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Abstract

Most processes in industry are characterized by nonlinear and time-varying behavior. Nonlinear system identification is becoming an
important tool which can be used to improve control performance and achieve robust fault-tolerant behavior. Among the different nonlinear
identification techniques, methods based on neuro-fuzzy models are gradually becoming established not only in the academia but also in
industrial applications. Neuro-fuzzy modeling can be regarded as a gray-box technique on the boundary between neural networks and qualitative
fuzzy models. The tools for building neuro-fuzzy models are based on combinations of algorithms from the fields of neural networks, pattern
recognition and regression analysis. In this paper, an overview of neuro-fuzzy modeling methods for nonlinear system identification is given,
with an emphasis on the tradeoff between accuracy and interpretability.
© 2003 Published by Elsevier Science Ltd.
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1. Introduction degree transparent to interpretation and analysis, i.e. they can
be better used to explain solutions to users than completely
The design of control systems is currently driven by a black-box models such as neural networks.
large number of requirements posed by increasing competi- The paper is organized as follows: an overview of fuzzy
tion, environmental requirements, energy and material costssystems and neural networks is first givenSection 2
and the demand for robust, fault-tolerant systems. TheseNeuro-fuzzy systems are then addresse8ewation 3 Var-
considerations introduce extra needs for effective processious methods for parameter estimation are presented in
modeling techniques. Many systems are not amenable toSection 4and two numerical examples can be found in
conventional modeling approaches due to the lack of precise,Section 5 approximation of a static function and dynamic
formal knowledge about the system, due to strongly non- modeling of the pH procesSection 6concludes the paper.
linear behavior, high degree of uncertainty, or time-varying
characteristics.
Neurp-fuzzy m(_)(_jeling has bee_n recognized as a powerful 5. Fuzzy systems and neural networks
tool which can facilitate the effective development of models

by combining information from different sources, such as  goth neural networks and fuzzy systems are motivated by
emp|r.|cal models, heuristics and. data. Neuro-fuzzy models imitating human reasoning processes. In fuzzy systems, re-
describe systems by means of fuzizghenrules represented  |5tionships are represented explicitly in the form of if~then
in & network structure, to which learning algorithms known ies 1n neural networks, the relations are not explicitly
flfﬁm ;[(he arﬁ_a of artificial neura;l networl;s Ican be applied. given, but are ‘coded’ in the network and its parameters. In
anks to this structure, neuro-fuzzy models are to a certaincontrast to knowledge-based techniques, no explicit knowl-
edge is needed for the application of neural networks.
- Neuro-fuzzy systems combine the semantic transparency
* Partly based on: Babuska, R. (2000). Neuro-fuzzy methods for mod- of rule-based fuzzy systems with the learning capability of
eling and |dent|f|c§t|9n. IQ A. Abraham, L. C. Jain, & J.. Kacprzyk (Eds.), neural networks. This section gives the background on non-
Recent advances in intelligent paradigms and applicatigps 161-186). linear input—output modeling fuzzy systems and neural net-
Heidelberg: Springer-Verlag. Reprinted with permission. . X . ! . .
* Corresponding author. Tel:31-15-27-85117; fax3-31-15-27-86679. Wo_rks, which is essential for understanding the rest of this
E-mail addressir.babuska@dcsc.tudelft.nl (R. Babuska). article.

1367-5788/$ — see front matter © 2003 Published by Elsevier Science Ltd.
doi:10.1016/S1367-5788(03)00009-9
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2.1. Nonlinear system identification stance. To make such a model operational, the meaning of
the terms ‘high’ and ‘fast’ must be defined more precisely.

A wide class of nonlinear dynamic systems with an in- This is done by using fuzzy sets, i.e. sets where the mem-
put u and an outpuy can be described in discrete time by bership is changing gradually rather than in an abrupt way.
the NARX (nonlinear autoregressive with exogenous input) Fuzzy sets are defined through their membership functions
input—output model: (denoted byu) which map the elements of the considered
_ universe to the unit interval [0, 1]. The extreme values 0

Y+ 1) = flx®), @) and 1 denote complete membership and non-membership,

where y(k 4+ 1) denotes the output predicted at the future respectively, while a degree between 0 and 1 means partial
time instant + 1 andx (k) is theregressowector, consisting membership in the fuzzy set. Depending on the structure of

of a finite number of past inputs and outputs: the if-then rules, two main types of fuzzy models can be
7 distinguished: the Mamdani (or linguistic) model and the
y(k) .
Takagi—Sugeno model.
y(k — ,;y +1) 2.2.1. Mamdani model _
x(k) = (k) 2 In this model, the antecedent (if-part of the rule) and the

consequent (then-part of the rule) are fuzzy propositions:

R;: If xisA;thenyisB;, i=12,...,K. (4)

| utk —ny, +1) |

The dynamic order of the system is represented by the num-HereA; andB; are the antecedent and consequent linguistic
ber of lagsn, andn,. Although for simplicity stated with a  {€rms (such as ‘small,” ‘large,” etc.), represented by fuzzy
scalar input and othput the NARX model can also be used Sets, anK is the number of rules in the model. The linguistic

for multivariable systems. In that case, however, the number fuzzy modelis useful for representing qualitative knowledge,

of regressors usually becomes large and one may prefer thdllustrated in the following example.

nonlinear state-space description: . Example 1Consider a qualitative description of the rela-
tionship between the oxygen supply to a gas burreaiid
E(k+1) =gk, uk)), y(k) = h(&(K)). 3) its heating powery):

The problem of nonlinear system identification is to infer
the unknown functiorf in (1) or the functiongg andh in

(3) from some sampled data sequen¢@gk), y(k))|k =
1,2,...,N}.

In black-box modeling, these functions are approximated
by some general function approximators such as neural net
works, neuro-fuzzy systems, splines, interpolated look-up
tables, etc. If the aim of modeling is only to obtain an ac-
curate predictor foy, there is not much difference between
these models, as they all can approximate smooth nonlin-
ear systems arbitrarily well. Often, however, besides accu-
rate predictions, one wants to have a model that can be
used to learn something about the underlying system and
analyze its properties. From this point of view, fuzzy and
neuro-fuzzy systems are more transparent than most othe
black-box techniques.

R1: If O, flowrate isLow then power id.ow.
R2 . If O flow rate isOKthen power igHigh.
R3: If O, flowrate isHighthen power id.ow.

The meaning of the linguistic term{d.ow, OK, High} and
{Low, High} is defined by membership functions such as
the ones depicted ifig. 1. Membership functions can be
defined by the model developer based on prior knowledge
or by using data (in this example, the membership functions
and their domains are selected quite arbitrarily).

The meaning of the linguistic terms is, of course, not uni-
versally given. In this example, the definition of the fuzzy
set OK, for instance, may depend on the flow rate of the
fuel gas, the type of burner, etc. When input—output data of
the system under study are available, the membership func-
tions can be constructed or adjusted automatically, as dis-
cussed later on. Note, however, that the qualitative relation-
ship given by the rules is usually expected to be valid for a
range of conditions.

2.2. Fuzzy models

A mathematical model which in some way uses fuzzy sets
is called afuzzy modelln system identification, rule-based

. 2.2.2. Takagi—-Sugeno model
then ruFI)es with imprecise (ambigugus) predica)tles such as: (expert) systems. In data-driven identification, the model due
' " to Takagi and Sugeno has become popular. In this model, the
If heating is higlthentemperature increase is fast antecedent is defined in the same way as above, while the

] ] ) o ) ~consequent is an affine linear function of the input variables:
This rule defines in a rather qualitative way the relationship

between the heating and the temperature in a room, for in-R; : If x is A; theny; = aiTx + b;, (5)
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Low OK High Low High

0 1 2 3 0 25 50 75 100
O, flow rate [m*/h] heating power [kW]

Fig. 1. Membership functions for the Mamdani model of Example 1.

wherea; is the consequent parameter vectwpris a scalar and the input—output equation are:
offset andi = 1,..., K. This model combines a linguis-

tic description with standard functional regression: the an- _
tecedents describe fuzzy regions in the input space in which R2 :
the consequent functions are valid. The ougpistcomputed Rs:
by taking the weighted average of the individual rules’ con- gnd

R1: If uisNegatvetheny, = aiu + b
If uisZerotheny, = asu + by
If uisPositvethenys = azu + b3

tributions:
K K T y= UNeg()y1 + [1zero(U) Y2 + tpos(i) y3
_ Zi:KLBi (x)y; _ Zizlﬂi(l-:)(ai x + bi)’ ©) ine@) F 120r00) T irod)
i) Zi=1fi) As the consequent parameters are first-order polynomials in
where 8;(x) is the degree of fulfillmentof the ith rule.  the input variables, model (5) is in the literature also called

For the rule (5),8i(x) = pua,(x), but it can also be a the first-order TS modelThis is in order to distinguish it

more complicated expression, as shown later on. The an-fromthe zero-order TS model whose consequents are simply
tecedent fuzzy sets are usually defined to describe distinct,constants (zero-order polynomials):

partly overlapping region_s in the input_ space. The param- R;: IfxisA;theny; =b;, i=12,... K. @)
etersa; are then (approximate) local linear models of the

considered nonlinear system. The TS model can thus beFor this model, the input—outpiq. (6)reduces to:

regarded as a smooth piece-wise linear approximation of ZK B:(x)bi

a nonlinear function or a parameter-scheduling model. y = ﬁ(l—lx’
Note that the antecedent and consequent variables may be > iz Bi(x)

different. The above model can also be obtained as a special case of

E\xargplzZConadzr a static characjcerllstlc of an afctuator. the Mamdani system (4) in which the consequent fuzzy sets
with a dead-zone and a non-symmetrical response for PoSi-gesenerate to singletons (real numbers):

tive and negative inputs. Such a system can conveniently be

represented by a TS model with three rules each covering 1, ify=b;,

a subset of the operating domain that can be approximated" 3 y) = 0, otherwise ©)
by a local linear model, sdeig. 2 The corresponding rules

(8)

2.2.3. Fuzzy logic operators
In fuzzy systems with multiple inputs, the antecedent

proposition is usually represented as a combination of terms

with univariate membership functions, by using logic oper-

ators ‘and’ (conjunction), ‘or’ (disjunction) and ‘not’ (com-

u plement). In fuzzy set theory, several families of operators
have been introduced for these logical connectifeble 1
shows the two most common ones.

Table 1

Negative>< Zero >< Positive Common fuzzy logic operators
u

A andB AorB not A

Zadeh minfea, wB) max(a, 14B) 1— ua

Fig. 2. A Takagi—Sugeno fuzzy model as a piece-wise linear approximation A
g g g y P PP Probabilistic HAUB HA + B — LA-LB 1—pa

of a nonlinear system.
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As an example, consider thmnjunctive fornof the an- input layer hidden layer output layer
tecedent, which is given by:
W, AV
Ri: If x1isA;pand...andx, is Ajp theny; = a] x + b; W,
(10)
with the degree of fulfillment:

Bix) = Min(ua, (x1). ... Ay (5p)  OF LN o WA, |
(11) : g i £ &

Bi(x) = pa; (X1) - A, (x2) - - - Aip(xp)

for the minimum and product conjunction operators, respec- X i W /W

tively. The complete set of rules (10) divide the input do- wfj,,,' @ v,

main into a lattice of overlapping axis-parallel hyperboxes. _ _ _

Each of these hyperboxes is a Cartesian product intersection Fig. 3. A feedforward with one hidden layer.

of the corresponding univariate fuzzy sets.
2.3.1. Multi-layer neural network

2.2.4. Dynamic fuzzy models A feedforward multi-layer neural network (MNN) has one
In the modeling of dynamic systems, fuzzy models are input layer, one output layer and an number of hidden layers
used to parameterize of the nonlinear functibs(1) org between them. For illustration purposes, consider a MNN

andhin (3). Consider, for instance, the TS NARX model:  with one hidden layerKig. 3.

The input-layer neurons do not perform any computations,
they merely distribute the inpuss to the weightswih of the
hidden layer. In the neurons of the hidden layer, first the
weighted sum of the inputs is computed:

R;: If x(k)isA;theny;(k + 1)

=Y ajyk—j+ D+ bjutk—j+D+c, (12

j=1 j=1
P
where the antecedent regressdk) is generally given by = _ thx' —@Mx, j=1...m (14)
(2), but it may of course contain only some of the past inputs —! ' 7 T

and outputs or even other variables thaandy. Similarly, _ _ o _
state-space models can be represented in the TS frameworlt is then passed through a nonlinegetivation function,

by: such as the tangent hyperbolic:
R; : If £(k)is A; andu (k) is B; v = i— EXp(—gzj:)’ —12 . m 15)
e | £k D = @& + T +a; 13 + exp(—2z))
y;(k) = Ci&(k) +c;. Other typical activation functions are the threshold function

. ) (hard limiter) and the sigmoidal function. The neurons in
An advantage of the state-space modeling approachis thatne oytput layer are linear, i.e. only compute the weighted
the structure of the model can easily be related to the physicalg,,m of their inputs:

structure of the real system, and, consequently, the model

parameters are physically relevant. This is not necessarily the h o oT
case with input—output models. In addition, the dimension Y = Y whi=w)'x, I=1...n (16)
of the regression problem in state-space modeling is often j=1

smaller than with input—output models. Training is the adaptation of weights in a multi-layer net-

work such that the error between the desired output and the
network output is minimized. Two steps are distinguished
in this procedure:

2.3. Artificial neural networks

Artificial neural networks (ANNS), originally inspired by
the functionality of biological neural networks can learn (1) Feedforward computatiorFrom the network inputs;,

complex functional relations by generalizing from a limited the outputs of the first hidden layer are first computed.
amount of training data. Neural networks can thus serve as  Then using these values as inputs to the second hidden
black-box models of nonlinear, multivariable static and dy- layer, the outputs of this layer are computed, etc. Finally,

namic systems and can be trained by using input—output data  the output of the network is obtained.

observed on the system. The most common ANNSs consist(2) Weight adaptationThe output of the network is com-
of several layers of simple processing elements called neu-  pared to the desired output. The difference of these two
rons, interconnections among them and weights assigned values, the error, is then used to adjust the weights firstin
to these interconnections. The information relevant to the the output layer, then in the layer before, etc., in order to
input—output mapping of the net is stored in the weights. decrease the error (gradient-descent optimization). This
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backward computation is called error backpropagation
(Rumelhart, Hinton, & Williams, 1986

A network with one hidden layer is sufficient for most ap-

proximation tasks. More layers can give a better fit, but the
training takes longer. Choosing the right number of neurons
in the hidden layer is essential for a good result. Too few
neurons give a poor fit, while too many neurons result in
over-training of the net (poor generalization to unseen data).
A compromise is usually sought by trial and error methods.

2.3.2. Dynamic neural networks

A dynamic network can be realized by using a static feed-
forward network combined with an external feedback con-
nection. The output of the network is fed back to its input
through delay operators™!. This is in fact a realization
of the NARX model (1).Fig. 4ashows an example of a
first-order systemy(k + 1) = fan(y(k), u(k)).

Another possibility is to use recurrent networks in which

Reviews in Control 27 (2003) 73-85 77
The difference between the desired outguand the output
of the networky is called the error. This error is used to
adjust the weights in the net via the minimization of the
following cost function:

N
J = EZe,% with  ex =y — wx.

k=1
Note that the network’s outpytis nonlinear in the weights
w (for notational convenience, all the weights are lumped
in a single vectorw). The training of a MNN is thus a
nonlinear optimization problento which various methods
can be applied:

e Error backpropagation (first-order gradient).

e Newton, Levenberg—Marquardt methods (second-order
gradient).

e Genetic algorithms and many others techniques.

First-order gradient methods are based on the following

neurons are arranged in one or more layers and feedback igjeneral update rule for the weights:

introduced either internally in the neurons, to other neurons
in the same layer, or to neurons in preceding layers. Exam-
ples of these networks are the Elman netwdfig( 4b) or

the Hopfield network.

2.3.3. Error backpropagation

Consider for simplicity a MNN with one output. A set
of N input—output data pair§(x, y;)lk = 1,2,..., N} is
available. We represent this set as a maffixe RV*?,
having the input vectorsy in its rows, and a column vector
y* € RV, containing the desired outpuys:

X=[x1,....,xn]", ¥y =D .0nln 17)
u(k)
y(k+1)
(k) _’
unit delay
[T}
Lz ]
(a) neuralnetwork NARX model
u(k) y(k)

(b) Elman network

Fig. 4. Neural network models of dynamic systems.

wrn+1) =wn) —am@)VJiwn), (18)

wherew (n) is the weight vector at iteratiom «(n) is a (vari-
able) learning rate (a parameter) avid(w) is the Jacobian
of the network:

]T

aJ aJl
VJ(w) = [ (w) 9J(w)
w1
The nonlinear optimization problem is thus solved by using
the first term of its Taylor series expansion (the gradient).
Second-order gradient methods make use of the second term
as well:

aJ(w)
awM

(19)

RG]

w2

J(w) ~ J(wo) + VJ(wo)" (w — wo)
+ 2 (w — wo) " H (wo)(w — wo),

whereH (wg) is the Hessian. Second-order methods are usu-
ally more effective than first-order ones.

2.3.4. Radial basis function network

The radial basis function (RBF) network is a two-layer
network with an architecture depictedriy. 5. This network
is represented by the following function:

y=fx) =) wigi(x), (20)
i=1

Fig. 5. Radial basis function network.
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where the usual choice for the basis functignéx) is the
Gaussian function:

o llx — cil|?
¢i(x) =exp| ——=— .

2(71-2
Note that adjustable weights are only present in the out-
put layer. The connections from the input layer to the hid-
den layer are fixed to unit weights. The free parameters
of RBF networks are the output weights and the pa-
rameters of the basis functions (centersand radiio;). A,

normalized

S|nce the netWOI’k’S Output (20) |S |Ineal’ |n the Welgms membership  antecedent degree of consequent  weighted

functions connectives fulfillment prameters sum

these weights can be estimated by least-squares methods.

For each data point, first the outputs of the neurons are Fig. 6. An example of a zero-order TS fuzzy model with two rules
computed: represented as a neuro-fuzzy network.

vki = ¢i(X) Typically, smooth antecedent membership functions are

) _ ) ) used, such as the Gaussian functions:
and put in the matrixV = [uvy]. Introducing the weight

a2
vectorw = [wy, wa, ..., wy], we can write the following 4. (x: ¢j. o) = exp _M . (22)
matrix equation for the whole data set: : 20

The input—output equation of a general zero-order TS model

* —
Y =Vw. with the conjunctive form antecedent is:
The least-square estimate of the weightghat minimize K
the network erroe = y* — y is: Y= yix)b (23)
i=1
w=[VTv]ivTy* (21) with
The adaptation of the RBF parametersando; is a non- leexp(—(x]‘ — Cij)2/20ij2)

linear optimization problem that can be solved by the vilx) = K TT7 . exn(—(x: — ¢i)2/202)

gradient-descent method (18). 2=l 1 ®XP= () = ci)*/207)
The first-order TS fuzzy model can be represented in a sim-
ilar fashion. Consider again the example with two rules:

3. Neuro-fuzzy modeling If x1is A11andxzis Az1thenyy = aj1x1 + a1ox2 + b1
If x1isA12andx2is Azothenys = az1x1 + azoxz + b2
At the computational level, a fuzzy system can be seen . i1 the corresponding network is givenFig. 7.

as a layered structure (network), similar to artificial neural The input—output equation of this first-order TS model is:
networks of the RBF-typeJang & Sun, 19983 In order

to optimize parameters in a fuzzy system, gradient-descent K T

training algorithms known from the area of neural networks ¥ = > _vito)@ax +by)
can be employed. Hence, this approach is usually referred i=1

to as neuro-fuzzy modelind3fown & Harris, 1994; Jang,  with y;(x) given by (23).

1993 Jang, Sun, & Mizutani, 1997

(24)

Consider first a simple example of a zero-order TS fuzzy
model with the following two rules:

If x1isA11andxzis Az1theny = bq X
If x1is A12andxzis Azotheny = bo.

Fig. 6 shows a network representation of these two rules.
The nodes in the first layer compute the membership degree
of the inputs in the antecedent fuzzy sets. The product nodes x,
IT in the second layer represent the antecedent connective
(here the ‘and’ operator). The normalization node N and

- -

the summation nod& realize the fuzzy-mean operator (6).
This system is called adaptive neuro-fuzzy inference systemeig. 7. An example of a first-order TS fuzzy model with two rules
(ANFIS; Jang, 1993 represented as a neuro-fuzzy network called ANFIS.
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3.1. Constructing neuro-fuzzy networks 3.3. Gradient-based learning

Both prior knowledge and process data can be used to It is quite straightforward to derive the gradient-descent
construct neuro-fuzzy systems. Prior knowledge can be of alearning rule for théy; cj andojj parameters. The procedure
rather approximate nature (qualitative, heuristics). Two main is identical to the derivation of the backpropagation formulas
approaches to the integration of knowledge and data can befor neural networks. Consider the zero-order ANFIS model,
distinguished: given by rules (7). For the consequent paramebgrave
have the Jacobian (19):

if-then rules. In this way, an initial model is created. o _ 0J e

The parameters of this model (the membership func- dbi  de b
tions, consequent parameters) are then fine-tuned byand the update law:
using process data. _

(2) Fuzzy rules (including the associated parameters) arebi(n 1 =biln) +am)yie. (26)
constructed from scratch by using numerical data. In this For the centers and spreads of the Gaussian membership
case, the advantage of using a neuro-fuzzy model is thefunctions (22), we apply the chain rule for differentiation
possibility to interpret the obtained result (which is not and after some algebra, the following update formulas are
possible with truly black-box structures like neural net- obtained:
works). An expert can confront the information stored Xj — Cij
in the rule base with his own knowledge, can modify the i (# + D = cij(n) + 2a(n)yie o2 [bi — )]
rules, or supply additional ones to extend the validity of I
the model, etc. and

(1) Expert knowledge is formulated as a collection of
—vyie, i=1...,K (25)

. . ) (x L i )2
The above techniques can, of course, be combined, dependaij (n+ 1) = 0 (n) + 20(n)yie J A ij [b:
ing on the problem at hand. o
The parameter-update equations for the first-order ANFIS

3.2. Structure and parameters model can be derived in a similar fashion.

The two basic steps in system identification sireicture
identificationand parameter estimatianThe choice of the
model’s structure is very important, as it determines the flex-
ibility of the model in the approximation of (unknown) sys-
tems. A model with a rich structure can approximate more
complicated functions, but, at the same time, will have worse
generalization properties. Good generalization means that
model fitted to one data set will also perform well on an-
other data set from the same process. In neuro-fuzzy models
the structure selection process involves the following main
choices:

4. Hybrid learning techniques

We have already noticed that the output-layer parameters
in RBF networks can be estimated by linear least-squares
(LS) techniques (21). As LS methods are more effective than
qhe gradient-based update rule (26), hybrid methods are of-
ten applied that combine one-shot least-squares estimation of
the consequent parameters with iterative gradient-based op-
timization of the membership functionstathworks, 200}

In terms of error minimization, the choice of a particular
e Selection of input variablesThis involves not only the  least-squares estimation method is not crucial. If, however,

physical inputai but also the dynamic regressors, defined the consequent parameters are to be interpreted as local mod-

by the input and output lags, andn,, respectively. Prior els, for instance, great care must be taken in the choice of the
know|edge, |ns|ght in the process behavior and the pur- estimation method. The problem is that the ANFIS models,
pose of the modeling exercise are the typical sources of especially the first-order one, tend to be over-parameterized
information for the choice of an initial set of possible in- for most approximation problems. This may lead to numer-
puts. Automatic data-driven selection can then be used toical problems, over-fitting and meaningless parameter esti-
compare different structures in terms of some specified mates. The following example demonstrates this problem.
performance criteria. Example 3 Assume we wish to approximate a second-
« Number and type of membership functions, number of order polynomialy = fs(u) = 3u? —5u + 6 by a first-order
rules These two structural parameters are mutually re- ANFIS model. First we choose two poirtisandt, and de-

lated (for more membership functions more rules must fine initial triangular membership functions far< u < z:

be defined) and determine the level of detail, called the u—1n

granularity, of the model. The purpose of modeling and pag ) = fh—11 ap =1—pay. (27)

th.e amount'of avgllablellnformatlon (knowledge and data) The model consists of two rules:

will determine this choice. Automated, methods can be

used to add or remove membership functions and rules. R; : If uisA;theny; = aqu +b;, i=1,2.
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A

By substituting the membership functions (27) into (6), the y

output of the TS model is obtained (after some elementary
algebra):

au+b,

ai—az toap — tiay + b1 — by toby — t1b1
u2 + u—+ .
th—1 th—1n p—n

As this is a second-order polynomial i our model
can perfectly represent the given nonlinear system. How- t, L, wu
ever, it has four free parameterai( ap, by and by)

while three are sufficient to fit the polynomial—it is thus y
over-parameterized. This is a very simple example, but the

essence of the over-parameterization problem remains the

same when approximating complex unknown systems.

“autb,

4.1. Consequent parameter estimation —_—

To circumvent over-parameterization, the basic least- t, t, u
squares (_:rlterlor_1 can be C_Omb'”ed with additional criteria Fig. 8. The result of local (top) and global (bottom) estimation of the
for local fit, or with constraints on the parameter values. In consequent parameters. The dashed line is the output of the model.
the following, several techniques are discussed.

4.1.1. Global least-squares estimation In this case, the consequent parameters of the individual
The global least-squares estimation method yields param-rules are estimated independently of each other, and there-
eters that minimize the following prediction error criterion: fore the result is not influenced by the interactions of the
rules. At the same time, however, a larger prediction error
K K is obtained than with global least squares.
0 =arg minZ (ylt - Z)’i(xk)[ x; 1]0i) ; Example 4The application of local and global estimation
k=1 i=1 to the TS model from Example 3 results in the consequent
models given irFig. 8 Note that the consequents estimated
by local least squares describe properly the local behavior
of the function, but do not give a good fit. For global least
squares, the opposite holds—a perfect fit is obtained, but the

2

whered™ = [0],...,0}] is the concatenation of all the
individual rules’ parameter vectors. For the data matrices
(17), this criterion can be rewritten in a matrix form:

0 = argmin(y* — A0)" (y* — A9) (28) consequents are not relevant for the local behavior of the
system.

with A = [Iy,...,Tk,] where ¢ = [X 1] and When interpreting ANFIS models obtained from data, one

r; = diagyi(x1),...,y(xy)), i.e. a diagonal matrix  has to be aware of the tradeoffs between local and global

having v;(x;) as its kth diagonal element. The optimal estimation. Constrained and multicriteria optimization can
solution of (28) is then directly obtained by using matrix also be applied to restrict the freedom in the parameters.
pseudo-inverse:
4.1.3. Constrained estimation

Knowledge about the dynamic system such as its stabil-
L ity, minimal or maximal static gain, or its settling time can
4.1.2. Local least-squares estimation be translated into convex constraints on the consequent pa-

Wh|_|te the bgl()b?hl SOll:.t'ont glvefsththe minimal |f:red|ct|on rameters (se€ig. 9). By using input—output data, optimal
error, it may bias the estimates of the consequents as IO":lr":lmf)arameter values are then found by means of quadratic pro-
eters of local models. If locally relevant model parameters

ired ighted least h lied gramming, instead of least squares. There are two types of
are required, a WeIgh'ed 18as’-squares approach appied PeEqngiraints, global and local. Local constraints represent de-

rulg ii;oglld bel Ezed.'tTh'ls. is done by minimizing a seKof tail knowledge pertaining to each specific rule, while global
weighted loca critena. constraints apply to the entire model and should thus refer
. : to some global system properties such as the overall stabil-
. * AT ok . _
0 =argminy” — b)) Ii(y” —¢b), i=12....K ity. To see this, realize that the affine TS model (5) can be
(30) regarded as one quasi-linear system:

0=(ATA) ATy (29)

K

K
y= (Zn(x)a?) X+ Y yix)bi =a’ (x)x +b(x) (31)
i=1

i=1

for which the solutions are:

0;= (' Tip) Yo Iiy*, i=12 .. K.
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4.2.1. Template-based membership functions
With this method, the domains of the antecedent variables
are a priori partitioned by a number of membership func-
tions. These are usually evenly spaced and shaped. The rule
base is then established to cover all the combinations of the
antecedent terms. A severe drawback of this approach is that
the number of rules in the model grows exponentially. Fur-
_ thermore, if no knowledge is available as to which variables
—__ global constraints cause the nonlinearity of the system, all the antecedent vari-
ables are usually partitioned uniformly. However, the com-
plexity of the system’s behavior is typically not uniform.
a, Some operating regions can be well approximated by a local
linear model, while other regions require a rather fine par-
titioning. In order to obtain an efficient representation with
as few rules as possible, the membership functions must be
with input-dependent ‘parameterg(x), b(x) which are con-  placed such that they capture the non-uniform behavior of
vex linear combinations of the individual consequent param- the system.
etersa; andb;, i.e.:

a, Consequent
parameter
vector

Fig. 9. Convex constraints on the consequent parameters.

K K 4.2.2. Discrete search methods
a(x) = Z%‘(X)ai, b(x) = Zyi(X)bi- (32) lterative tree-search algorlthms_can be applied to de-
=1 =1 compose the antecedent space into hyper-rectangles by
. ] ~axis-orthogonal splits. In each iteration, the region with the
This property allows us to define global convex constraints worst local error measure is divided into two halves (or
for the entire model. Besides, it also facilitates the analysis gther portions). Splits in all dimensions of the input are
of TS models in the framework of poly-topic systems (linear tested and the one with the highest performance improve-
sign controllers with desired closed loop characteristics and specified error goal is met or when the desired number of

to analyze their stabilityTanaka, Ikeda, & Wang, 1998 rules is reached. The first four steps of such an algorithm
o S are illustrated irFig. 10 An advantage of this approach is
4.1.4. Multi-objective optimization its effectiveness for high-dimensional data and the trans-

Another possibility is to regularize the estimation by pe- parency of the obtained partition. A drawback is that the
nalizing undesired local behavior of the model. This can {ree building procedure is sub-optimal (greedy) and hence
dramatically improve the robustness of the construction al- the number of rules obtained can be quite laryelies,
gorithm, eventually leading to more relevant (interpretable) fink, & Babuska, 2000
parameter estimates. One way is to minimize the weighted
sum of the global and local identification criteria (28) and 4.2.3. Fuzzy clustering

(31): Construction methods based on fuzzy clustering originate
from data analysis and pattern recognition, where the con-
9 = argmin (y* —T0) (y* — I'9) cept of fuzzy membership is used to represent the degree

to which a given data object is similar to some prototypical
K object. The degree of similarity can be calculated by using
+Z8i(y* — 00)TTi(y* — )\ a suitable distance measure. Based on the similarity, data

i=1

The weighting parametei > 0 parameterize the set of
Pareto-optimal solutions of the underlying multi-objective %) &
optimization problem and thus determine the tradeoff be- Pl ~
tween the possibly conflicting objectives of global model ‘,, i

1
accuracy and local interpretability of the parameters. x % ~ §
Xy
3 & »
1

4.2. Initialization of antecedent membership functions x e % 4 ’ |
For a successful application of gradient-descent learning =

to the membership function parameters, good initialization *

is important. Several initialization methods are briefly re- rig. 10. Antecedent space decomposition by a heuristic search algorithm.

viewed in this section. The dark areas represent rules with the worst local fit in the given step.
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Fig. 11. Identification of membership functions through fuzzy clustering.

based on the Gustafson—Kessel algoritlBatuska, 1998
The following rules are obtained:

If uis A1theny = 5.721u + 0.030
If uis Aptheny = 0.03% + 0.904
If uis Aztheny = —5.302« + 2.380
If uisAgtheny = 0.734u — 1.413
If uis Astheny = 6.283: — 5.623

The fit of the function with this initial model is shown in
Fig. 12a The membership functions and the corresponding
local models are given iffig. 12bh The membership func-
tions are denoted from left to right b3s throughAs.

Note that this initial model can easily be interpreted in
terms of the local behavior (the rule consequents) and it is
already reasonably accurate (the root-mean-squared error is
RMS = 0.0258). However, by using the ANFIS method,

vectors are clustered such that the data within a cluster arethe model parameters can be fine-tuned and the approxi-

as similar as possible, and data from different clusters are
as dissimilar as possible.

Fig. 11gives an example of two clusters R? with pro-
totypesvs andvy. The partitioning of the data is expressed
in the fuzzy partition matrix/ = [ujj] whose elements are
the membership degrees of the data vecigrs the fuzzy
clusters with prototypes ;. The antecedent membership
functions are then extracted by projecting the clusters onto
the individual variables. For the initialization of first-order
ANFIS models, the prototypes can be defined as linear sub-
spaces or the clusters are ellipsoids with adaptively deter-

mined shape. The number of clusters in the data can either be

determined a priori or sought automatically by using cluster
validity measures and merging techniquBsaljuska, 1998

5. Simulation examples

In this section, two simulation examples are given to il-
lustrate several important issues related to the training of
neuro-fuzzy systems. The first example is a simple fitting
problem of a univariate static function. It demonstrates the
typical construction procedure of a neuro-fuzzy model. Nu-
merical results show that an improvement in performance is
achieved at the expense of obtaining if-then rules that are
not completely relevant as local descriptions of the system.

The second example, the modeling of a nonlinear dynamic
system, illustrates that the performance of a neuro-fuzzy
model does not necessarily improve after training. This is
due to over-fitting which in the case of dynamic systems can

easily occur when the data only sparsely cover the domains.

5.1. Static function

Let us approximate a univariate function= sin(7u)
by the ANFIS model with linear consequent functions. We
choose the number of rules to be five and construct an initial
model by clustering the datd x Y, using a methodology

mation accuracy can be significantly improved. A model

0.2

1

0.5
~ 0
05}
-1 " . "
0 02 0.4 0.6 0.8 1
u
) , , . .
N M
0 .
0 0.2 0.4 0.6 0.8 1
u

(b) Local models (top) and membership functions (bottom).

Fig. 12. Approximation by the initial TS fuzzy model. The root-mean-
squared error is RMS: 0.0258.
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obtained after 100 learning epochs of hybrid learning using
theanf i s function of the MatLaB Fuzzy Logic Toolbox .0
(Mathworks, 200}is described by the following fuzzy rules: 220
If uis A/ theny = 5.275 + 0.065 =
If uis A theny = 0.4424 + 0.899 210
If uis Ajtheny = —3.206: 4 1.405
If uis A) theny = 0.977 — 1.693 O %0 40 €0 80 100 120
If uis Afs theny = 5.062: — 4.388 Time [min]
The performance has improved to that degree that "
no approximation error is visible (not shown). The 10
root-mean-squared error is now RMS 0.0011, which is 8
about 23 times better than the initial model. The member- &
ship functions have only been slightly modified, but the 6
change in the local models is more apparent. 4
After learning, the local models are much further from the 5
true local description of the function. To quantify this, we 0 20 40 60 80 100 120
. Time [min]
can compute the difference between the consequent param-
eters of the fuzzy models, denoteddyand the ‘true’ local Fig. 13. Identification data.
estimated, computed by least squares for the data in core
(A). For the initial fuzzy model, we hav¢d — 0o|| = 1.81, The initial rule base, with the consequent estimated by

while the ANFIS model give$|@ — 6¢|| = 5.30. The rules  weighted local least squares (31), is given by:
of the fine-tuned neuro-fuzzy model are thus less accurate
in describing the system locally. This contradiction between
local and global approximation accuracy is inherent to TS , i
fuzzy systems with linear consequemgnyi & Babuska, If Q(k)isMediumthen
2000 and thus also to the ANFIS network. Great care must PH(k + 1) = 0.83pH(k) + 0.090 (k) + 0.10
be exercised when one attempts to interpret rules in trained T €(¥) isHighthen
neuro-fuzzy models. pH(k + 1) = 0.46pH(k) + 0.02Q (k) + 5.09.
After 1000 epochs of hybrid learning using the ANFIS
5.2. pH neutralization process function of the MaTLAB Fuzzy Logic Toolbox ilathworks,
2002, the following rule base has been obtained:

If Q(k)isLowthen
pH(k + 1) = 0.83pH(k) + 0.09Q (k) + 0.03

A neutralization tank with three influent streams (acid, ]
buffer and base) and one effluent stream is considered. The!f Q%) isLow’then
identification and validation data sets are obtained by sim- _ PH(K + 1) = 0.37pH(k) —0.05Q (k) +2.14
ulating the model byHall and Seborg (1989%or random It Q (k) isMediunithen
changes of the influent base stream flow @t&he influent PH(k +1) = 0.91pH(k) + 0.06Q (k) — 0.23
buffer stream and the influent acid stream are kept constant.If (%) isHigh'then
The output is the pH in the tank. The identification data  PH( +1) = 0.40pH(k) 4-0.03Q (k) + 5.63.

set, containingV = 499 samples with the sampling time of  Note that the consequent model in the first rule has a negative
15s, is shown irFig. 13 This data set was obtained from  cqefficient forQ(k). As this is a physically impossible value,

Johansen (1994) _ _ . _ not interpretation can be given to these parameters and this
The process is approximated as a first-order discrete timeained model has become a complete black-box. Also notice
NARX model: in Fig. 14 that the membership functions were adjusted in

PH(k + 1) = f(pH(K), Q(k)),

wherek denotes the sampling instant, ahig an unknown
relationship approximated by a neuro-fuzzy model. Based 205

: ) . 205
on prior knowledge about the process, it was decided to
include only Q(k) in the antecedent (it is known that the
main source of nonhnearlt_y is the titration curve, which is 0 10 20 20 0 0 20 30
the steady-state characteristic relat@tp pH). The number Q) Q)

of member;hlp functions (a_md thu; also rules) was set to Fig. 14. Membership functions before (left) and after training (right). The
three. The initial membership functions were evenly spread membership functions are denoted from left to right by ‘Low,” ‘Medium’
over the domain, as shown in the left paneFad. 14 and ‘High.’
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Table 2 human expertise, which often involves heuristic knowledge
RMS before and after training and intuition.

Before training After training A drawback of neuro-fuzzy modeling is that the current
Training data set 0.90 0.82 techniques for construct!ng and tumng fuzzy .mod.els are
validation data set 0.81 0.89 rather complex, and their use requires specific skills and

knowledge. In this sense, neuro-fuzzy modeling will prob-
ably never become a ‘one-button,” fully automated identifi-
cation technique. It should rather be seen as an interactive
method, facilitating the active participation of the user in a
computer-assisted modeling session. This holds, to a certain
degree, also for other, more established methods. Modeling
of complex systems will always remain an interactive ap-
proach.

12

6.1. Further reading

0 20 40 60 8 100 120

Time [min] More details on the different methods and tools can be
(a) initial model found in reference®rown and Harris (1994)Jang et al.

(1997) andHellendoorn and Driankov (199,7among oth-
ers. A large number of works are being regularly published
in fuzzy systems oriented journallEEEE Transactions on
Fuzzy Systemd-uzzy Sets and Systémand alsolEEE
Transactions on Systems, M&nCybernetics

6.2. Software

Various tools have been developed foxas. Examples

% 20 40 60 80 100 120 are the Fuzzy Logic Toolboxhftp://www.mathworks.com/
Time [min] products/fuzzylogirand the Fuzzy Modeling and Identifica-
(b) after training tion Toolbox by R. Babuskantp://dcsc.tudelft.ni-babuski
Fig. 15. Performance of the initial and trained model on the validation These tools were used to generate the solutions of the
data set (solid line: data; dashed line: model). examples in this paper.

a very peculiar way by the gradient-descent optimization
method. References

Table 2shows that while the numerical performance in
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