International Conference on Fuzzy Systems
(pp. 835–840), San Antonio, USA.

Babuška, R. (1998).Fuzzy modeling for control. Boston: Kluwer Aca-
demic Publishers.

Brown, M., & Harris, C. (1994).Neuro-fuzzy adaptive modelling and
control. New York: Prentice-Hall.

Hall, R. C., & Seborg, D. E. (1989). Modelling and self-tuning control
of a multivariable pH neutralization process. Part I: Modelling and
multi-loop control. InProceedings of American Control Conference
(Vol. 2, pp. 1822–1827), Pittsburgh, PA.

Hellendoorn, H., & Driankov, D. (Eds.). (1997).Fuzzy model identifica-
tion: Selected approaches. Berlin, Germany: Springer-Verlag.

Jang, J.-S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference
systems.IEEE Transactions on Systems, Man& Cybernetics, 23(3),
665–685.

Jang, J.-S.R., Sun, C.-T. (1993). Functional equivalence between radial
basis function networks and fuzzy inference systems.IEEE Transac-
tions on Neural Networks, 4(1), 156–159.

Jang, J.-S.R., Sun, C.-T., & Mizutani, E. (1997).Neuro-fuzzy and soft
computing: A computational approach to learning and machine intel-
ligence. Upper Saddle River, NJ: Prentice-Hall.

http://www.mathworks.com/products/fuzzylogic
http://www.mathworks.com/products/fuzzylogic
http://dcsc.tudelft.nl/~babuska

R. Babuška, H. Verbruggen / Annual Reviews in Control 27 (2003) 73–85 85

Johansen, T. A. (1994).Operating regime based process modelling and
identification. Ph.D. dissertation, The Norwegian Institute of Technol-
ogy, University of Trondheim. Trondheim, Norway.

Mathworks, T. (2001).Fuzzy logic toolbox for use withMatlab. User’s
guide, version 2. Natick, MA: The Mathworks, Inc.

Nelles, O., Fink, A., Babuška, R., Setnes, M. (2000). Comparison of two
construction algorithms for Takagi–Sugeno fuzzy models.Interna-
tional Journal of Applied Mathematics and Computer Science, 10(4),
835–855.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart &
J. L. McClelland (Eds.),Parallel distributed processing. Cambridge,
MA: MIT Press.

Tanaka, K., Ikeda, T., Wang, H.O. (1998). Fuzzy regulators and fuzzy
observers: Relaxed stability conditions and LMI-based designs.IEEE
Transactions on Fuzzy Systems, 6(2), 250–265.

	Neuro-fuzzy methods for nonlinear system identification
	Introduction
	Fuzzy systems and neural networks
	Nonlinear system identification
	Fuzzy models
	Mamdani model
	Takagi-Sugeno model
	Fuzzy logic operators
	Dynamic fuzzy models

	Artificial neural networks
	Multi-layer neural network
	Dynamic neural networks
	Error backpropagation
	Radial basis function network

	Neuro-fuzzy modeling
	Constructing neuro-fuzzy networks
	Structure and parameters
	Gradient-based learning

	Hybrid learning techniques
	Consequent parameter estimation
	Global least-squares estimation
	Local least-squares estimation
	Constrained estimation
	Multi-objective optimization

	Initialization of antecedent membership functions
	Template-based membership functions
	Discrete search methods
	Fuzzy clustering

	Simulation examples
	Static function
	pH neutralization process

	Concluding remarks
	Further reading
	Software

	References

