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Rule-Based Modeling: Precision and Transparency Il. THE TS Fuzzy MODEL AND IDENTIFICATION BY CLUSTERING

A rule-based model of the TS type [9] is considered. It consists
of a set of fuzzy rules, each describing a local input—output relation
in a linear form

M. Setnes, R. Balika, and H. B. Verbruggen

Abstract—This article is a reaction to recent publications on rule- R;:Ifz1 is A;1 and ---and z, is 4;,
based modeling using fuzzy set theory and fuzzy logic. The interest in R . . .
fuzzy systems has recently shifted from the seminal ideas about complex- theng; = a;x + b, i=12 -, K. (€Y}
ity reduction toward data-driven construction of fuzzy systems. Many . . T L.
algorithms have been introduced that aim at numerical approximation Here R, is theith rule,z = [v1, ---, 2,] € X is the vector
of functions by rules, but pay little attention to the interpretability of  of input (antecedent) variabled,, - - -, A4;, are fuzzy sets defined

the resulting rule base. We show that fuzzy rule-based models acquired in the antecedent space, apd is the rule output/ denotes the
from measurements can be both accurate and transparent by using a low number of rules in the rule base, and the aggregated output of the

number of rules. The rules are generated by product-space clustering PA N . ;
and describe the system in terms of the characteristic local behavior of model j € Y is calculated by taking the weighted average of the

the system in regions identified by the clustering algorithm. The fuzzy rule consequents

transition between rules makes it possible to achieve precision along with K

a good qualitative description in linguistic terms. The latter is useful 3 ()i

for expert evaluation, rule-base maintenance, operator training, control Z" i(®)g:

systems design, user interfacing, etc. We demonstrate the approach on a § = ':1}7 2)

modeling problem from a recently published article.

K
o : > Bix)
Index Terms—Accuracy, fuzzy clustering, interpretation, rule-based =
modeling, transparency. n
wherej;(z) is the degree of activation of thi¢h rule

I. INTRODUCTION Bi(x) = H,,/Aij(m])’ i=1,2 -, K 3)
Fuzzy models describe systems by establishing relations between j=1

the re_le\_/ant_varlables in the_ form dfthenrules. One _of the aspectsa{]d#‘% (2,): R — [0, 1] is the membership function of the fuzzy

that distinguish fuzzy modeling from black-box techniques like neurgl, | jin the antecedent of.

nets is that fuzzy models are to a certain degree transparent hé’ construction of a TSZ%uzzy model from measured data is

interpretation and analysis. Traditionally, a fuzzy model is built b¥o|

using expert knowledge in the form of linguistic rules. Recentl ved in two steps: 1) structure identification and 2) parameter
9 expert. dge. . ng ' Yestimation. In the structure identification step, the antecedent and
there is an increasing interest in obtaining fuzzy models from

measured data. Different aporoaches have been proposed for gginsequent variables of the model are determined. From the available
. ’ 1t app . prop tor fle sequences, a regression maffixand an output vectoy are
purpose, like fuzzy relational modeling [1], neural-network tralnln%

techniques [2], and product-space clustering [3], [4]. However, mos(t)nStrUCtecI

of these approaches emphasize the global quantitative accuracy of the X =[z1, -, mN]T./ y=[y1, -, yN]T. 4)
resulting model, and little attention is paid to linguistic and qualitative . . o
aspects (see [3] and [5] for examples). Solutions to this problem hadygre Y > n is the number of samples used for identification.
been sought for fuzzy neural networks [6] and for fuzzy rule-based!" the parameter estimation step, the number of rulgsthe
models in general [7]. antecedenj[ fuzzy sets;;, an’d the paramef[ers of the rule consgque_nts
The increasing computational possibilities seem to have causeﬂiabi for b= L2, K gre de}e,”“'“e"; Fuzzy cluls.terlng In
shift in fuzzy systems away from the seminal ideas about complexif}e Cartesian product-spac& x ) is applied to partition the
reduction and linguistic interpretation that lead to the introduction (Brralnlng d_ata into characte_rlstlc regions where the systems behavior
fuzzy systems [8]. In the current literature, fuzzy systems are oftéh approxmated by local Ilne‘ar models [10]. The data Seto be
labeled as transparent and physically interpretable, while they &idstered is formed by combining” andy
actually used as black-box techniques. The aim of this article is to Z =[X; y]'T. (5)
show that automated modeling techniques can be used to obtain not
only accurate, but also transparent rule-based models from systerfpiven the training dataZ and the number of cluster&’, the
measurements. In the next section, we present a method to identifpéstafson—Kessel (GK) clustering algorithm [11] is applied, which
Takagi—Sugeno (TS) rule-based model [9] by means of product-sp&8&nputes the fuzzy partition matriX’. Note that the problem
clustering. Section Il shows how a linguistic model can be obtainélgfinition is the same as in [3], where product-space clustering
from the TS rule-based model. In Section IV, these approaches #realso applied. However, the GK clustering algorithm involves
applied to a modeling problem from [3], and we show that transpare¥? adaptive distance measure, making it more suitable for the
and simple rule bases can be obtained with high accuracy as widgntification of characteristic regions in the data than the Learning

as good semantic properties. Finally, some concluding remarks ¥R€tor Quantization clustering approach in [3]. The GK clustering
given in Section V. algorithm is given in the Appendix. Each cluster represents a certain

operation region of the system, and the number of cludieeqjuals
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Fig. 1. Identification data contaminated by noise. (a)
membership degree of the data objegtin clusteri. The ith row 2'53'
of U contains a pointwise definition of a multidimensional fuzzy 2‘(
set. One-dimensional (1-D) fuzzy sets, are obtained from the L5
multidimensional fuzzy sets by projections onto the space of the B
input variablesz;
0.5
pag; (k) = Proj; (pix) (6) 2 o=
-
where proj is the pointwise projection operator [14]. The pointwise -0.5
defined fuzzy sets!;; are then approximated by suitable parametric 1
functions in order to computg,,(x;) for any value ofz;. s
The consequent parameters for each rule are obtained as a least- =
square estimate. LeX. denote the matri{X; 1]; T'; is a diag-

-2~
onal matrix inIR™¥*¥" having the normalized membership degree 25|
~i(zk) = Bi(zr)/ Zj’i‘zl 8;(xx) as itskth diagonal element. Further, -3
denoteX’, the matrix inR™>**® composed of matriceE; and X.

X' = (T Xe)s (TaXo)i -5 (D Xo)l. @

-2 -1 0 1 2 3

(b)
Fig. 2. (a) Rule antecedents and (b) rule consequents.
Denote#’, the vector inR”*(*+") given by

0 — [9{: 0T ... pﬁ]T ®) product intersection operator must be used [5]. In order to represent
T ' the piecewise linear mapping of the TS model, the cores of the
whered! = [a]; b;] for 1 < i < K. The resulting least-squaresmembership functions in the linguistic model are chosen, such that

problemy = X#' + ¢, wheree is the approximation error, has thethey coincide with the intersection points of the adjacent membership

solution functions in the affine TS model (1). (A core of a fuzzy set is a
, B crisp set, cored) = {z|pa(z) = 1}.) This is because each TS
0 = [(X )X ] (X)'y. (9)  rule by itself results in a locally linear input—output mapping, while

in the linguistic model, the linear relation is a consequence of the

From (8), the parametes andb; are obtained by interpolation between the neighboring rules. Additional sets must be

ai =01, 0o, e, 000", b; = [#,4n+1]  (10) placed at the extreme points of the domain. Consider first a TS fuzzy
) model (1) with a scalar input and scalar outpu§. Let the fuzzy
whereg = (i — 1)(n +1). setsd;, i = 1, 2, ---, K be ordered, such that
[ll. CONSTRUCTION OF ALINGUISTIC FuzzY MODEL sup corg(A;) < inf core Aiyi), i=1,2,--, K—1. (12

As we explained in the previous section, a TS model can be derived
by fuzzy clustering, such that it approximates piecewise a nonlinebhis condition ensures that the cores of the fuzzy detare disjunct.
hypersurface by hyperplanes. A piecewise linear model can alsols o = {a}|i =1, ---, K + 1} denote a set of intersection points
obtained by using a singleton model, a special case of the linguistitthe adjacent fuzzy setd;
fuzzy model of the form
a ={inf X', {cordnorm(4; N A;y1)]
li=1,---,K — 1}, sup X'} (13)

R;:Ifz, is Ajyand -+ and z,, is A;,
then g, = b, i=1,2,--, K. (11)
It is easy to show that to obtain linear interpolation between thehere normalization of a fuzzy set is defined agorm.a,) =

constant consequents, the antecedent fuzzy sets must be defineda, ()/ sup, p4, (x). Now, triangular membership functiops,, of
by triangular membership functions that form a partition and thée linguistic model can be constructed so that they form a partition,
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TABLE |
2.5~ RULE-BASED MODEL IDENTIFIED FROM Noisy DATA
|
2 Rule Antecedent Consequent
1.5
. Ry : Ifzis A Then ¥, is 0.0970z + 0.2907
=3 o 5‘1 Ry: IfzisA;  Then y is 0.4854z + 0.9104
2 01 Ry: IfzisA;  Then ys is —4.2325z — 4.4236
£ o
-q—o) 05 Ry: Ifxzis Ay Then y, is 6.4704z — 0.0268
S-0.
s Rs: TfzisA;  Then ys is —4.0738z + 4.1996
Z15 Rs: Ifzxis Ag Then yg is 0.3450z — 0.7316
ol R;: HzisA;  Then y; is —0.0029z + 0.0100
2.5 ‘ . . o ]
-3 -2 -1 0 1 2 3 ]
X y denote the vector iR havingy; as itskth component; and let
() b= [b1, bs, ---, bx]” denote the vector containing the consequent
parameters. The least-squares problem given by (17), written in a
02 ‘ ' ‘ ‘ ' T matrix formy = I'b + ¢, wheree is the approximation error and has
0.15 . the solution
—1
ol b=[r"r] Iy (18)
0.05p IV. EXAMPLE
£ o
A. TS Fuzzy Model with Linear Consequents
—0.05f .
Using the TS-Fuzzy model structure, we apply the approach
—0.1F ] described in Section Il to construct a fuzzy rule-based model of a
system presented in [3]. The reader is encouraged to compare the
—0.15¢ 1 results in this section with those in [3]. Consider a univariate function
—z2 .
=0.2; ) =) 5 ] 3 — y(x) =3e™" sin(mx) + 9 (29)
X
b) wherey is Gaussian noise with zero mean arfd= 0.15. By using
_ ‘ o o random inputsz uniformly distributed in[—3, 3], 300 samples of
Fig. 3. (a) Function approximation and (b) approximation error. y(x) were obtained from (19) (see Fig. 1). This gives the identifi-
cation dataZ = {(xx, yx)|k = 1, 2,---, 300}. The dataZ are
and their cores are the poinis clustered by the GK clustering algorithm, ad = 7 clusters are
) selected by means of the average within cluster distance validity
jiar () = max |0, min [ 1 ay —x (14) measure [15]. The resulting TS fuzzy model consists of seven rules
A1 L " ab — af with linear consequent parts. The rules are given in Table I, and the
r . x—ai_y a4 —zx fuzzy sets in the antecedent of the rules and the local linear models
pag(r) = max |0, min { ———7—, —=———7 | |. in the consequents are shown in Fig. 2. We now compare this model
L 2 —1 141 "1 . . . N . .
=2 e K (15) obtained from noisy data with the noise-free function (19), je=, 0.
F v Fig. 3 shows the function (19) and the approximation by the model
#A}(+1(I) = max |0, min <% 1)} (16) of Table I. Considering 300 points equally spaced in—3, 3], the
L A4 — Uk

model gives a mean-squared error of 0.0028 with a maximum error of

For the general model (11), the membership functions are derived 868. The rule-based model of Table | performs better than all the
per antecedent variable;, in the same way as above. In order tanodels derived in [3], has fewer rules (seven compared to 30 in [3]),
obtain a complete singleton model, identifying the rule consequergd is identified from noise contaminated data, while the identification
for all combinations of the antecedent fuzzy sets remains. Thliata used in [3] were noise free. Our identification approach is based
optimal consequent parametérscan be estimated by least-squaresn product-space clustering, as was also the case in [3]. Also, the
techniques. Let the degree of activatidsiz) of theith rule be given reasoning is identical with the mentioned article. The main difference
by (3), and let the outpuj,. of the model corresponding to the inputbetween our approach and the one in [3] is that we use rules in which

x; be computed by the consequents are linear functions. Further, the adaptive distance
= clustering algorithm can recognize clusters of various shapes and
Z,Bi(i'?k)bi hence, can approximate functions more effectively.
i=1
g = = 17 L
Yk K 17 g Linguistic Model
Z&(m) The linguistic fuzzy model consists of eight rules with singleton
=1

consequents. The rules are given in Table Il. The antecedent fuzzy
Let I' denote the matrix irIR‘N’>< X having the normalized degreesets obtained by (14)-(16) and the approximation of the noise-free
of fulfillment v+, = ﬁi(xk)/zﬁ; B:(xr) as itskith element; let function are shown in Fig. 4. Considering 300 equally spaced points
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Fig. 4. Antecedent membership functions and model output compared with the noise-free function. The circles denote the consequent singletons.

positive output. Fuzzy sets defining the linguistic terms in the rule
consequent are shown in Fig. 4.

TABLE I
SINGLETON MODEL IDENTIFIED FROM NoIsy DATA

Rule Antecedent Consequent singleton Conscquent label
V. CONCLUDING REMARKS
Ry : If z is Negative Bi Then y; is 0.0328 About Z .

! _ & : & . u - Ht fero We have presented a method for constructing fuzzy rule-based
Rp: Iz is Negative Medium Then g, is —0.1202  About Zero models from system’s measurements, which provides high accuracy
R;: I z is Negative Small Then y; is 0.5179 Positive Small as well as transparency and low complexity of the resulting rule base.
Ru: Tizis Negative Zero Then y, is —2.8572  Negative Big The approach_ has been demonstrat_eq_on a modeling problem from_ the

- —— - — literature to give the reader a possibility to compare the results with
Rs . If = is Positive Zero Then ys5 is 2.7919 Positive Big . . .
those of fuzzy black-box modeling. It was our intention to show that
Rg:  If z is Positive Small Then ys is —0.4918  Negative Small construction of rule-based models from data can result in transparent
R;: If z is Positive Medium  Then y7 is 0.0300 About Zero fuzzy models suitable for linguistic interpretation. Such models are
Ry: If 7 is Positive Big Then vy is —0.00585  About Zero more in line with the paradigms of fuzzy systems. They enable an

easy validation by experts and the possibility to insert additional rules
based on the experience of experts, typically in regions that have not
) ) been covered by the measurements.

> € [=3, 3], the singleton model gives a mean-squared error of te odeling methodology described in this article has been
0.0096 with a maximum error of 0.3980. The accuracy of this modg},.cessfully applied to many real-world problems in diverse fields,
is lower than that of Fhe TS mpdel, but it is still comparable W'tmke ecology [16], biotechnology [17], finance [18], and process
the results presented in [3]. Notice, however, that our model Consigfsiro| [19]. It is our experience that when dealing with practical
of eight rules compared to 30 in the article mentioned. Moreover, yjications, the transparency of the models is of high importance.
our model was identified from data contaminated by noise, while ﬂl’%zzy models have proven to be very suitable in providing such

identification data used in [3] were noise free. transparency for interpretation and analysis.
The singleton model presented in Table Il can easily be interpreted

linguistically. The numerical singletons can be grouped around some
characteristic values, and they can be assigned linguistic terms. In
our example, we obtain the terms Negative Big, Negative Small, The GK clustering algorithm [11]:

About Zero, Positive Small, and Positive Big. One can see that theGiven Z, choosel < A < N, m > 1 ande > 0. Initialize U©
linguistic model describes the underlying function very well, givinge.g., at random).

an idea about the oscillations between small and large negative an®epeat for! = 1, 2, ---.

APPENDIX
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Step 1)Compute Cluster Means
N

Z[ (l 1)]m

l

Z [l

k=1

Step 2)Compute Covariance Matrices

A/'
>l e = oz = o]

k=1
F; = ~ ,

) i

k=1

i=1,2, -, K.

Step 3)Compute Distances

D% =[x = 0] [aet(R) B ] [z - o0,

i=1,2---,K, k=1,2,---, N.
Step 4)Update Partition Matrix

If Dy >0for 1 < i< K,1<k<N

[ 1
HEL) = K

> (Dix/ D)/ (m=

j=1

otherwise

K
pt) = 0if Dy > 0. andply €10, Jwith S pf) =1

=1

until U — D) < e
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