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Rule-Based Modeling: Precision and Transparency

M. Setnes, R. Babǔska, and H. B. Verbruggen

Abstract—This article is a reaction to recent publications on rule-
based modeling using fuzzy set theory and fuzzy logic. The interest in
fuzzy systems has recently shifted from the seminal ideas about complex-
ity reduction toward data-driven construction of fuzzy systems. Many
algorithms have been introduced that aim at numerical approximation
of functions by rules, but pay little attention to the interpretability of
the resulting rule base. We show that fuzzy rule-based models acquired
from measurements can be both accurate and transparent by using a low
number of rules. The rules are generated by product-space clustering
and describe the system in terms of the characteristic local behavior of
the system in regions identified by the clustering algorithm. The fuzzy
transition between rules makes it possible to achieve precision along with
a good qualitative description in linguistic terms. The latter is useful
for expert evaluation, rule-base maintenance, operator training, control
systems design, user interfacing, etc. We demonstrate the approach on a
modeling problem from a recently published article.

Index Terms—Accuracy, fuzzy clustering, interpretation, rule-based
modeling, transparency.

I. INTRODUCTION

Fuzzy models describe systems by establishing relations between
the relevant variables in the form ofif–thenrules. One of the aspects
that distinguish fuzzy modeling from black-box techniques like neural
nets is that fuzzy models are to a certain degree transparent to
interpretation and analysis. Traditionally, a fuzzy model is built by
using expert knowledge in the form of linguistic rules. Recently,
there is an increasing interest in obtaining fuzzy models from
measured data. Different approaches have been proposed for this
purpose, like fuzzy relational modeling [1], neural-network training
techniques [2], and product-space clustering [3], [4]. However, most
of these approaches emphasize the global quantitative accuracy of the
resulting model, and little attention is paid to linguistic and qualitative
aspects (see [3] and [5] for examples). Solutions to this problem have
been sought for fuzzy neural networks [6] and for fuzzy rule-based
models in general [7].

The increasing computational possibilities seem to have caused a
shift in fuzzy systems away from the seminal ideas about complexity
reduction and linguistic interpretation that lead to the introduction of
fuzzy systems [8]. In the current literature, fuzzy systems are often
labeled as transparent and physically interpretable, while they are
actually used as black-box techniques. The aim of this article is to
show that automated modeling techniques can be used to obtain not
only accurate, but also transparent rule-based models from system
measurements. In the next section, we present a method to identify a
Takagi–Sugeno (TS) rule-based model [9] by means of product-space
clustering. Section III shows how a linguistic model can be obtained
from the TS rule-based model. In Section IV, these approaches are
applied to a modeling problem from [3], and we show that transparent
and simple rule bases can be obtained with high accuracy as well
as good semantic properties. Finally, some concluding remarks are
given in Section V.
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II. THE TS FUZZY MODEL AND IDENTIFICATION BY CLUSTERING

A rule-based model of the TS type [9] is considered. It consists
of a set of fuzzy rules, each describing a local input–output relation
in a linear form

Ri: If x1 is Ai1 and � � � and xn is Ain

then ŷi = aaaixxx+ bi; i = 1; 2; � � � ; K: (1)

HereRi is the ith rule, xxx = [x1; � � � ; xn]
T
2 X is the vector

of input (antecedent) variables,Ai1; � � � ; Ain are fuzzy sets defined
in the antecedent space, andyi is the rule output.K denotes the
number of rules in the rule base, and the aggregated output of the
model ŷ 2 Y is calculated by taking the weighted average of the
rule consequents

ŷ =

K

i=1

�i(xxx)ŷi

K

i=1

�i(xxx)

(2)

where�i(xxx) is the degree of activation of theith rule

�i(xxx) =

n

j=1

�A (xj); i = 1; 2; � � � ; K (3)

and�A (xj): IR ! [0; 1] is the membership function of the fuzzy
setAij in the antecedent ofRi.

The construction of a TS fuzzy model from measured data is
solved in two steps: 1) structure identification and 2) parameter
estimation. In the structure identification step, the antecedent and
consequent variables of the model are determined. From the available
data sequences, a regression matrixX and an output vectoryyy are
constructed

X = [xxx1; � � � ; xxxN ]
T
; yyy = [y1; � � � ; yN ]

T
: (4)

HereN � n is the number of samples used for identification.
In the parameter estimation step, the number of rulesK, the

antecedent fuzzy setsAij , and the parameters of the rule consequents
aaai; bi for i = 1; 2; � � � ; K are determined. Fuzzy clustering in
the Cartesian product-spaceX � Y is applied to partition the
training data into characteristic regions where the systems behavior
is approximated by local linear models [10]. The data setZ to be
clustered is formed by combiningX andyyy

Z = [X; yyy]
T
: (5)

Given the training dataZ and the number of clustersK, the
Gustafson–Kessel (GK) clustering algorithm [11] is applied, which
computes the fuzzy partition matrixU . Note that the problem
definition is the same as in [3], where product-space clustering
is also applied. However, the GK clustering algorithm involves
an adaptive distance measure, making it more suitable for the
identification of characteristic regions in the data than the Learning
Vector Quantization clustering approach in [3]. The GK clustering
algorithm is given in the Appendix. Each cluster represents a certain
operation region of the system, and the number of clustersK equals
the number of rules. Methods like cluster validity measures [12] or
compatible cluster merging [13] can be applied to find a suitable
number of clusters.

The fuzzy sets in the antecedent of the rules are obtained from
the partition matrixU , whose ikth element�ik 2 [0; 1] is the
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Fig. 1. Identification data contaminated by noise.

membership degree of the data objectzzzk in cluster i. The ith row
of U contains a pointwise definition of a multidimensional fuzzy
set. One-dimensional (1-D) fuzzy setsAij are obtained from the
multidimensional fuzzy sets by projections onto the space of the
input variablesxj

�A (xjk) = projj(�ik) (6)

where proj is the pointwise projection operator [14]. The pointwise
defined fuzzy setsAij are then approximated by suitable parametric
functions in order to compute�A (xj) for any value ofxj .

The consequent parameters for each rule are obtained as a least-
square estimate. LetXe denote the matrix[X; 1]; �i is a diag-
onal matrix in IRN�N having the normalized membership degree
i(xxxk) = �i(xxxk)=

K

j=1
�j(xxxk) as itskth diagonal element. Further,

denoteX0, the matrix inIRN�KN composed of matrices�i andXe

X
0 = [(�1Xe); (�2Xe); � � � ; (�KXe)]: (7)

Denote���0, the vector inIRK(n+1) given by

���
0 = ���

T
1 ; ���

T
2 ; � � � ; ���

T
K

T

(8)

where���Ti = [aaaTi ; bi] for 1 � i � K. The resulting least-squares
problemyyy = X���0 + �, where� is the approximation error, has the
solution

���
0 = (X 0)TX 0

�1

(X 0)Tyyy: (9)

From (8), the parametersaaai and bi are obtained by

aaai = [�0q+1; �
0

q+2; � � � ; �
0

q+n]
T
; bi = [�q+n+1] (10)

where q = (i � 1)(n + 1).

III. CONSTRUCTION OF ALINGUISTIC FUZZY MODEL

As we explained in the previous section, a TS model can be derived
by fuzzy clustering, such that it approximates piecewise a nonlinear
hypersurface by hyperplanes. A piecewise linear model can also be
obtained by using a singleton model, a special case of the linguistic
fuzzy model of the form

Ri: If x1 is Ai1 and � � � and xn is Ain

then ŷi = bi; i = 1; 2; � � � ; K: (11)

It is easy to show that to obtain linear interpolation between the
constant consequentsbi, the antecedent fuzzy sets must be defined
by triangular membership functions that form a partition and the

(a)

(b)

Fig. 2. (a) Rule antecedents and (b) rule consequents.

product intersection operator must be used [5]. In order to represent
the piecewise linear mapping of the TS model, the cores of the
membership functions in the linguistic model are chosen, such that
they coincide with the intersection points of the adjacent membership
functions in the affine TS model (1). (A core of a fuzzy set is a
crisp set, core(A) = fxj�A(x) = 1g.) This is because each TS
rule by itself results in a locally linear input–output mapping, while
in the linguistic model, the linear relation is a consequence of the
interpolation between the neighboring rules. Additional sets must be
placed at the extreme points of the domain. Consider first a TS fuzzy
model (1) with a scalar inputx and scalar output̂y. Let the fuzzy
setsAi, i = 1; 2; � � � ; K be ordered, such that

sup core(Ai) < inf core(Ai+1); i = 1; 2; � � � ; K � 1: (12)

This condition ensures that the cores of the fuzzy setsAi are disjunct.
Let � = fa0i j i = 1; � � � ; K + 1g denote a set of intersection points
of the adjacent fuzzy setsAi

� = finf X ; fcore[norm(Ai \ Ai+1)]

j i = 1; � � � ; K � 1g; supXg (13)

where normalization of a fuzzy set is defined as�norm(A ) =
�A (x)= supx �A (x). Now, triangular membership functions�A of
the linguistic model can be constructed so that they form a partition,
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(a)

(b)

Fig. 3. (a) Function approximation and (b) approximation error.

and their cores are the pointsa0i

�A (x) = max 0; min 1;
a02 � x

a0
2
� a0

1

(14)

�A (x) = max 0; min
x� a0i�1

a0i � a0i�1
;
a0i+1 � x

a0i+1 � a0i
;

i = 2; � � � ; K (15)

�A (x) = max 0; min
x� a0K

a0K+1 � a0K
; 1 : (16)

For the general model (11), the membership functions are derived
per antecedent variablexj , in the same way as above. In order to
obtain a complete singleton model, identifying the rule consequents
for all combinations of the antecedent fuzzy sets remains. The
optimal consequent parametersbi can be estimated by least-squares
techniques. Let the degree of activation�i(xxx) of the ith rule be given
by (3), and let the output̂yk of the model corresponding to the input
xxxk be computed by

yk =

K

i=1

�i(xxxk)bi

K

i=1

�i(xxxk)

: (17)

Let � denote the matrix inIRN�K having the normalized degree
of fulfillment ki = �i(xxxk)=

K

j=1
�i(xxxk) as itskith element; let

TABLE I
RULE-BASED MODEL IDENTIFIED FROM NOISY DATA

yyy denote the vector inIRN havingyk as itskth component; and let
bbb = [b1; b2; � � � ; bK ]

T denote the vector containing the consequent
parameters. The least-squares problem given by (17), written in a
matrix formyyy = �bbb+ �, where� is the approximation error and has
the solution

bbb = �
T
�

�1

�
T
yyy: (18)

IV. EXAMPLE

A. TS Fuzzy Model with Linear Consequents

Using the TS-Fuzzy model structure, we apply the approach
described in Section II to construct a fuzzy rule-based model of a
system presented in [3]. The reader is encouraged to compare the
results in this section with those in [3]. Consider a univariate function

y(x) = 3e
�x

sin(�x) + � (19)

where� is Gaussian noise with zero mean and�2 = 0:15. By using
random inputsx uniformly distributed in[�3; 3], 300 samples of
y(x) were obtained from (19) (see Fig. 1). This gives the identifi-
cation dataZ = f(xk; yk)jk = 1; 2; � � � ; 300g. The dataZ are
clustered by the GK clustering algorithm, andK = 7 clusters are
selected by means of the average within cluster distance validity
measure [15]. The resulting TS fuzzy model consists of seven rules
with linear consequent parts. The rules are given in Table I, and the
fuzzy sets in the antecedent of the rules and the local linear models
in the consequents are shown in Fig. 2. We now compare this model
obtained from noisy data with the noise-free function (19), i.e.,� = 0.
Fig. 3 shows the function (19) and the approximation by the model
of Table I. Considering 300 pointsx equally spaced in[�3; 3], the
model gives a mean-squared error of 0.0028 with a maximum error of
0.1868. The rule-based model of Table I performs better than all the
models derived in [3], has fewer rules (seven compared to 30 in [3]),
and is identified from noise contaminated data, while the identification
data used in [3] were noise free. Our identification approach is based
on product-space clustering, as was also the case in [3]. Also, the
reasoning is identical with the mentioned article. The main difference
between our approach and the one in [3] is that we use rules in which
the consequents are linear functions. Further, the adaptive distance
clustering algorithm can recognize clusters of various shapes and
hence, can approximate functions more effectively.

B. Linguistic Model

The linguistic fuzzy model consists of eight rules with singleton
consequents. The rules are given in Table II. The antecedent fuzzy
sets obtained by (14)–(16) and the approximation of the noise-free
function are shown in Fig. 4. Considering 300 equally spaced points
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Fig. 4. Antecedent membership functions and model output compared with the noise-free function. The circles denote the consequent singletons.

TABLE II
SINGLETON MODEL IDENTIFIED FROM NOISY DATA

x 2 [�3; 3], the singleton model gives a mean-squared error of
0.0096 with a maximum error of 0.3980. The accuracy of this model
is lower than that of the TS model, but it is still comparable with
the results presented in [3]. Notice, however, that our model consists
of eight rules compared to 30 in the article mentioned. Moreover,
our model was identified from data contaminated by noise, while the
identification data used in [3] were noise free.

The singleton model presented in Table II can easily be interpreted
linguistically. The numerical singletons can be grouped around some
characteristic values, and they can be assigned linguistic terms. In
our example, we obtain the terms Negative Big, Negative Small,
About Zero, Positive Small, and Positive Big. One can see that the
linguistic model describes the underlying function very well, giving
an idea about the oscillations between small and large negative and

positive output. Fuzzy sets defining the linguistic terms in the rule
consequent are shown in Fig. 4.

V. CONCLUDING REMARKS

We have presented a method for constructing fuzzy rule-based
models from system’s measurements, which provides high accuracy
as well as transparency and low complexity of the resulting rule base.
The approach has been demonstrated on a modeling problem from the
literature to give the reader a possibility to compare the results with
those of fuzzy black-box modeling. It was our intention to show that
construction of rule-based models from data can result in transparent
fuzzy models suitable for linguistic interpretation. Such models are
more in line with the paradigms of fuzzy systems. They enable an
easy validation by experts and the possibility to insert additional rules
based on the experience of experts, typically in regions that have not
been covered by the measurements.

The modeling methodology described in this article has been
successfully applied to many real-world problems in diverse fields,
like ecology [16], biotechnology [17], finance [18], and process
control [19]. It is our experience that when dealing with practical
applications, the transparency of the models is of high importance.
Fuzzy models have proven to be very suitable in providing such
transparency for interpretation and analysis.

APPENDIX

The GK clustering algorithm [11]:
GivenZ, choose1 < K < N; m > 1 and � > 0. Initialize U (0)

(e.g., at random).
Repeat for l = 1; 2; � � �.
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Step 1)Compute Cluster Means

vvv
(l)
i =

N

k=1

[�
(l�1)
ik ]mzzzk

N

k=1

[�
(l�1)
ik ]m

; i = 1; 2; � � � ; K:

Step 2)Compute Covariance Matrices

Fi =

N

k=1

[�
(l�1)
ik ]m[zzzk � vvv

(l)
i ][zzzk � vvv

(l)
i ]T

N

k=1

[�
(l�1)
ik ]m

;

i = 1; 2; � � � ; K:

Step 3)Compute Distances

D
2
ik = zzzk � vvv

(l)
i

T

f det(Fi)
1=(n+1)

F
�1
i g zzzk � vvv

(l)
i ;

i = 1; 2; � � � ; K; k = 1; 2; � � � ; N:

Step 4)Update Partition Matrix

If Dik > 0 for 1 � i � K; 1 � k � N

�
(l)
ik =

1
K

j=1

(Dik=Djk)2=(m�1)

otherwise

�
(l)
ik = 0 if Dik > 0; and�(l)ik 2 [0; 1] with

K

i=1

�
(l)
ik = 1

until kU (l) � U (l�1)k < �.
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[10] R. Babuška and H. B. Verbruggen, “Identification of composite linear
models via fuzzy clustering,” inProc. European Contr. Conf.,Rome,
Italy, Sept. 1995, pp. 1207–1212.

[11] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy
covariance matrix,” inProc. IEEE CDC,San Diego, CA, pp. 761–766,
1979.

[12] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,”IEEE
Trans. Pattern Anal. Machine Intell.,vol. 11, pp. 773–781, July 1989.

[13] U. Kaymak and R. Babuˇska, “Compatible cluster merging for fuzzy
modeling,” in Proc. FUZZ-IEEE/IFES’95, Yokohama, Japan, pp.
897–904.

[14] R. Kruse, J. Gebhardt, and F. Klawonn,Foundations of Fuzzy Systems,
New York: Wiley, 1994.

[15] R. Krishnapuram and C.-P. Freg, “Fitting an unknown number of lines
and planes to image data through compatible cluster merging,”Pattern
Recognit.,vol. 4, no. 25, pp. 385–400, 1992.

[16] M. Setnes, R. Babuˇska, H. B. Verbruggen, M. D. S´anchez, and H. F.
P. van den Boogaard, “Fuzzy modeling and similarity analysis applied
to ecological data,” inProc. FUZZ-IEEE’97, Barcelona, Spain, pp.
415–420.
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