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Abstract

This paper proposes a method to solve the con.icts that arise in the framework of fuzzy model identi-
1cation with maximal rules (Fuzzy Sets and Systems 101 (1999) 331) where rules are selected as general
as possible. This resolution is expressed by including exceptions in the rules, that way achieving a higher
model interpretability with respect to other techniques and a more accurate model. Besides, several methods
are presented to improve the interpretability, based on compacting the rules and exceptions of the model.
Furthermore, in order to reduce the number of con.icts that arise from the maximal rules, a heuristic strategy
is proposed to generate those maximal rules. Finally, the method is applied to an example and the results are
compared with other identi1cation methods.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy model identi1cation [2,7,9] represents the model of a system from a set of examples by
means of fuzzy rules. This model, which is a universal approximator [3,8], allows to describe
linguistically the relation between the input and the output of the system, thus taking care of the
interpretability of the result.

In order to achieve a high interpretability, we must try to identify rules as general as possible,
so that each rule covers the highest number of examples and, this way, the size of the rule base
diminishes. Nevertheless, obtaining those general rules may provoke the appearance of con.icting
zones where rules with di?erent consequents coexist, thus a?ecting negatively to the aforementioned
interpretability.
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In this paper, a strategy is proposed in order to solve these con.icts, making use of the information
available from the examples in the con.icting zones. The solution to each con.ict takes the form of
exceptions in the rules, which will allow to diminish the number of rules in the model and increase
its interpretability.

Section 2 introduces the original identi1cation algorithm to obtain maximal rules. Section 3
presents the approach for solving the con.icts existing among the maximal rules. Section 4 proposes
several methods for improving the interpretability along and after the con.ict resolution, based on
compacting rules and exceptions. Section 5 describes a heuristic strategy, which selects the best set
of maximal rules, based on considering several candidate maximal rules for each training example.
Finally, in Section 6 the results obtained when applying the methods to several systems are analysed
and compared with other identi1cation methods.

2. Learning maximal structure fuzzy rules

In [4], Castro et al. present a strategy to learn Multiple Input Single Output (MISO) systems
(� :Xn →Y) from a set of examples �= {e1; : : : ; em}. Each example has the form ei = ([xi1; : : : ; x

i
n]; y

i),
where xij is the value of the jth input variable and yi is the output value of the system. The identi1ed
model will be represented by means of maximal rules with the form:

Ri : if X1 is SX i1 and : : : and Xn is SX in then Y is LY i; (1)

where each SX ij is a set of labels associated disjunctively with the jth input variable and taken from

their respective fuzzy domain X̃j = {LXj;1; : : : ; LXj; tj}, and LY i is the label associated with the output
variable and taken from its fuzzy domain Ỹ= {LY1; : : : ; LYtn+1}.

The learning algorithm proposed in [1] is:

1. Transform the examples into initial rules.
2. For each initial rule do:

2.1. If the rule does not subsume into any de1nitive rule:
2.1.1. For each label in each input variable do:

2.1.1.1. If the ampli1cation of the rule is possible, amplify it.
2.1.2. Store the ampli1ed rule in the set of de1nitive rules.

The translation from examples into initial rules consists in associating each value xij and yi with
the label that presents the highest membership degree out of all contained in its respective fuzzy
domain. Amplifying a rule consists in adding a label to one of its premises. An ampli1cation from
Ri to Ri

′
is possible if Ri

′
does not con.ict with any initial rule, that is, if there is no initial rule

Rj such that SX jk ∈ SX i′k (for all k) and LY j �=LY i′ .

3. Adding exceptions to fuzzy rules

In the above algorithm, the search of maximal rules may provoke di?erent consequents to coexist
in some input fuzzy regions. Next, a strategy is proposed to solve these con.icts.
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Table 1
A two-inputs/one-output fuzzy model

X1

N Z P
N Z Z Z

X2 Z Z Z P
P N P P

During the learning process, the information contained in the examples is used only for the
extraction of the initial rules. From that moment, the process of ampli1cation of a rule to a certain
input fuzzy region only veri1es whether this region is occupied with an initial rule. Therefore, this
process ignores the information that could be contained in the training set about that region. The
basis that will support the approach proposed here to solve the con.icts consists in taking advantage
of this information.

A compound rule of the form presented in (1) is equivalent to a conjunction of simple rules with
one label associated to each input variable. Therefore, the set of simple rules involved in a con.ict
can be isolated in order to select one of them based on a certain criterion. With that aim, a certainty
degree for each simple rule involved in the con.ict will be calculated from the number of positive
and negative examples that each rule presents in the training set. An example of this type of measure
is proposed in [6], where the concepts positive example and negative example are de1ned by means
of fuzzy sets and where the certainty degree ranges from 0 to 1.

However, it must be noted that the main goal of the ampli1cation is for the ampli1ed rules to be
as general as possible. Because of that, the 1nally obtained consequents in an input subspace does
not assure that these consequents are the best, since they proceed from initial rules that can be far
away from the subspace under consideration.

Therefore, when solving a con.ict, although it must be tried to restrict the selection of the best
consequent among those involved in the con.icting rules in order to obtain maximal rules, it seems
desirable to extend the space of selection if none of those con.icting rules have a suKcient degree
of certainty. For that reason, a threshold � will be established over the certainty degree in order to
decide when the search of the best consequent in the con.icting region should be extended to all
the possible consequents.

Once the best rule is selected, it is necessary to modify the rest of compound rules involved
in the con.ict. In this respect, when several con.icting rules take the highest certainty degree, the
consequent with the highest number of occurrences will be selected (notice that it can exist more
than one rule with the same consequent among the rules in con.ict). This strategy tries to reduce
the number of compound rules to be modi1ed as much as possible.

The procedure to modify compound rules consists in adding exceptions to them. An exception is
an n-tuple of labels [LX1; i1 ; : : : ; LXn; in] that de1nes the fuzzy region of the input subspace where the
compound rule is not applied.

The use of exceptions entails an improvement in the model expressiveness with respect to the
traditional description methods. This fact can be observed in the example in Table 1, where a
fuzzy model is shown and where the fuzzy domain of every variable is {N; Z; P}. The number of
simple rules describing the model is 3 × 3 = 9 rules. A description using the usual technique that
associates an input subspace with the same output (consequent) to the antecedent of each rule gives
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the following 1ve fuzzy rules:

R1 : if X2 is {N} then Y is Z ;
R2 : if X1 is {N; Z} and X2 is {Z} then Y is Z ;
R3 : if X1 is {P} and X2 is {Z} then Y is P;
R4 : if X1 is {Z; P} and X2 is {P} then Y is P;
R5 : if X1 is {N} and X2 is {P} then Y is N .

However, the same model can be described with only four rules using exceptions:

R1 : if X2 is {N; Z} then Y is Z ,
except if X1 is P and X2 is Z ;

R2 : if X1 is {P} and X2 is {Z} then Y is P;
R3 : if X1 is {Z; P} and X2 is {P} then Y is P;
R4 : if X1 is {N} and X2 is {P} then Y is N

which is equivalent to

R1 : if X2 is {N; Z} then Y is Z ;
except if X1 is P and X2 is Z then Y is P;

R2 : if X1 is {Z; P} and X2 is {P} then Y is P;
R3 : if X1 is {N} and X2 is {P} then Y is N .

Therefore, the proposed method to solve con.icts is 1nally described with the following algorithm:

1. For each fuzzy region of the input space where two or more consequents coexist do:
1.1. Work out the certainty degrees of the simple rules involved in the con.ict and select the

highest, wmax.
1.2. If wmax does not reach a threshold � and there exists a rule among the rest of possible rules

with a certainty degree higher than wmax, select it as the best rule (adding a new compound
rule).

1.3. Otherwise, select a rule among the con.icting rules as follows:
1.3.1. If there are more than one di?erent rule with the highest certainty degree, wmax, among

the con.icting rules, select the one appearing more times in the con.icting region. If
all appear the same times, select one of them randomly.

1.3.2. Otherwise, select the rule that has the highest certainty degree, wmax.
1.4. Delete each simple rule di?erent from the selected one.
1.5. For each deleted simple rule, form the appropriate exception and add it to its respective

compound rule.

It must be noted that the con.ict resolution could cause that a compound rule that overlaps in a great
extent with another rule with the same consequent ends up covering mainly the redundant part of the
latter (when exceptions are added to the remaining regions). In order to avoid this problem, which
will provide less interpretable rules, a new restriction is added to the ampli1cation condition: an
ampli1cation will be possible only if the addition of the correspondent label to the antecedent of the
rule allows to cover some region still not covered by any de1nitive rule with the same consequent.
In this way, the overlapping among rules is restricted.
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4. Improving the interpretability

The model generated with the algorithm described in the previous section can still improve its
interpretability in di?erent ways. Next, several strategies are described to achieve that goal.

4.1. Merging fuzzy rules

In the algorithm presented in Section 3, a rule is added to the set of de1nitive rules when the
selected rule is not one of the con.icting rules (Step 1.2). This can lead to a considerable increase
in the number of rules with respect to the one obtained by the identi1cation algorithm. In order to
minimize this increase, after the addition of a new rule it should be tried to merge that rule with
any of the existing compound rules.

Proposition 1. A rule Ri : SX i1 ; : : : ; SX
i
n →LY i with exceptions Ei = {Ei1; : : : ; Eipi} could be merged

with another rule Rj : SX j1 ; : : : ; SX
j
n →LY j with exceptions Ej = {Ej1; : : : ; Ejpj} if the following is ful-

9lled:

1. LY i =LY j.
2. There exists an r so that SX ir �= SX jr .
3. SX is = SX js , for all s �= r.
resulting a rule R∗ : SX i1 ; : : : ; (SX

i
r ∪ SX jr ); : : : ; SX in →LY i with exceptions E∗ =Ei ∪Ej.

The following algorithm describes the method for merging rules and will be called after ev-
ery addition of a new rule during the con.ict resolution. It is a recursive method, since the
merged rule could satisfy the merging condition with respect to some other rule existing in the rule
base:

1. Given the compound rule trying to be merged Ri : SX i1 ; : : : ; SX
i
n →LY i with exceptions Ei =

{Ei1; : : : ; Eipi}.
2. If there is another rule Rj : SX j1 ; : : : ; SX

j
n →LY j with exceptions Ej = {Ej1; : : : ; Ejpj} in the set of

de1nitive rules, which can be merged with Ri:
2.1. Replace the rules Ri and Rj by the rule R∗ : SX i1 ; : : : ; (SX

i
r ∪ SX jr ); : : : ; SX in →LY i with excep-

tions E∗ =Ei ∪Ej.
2.2. Try to merge R∗.

4.2. Reducing fuzzy rules

The interpretability of the rules can increase if the exceptions of a rule are reduced by deleting
labels from its antecedent. For example, the rule

if X1 is {N; P} and X2 is {N; Z; P} then Y is Z
except if X1 is N and X2 is Z or if X1 is P and X2 is Z ,
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could be reduced to the rule

if X1 is {N; P} and X2 is {N; P} then Y is Z .

The following algorithm determines if a reduction can be carried out after the addition of a new
exception and, if that is the case, accomplishes it.

1. Given the rule Ri : SX i1 ; : : : ; SX
i
n →LY i with exceptions Ei = {Ei1; : : : ; Eip}, where the new exception

added to that rule is Eip = [LX1;p1 ; : : : ; LXn;pn].
2. For each d from 1 to n do:

2.1. Set up a set of exceptions E∗ taking LXd;pd in the dth element of every exception and taking
the di?erent combinations of the labels from SX i1 ; : : : ; SX

i
d−1; SX

i
d+1; : : :, SX

i
n in the rest of

elements. That is, E∗ = SX i1 × · · · × SX id−1 ×LXd;pd × SX id+1 × · · · × SX in.
2.2. If E∗ ⊆Ei then set Ei to Ei − E∗ and SX id to SX id − {LXd;pd}.

3. If the reduced rule subsumes into some other compound rule, delete it.
4. Otherwise, try to merge it.

It must be noted that the merging of a rule could be presented after its reduction, since the merging
condition could be satis1ed when the rule loses a label in its antecedent. Because of that, this
merging will be tried in the Step 4 of the above algorithm, once it has been veri1ed that the rule
does not subsume into any other rule.

4.3. Merging exceptions

Until now, exceptions have been described as n-tuples of labels that de1ne fuzzy regions in
the input space similar to the ones de1ned by the antecedents of the simple rules. Therefore, the
exceptions expressed in that way can be considered simple exceptions.

Trying to increase the model interpretability, the concept of compound rule can be translated to
the representation of exceptions, giving rise to compound exceptions. Thus, a compound exception
can be de1ned as an n-tuple Ei = (SEi;1; : : : ; SEi; n), where SEi; k ⊆ X̃k .

In order to obtain a description as compact as possible by means of exceptions, it is necessary
to state a mechanism for merging exceptions similar to that one used for merging rules explained
in Section 4.1. The following proposition establishes the conditions that must be satis1ed by two
compound exceptions in order to be merged.

Proposition 2. A compound exception Ei = (SEi;1; : : : ; SEi; n) could merge with another one
Ej = (SEj;1; : : : ; SEj; n) if the following is ful9lled:

1. There exists an r so that SEi; r �= SEj; r .
2. SEi; s = SEj; s, for all s �= r.
The result of the merging will consist of a new exception with the form E∗ = (SEi;1; : : : ; (SEi; r ∪
SEj; r); : : : ; SEi; n).

The following algorithm describes the method for merging exceptions. It must be noted that,
whereas rules are merged on-line (i.e., during the process of solving con.icts), exceptions will be
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merged o?-line (i.e., once the 1nal exceptions of every rule have been obtained). This is due to the
use of simple exceptions in the reduction of rules.

1. Given the set of exceptions E= {E1; : : : ; Ep} and the exception trying to be merged Ei =
(SEi;1; : : : ; SEi; n).

2. If there exists a j �= i, so that it is possible to merge Ei and Ej:
2.1. Replace the exceptions Ei and Ej by the exception E∗ = (SEi;1; : : : ; (SEi; r ∪ SEj; r); : : : ; SEi; n).
2.2. Try to merge E∗.

This recursive algorithm will be called iteratively for every rule, while exception merging is
possible.

5. Reducing the number of rules and con$icts

The identi1cation algorithm proposed in Section 2 tries to obtain rules as general as possible by
amplifying the initial rules. However, each initial rule (i.e., each example) can be ampli1ed in dif-
ferent ways depending on the order considered for taking the input variables during the ampli1cation
process.

The original identi1cation algorithm does not consider any criterion for selecting the speci1c
compound rule built up from each initial rule and then, there is no guarantee that this compound
rule is the best or even a good ampli1cation. This fact could lead to an unnecessary increase in the
amount of rules used to describe the system and, related with it, in the number of con.icts to be
solved.

In the present section a heuristic-based solution is presented to avoid the aforementioned problem.
In a 1rst stage, the proposed approach generates a set of candidate compound rules for each initial
rule, instead of generating just one rule. In a second stage, a greedy algorithm will select iteratively
the de1nitive rules from the global candidate rule set (CRS).

5.1. Generating candidate compound rules

As mentioned above, the candidate rule resulting from the ampli1cation of an initial rule depends
on the order the input variables are taken. For example, in a two-input system, an initial rule can
be ampli1ed in two ways: amplifying the 1rst input variable and then the second one, or inversely.
This could lead to two di?erent ampli1ed rules, as can be seen in the example shown in Table 2,
where the initial rule Z; Z→P can be ampli1ed as {N; Z; P}; {Z} →P or as {Z}; {N; Z; P} →P. In
fact, the resulting model identi1ed from the initial rules in Table 2(a) (the superscripts read the
order in which rules are ampli1ed) will be described with the rule base (Table 2(b)):

R1 : if X1 is {N; Z} and X2 is {N; P} then Y is Z ;
R3 : if X2 is {Z} then Y is P;
R4 : if X1 is {Z; P} and X2 is {N} then Y is P;
R5 : if X1 is {Z; P} and X2 is {P} then Y is N ;



70 P. Carmona et al. / Fuzzy Sets and Systems 146 (2004) 63–77

Table 2
Ampli1cation alternatives: (a) initial rules; (b) ampli1ca-
tion with input selection order {X1; X2}; (c) ampli1cation
with input selection order {X2; X1}; (d) ampli1cation in
several orders

N Z P

N Z1 P4

X2 Z P3

P Z2 N 5

(a)

X1

N Z P

N Z1 Z1=P4 P4

X2 Z P3 P3 P3

P Z1 Z1=N 5 N 5

(b)
X1

N Z P

N Z1 P3 P4

X2 Z Z1 P3 P4=N 5

P Z1 P3 N 5

(c)

X1

N Z P

N Z1 P3′
P3′

X2 Z Z1 P3′
P3′

P Z1 N 5 N 5

(d)

or with the rule base (Table 2(c)):

R1 : if X1 is {N} then Y is Z ;
R3 : if X1 is {Z} then Y is P;
R4 : if X1 is {P} and X2 is {N; Z} then Y is P;
R5 : if X1 is {P} and X2 is {Z; P} then Y is N ;

depending on the order in which the input variables are taken for the ampli1cation. The 1rst case
corresponds with the order {X1; X2}, giving four rules—one of them with only a premise in the
antecedent—and two con.icts. The second case corresponds with the order {X2; X1}, giving four
rules—two of them with only one premise in the antecedent—and only one con.ict.

Moreover, it is possible to obtain a more interpretable model if combining both input selection
orders and allowing to select properly the order in which the initial rules are ampli1ed. It can be
observed in the rule base shown in Table 2(d) and described as:

R1 : if X1 is {N} then Y is Z ;
R3′

: if X1 is {Z; P} and X2 is {N; Z} then Y is P;
R5 : if X1 is {Z; P} and X2 is {P} then Y is N

which employs only three rules without con.icts if the order {X2; X1} is used for the rule N; N →Z ,
the order {X1; X2} is used for the rule P; P→N , and the rule P; N →P is ampli1ed before the rule
Z; Z→P.

The number of candidate rules associated with an initial rule depends on the number of input
variables. In our approach we will generate all possible candidate rules for each initial rule, setting
up a CRS out of which the best rules will be selected during the second stage.

With this aim, the following rule ampli1cation algorithm was developed:

1. Let {Xi1 ; : : : ; Xin} the set of input variables to be considered in the ampli1cation of a rule R.
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2. For each input variable Xj in {Xi1 ; : : : ; Xin} do:
2.1. For each label in the fuzzy domain of Xj do:

2.1.1. If the ampli1cation of the rule is possible, amplify it.
2.2. If n= 1 then add the compound rule to CRS.
2.3. Otherwise, call recursively to the algorithm in order to amplify again R, now over the set of

input variables {Xi1 ; : : : ; Xin} − Xj.

The recursive design of the algorithm tries to reduce its computational cost, since each partial
ampli1cation of a rule is preserved for all the ampli1cations stemming from it. This algorithm will
be called for each initial rule, using all the input variables as the set of variables to be ampli1ed (i.e.,
X= {X1; : : : ; Xn}). It will substitute from the Steps 2.1 to 2.1.2 in the original algorithm presented
in Section 2, resulting the following new partial identi1cation algorithm:

1. Transform the examples into initial rules.
2. For each initial rule do:

2.1. Call to the rule ampli1cation algorithm for that rule over the set of input variables {X1; : : : ; Xn}.

This algorithm generates the CRS and must be completed with the second stage that selects the
de1nitive rule set (DRS) from the CRS.

However, the restrictive ampli1cation introduced in Section 3 to avoid an excessive overlap among
rules will be now postponed to the second stage. This is because the restriction is based on the
comparison of the ampli1ed rule with the de1nitive ones and, while generating the CRS, no rule is
still de1nitive. Therefore, the CRS will be obtained considering the original de1nition of possible
ampli1cation (Section 2) in the Step 2.1.1 of the above ampli1cation algorithm.

5.2. Selecting de9nitive rules

Once the CRS is generated, a greedy strategy is proposed in order to select the de1nitive rules. The
approach lies in the iterative selection of the best rule among the remaining candidate rules based
on some goodness measure. After the selection of each de1nitive rule, this rule and all the ones
generated from initial rules covered by it will be deleted from the CRS. Next, it will be identi1ed
all the initial rules that generated compound rules whose ampli1cation would have been restricted
in view of the new de1nitive rule (accordingly with the de1nition of restrictive ampli1cation stated
in Section 3), generating again the candidate rules from these initial rules but now considering the
restrictive ampli1cation. Finally, the goodness of each remaining candidate rule in the CRS will be
re-evaluated in order to select the next de1nitive rule. This process will be repeated until the CRS
becomes empty.

Three criteria will be used to evaluate the goodness of a candidate rule:

1. Maximal number of covered initial rules: This criterion tends to reduce the number of de1nitive
rules, trying to select rules justifying as many examples as possible, that is, covering as many
initial rules as possible.

2. Minimal number of con<icts with de9nitive rules: This criterion tends to reduce the number of
con.icts that the selected candidate rule generates over the already selected de1nitive rules, and
is de1ned as the sum of common input regions between the candidate rule and each de1nitive
rule (initially, this value will be zero for all the candidate rules).
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3. Minimal number of labels in the antecedent of the rule: It rewards the readability of the rules,
searching for antecedents as simple as possible. This criterion will consider a premise as “void”
if the input variable is associated with all its fuzzy domain, since that premise can be removed
from the rule. Concretely, given a rule Ri, the equation will be

n∑
j=1

remainder
(||SX ij ||=pj

)
;

where ||SX ij || is the number of labels in the premise of the variable Xj and pj is the number of

labels in the fuzzy domain X̃j.

The importance of each criterion will be considered sequentially and coincide with the order shown
above. That is, 1rstly the candidate rules covering the highest number of initial rules are selected;
secondly, the rules that generate the lowest number of con.icts will be selected among them; and
thirdly, a rule will be selected from this group having the minimal number of labels in its antecedent.
If more than one of such rules exist, one of them is selected randomly. Finally, this selected rule
will be added to the DRS. 1

The complete algorithm to build the DRS from the CRS states as follows:

1. While CRS is not empty do:
1.1. For each rule in CRS evaluate criterion 1 and select the group CRS1 with rules having a

maximum value.
1.2. For each rule in CRS1 evaluate criterion 2 and select the group CRS2 with rules having a

maximum value.
1.3. For each rule in CRS2 evaluate criterion 3 and select the group CRS3 with rules having a

maximum value.
1.4. If CRS3 contains more than one rule, select one of them R randomly, otherwise, let R be the

rule in CRS3.
1.5. Add the rule R to DRS.
1.6. Delete from CRS the rule R and the rules stemming from initial rules covered by R.
1.7. Regenerate the candidate rules obtained from initial rules a?ected by the restrictive ampli1-

cation due to the new de1nitive rule R.

This algorithm will be run after obtaining the CRS proposed in the previous subsection and therefore
must be included as Step 3 in the partial identi1cation algorithm presented in that subsection. Once
the DRS is obtained, the algorithm for con.ict resolution presented in Section 3 will be applied.

6. Experimental results

The proposed methods were applied to the approximation of several functions with di?erent com-
plexity (Fig. 1):

f1 : [−1; 1] × [−1; 1] → [−1; 1];

1 Although the third criterion seems to be contrary to the maximality of the rules, due to the order each criterion
is considered, it will be e?ective only when several rules cover the same number of initial rules and, in this case, the
simplicity of the antecedents must be favoured more than an unnecessarily wider covering of the input space.
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Fig. 1. Output surfaces for functions f1, f2, and f3.
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Fig. 2. Normalized fuzzy domain for all the variables in every function.

f1(x1; x2) =
x1 + x2

2
;

f2 : [−1; 1] × [−1; 1] → [−1; 1];

f2(x1; x2) = 1 − |x1 − x2|;

f3 : [0; 3] × [0; 3] → [0; 1];

f3(x1; x2) = (sin(x2
1)e

−x1 + sin(x2
2)e

−x2 + c1)=c2;

where c1 = 0:2338 and c2 = 0:8567 restricts the values of f3 to the interval [0; 1].
The normalized fuzzy domains of the input and output variables were de1ned as shown in Fig. 2

for all the functions, and appropriate scale factors were used in each case in order to translate that
normalized domain into the real domain.

In order to analyse the bene1ts of the methods proposed here, three di?erent versions of the
identi1cation method for learning maximal structural fuzzy rules were considered:

• LMSFR: The algorithm presented in Section 2 for learning maximal structure fuzzy rules with
con.icts, that is, the original algorithm proposed in [1].

• LMSFRWE: The extension of LMSFR proposed in Sections 3 and 4 for solving con.icts and
improving the interpretability.

• LMSFRWE+: The extension of LMSFRWE proposed in Section 5 for reducing the number of
rules and con.icts.
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Table 3
Interpretability results

Function Method Training set size

20 50 100

f1 LMSFR 11.1 (–) [6.9] 18.1 (–) [5.5] 21.0 (–) [4.4]
LMSFRWE 12.4 (9.2) [4.6] 17.8 (4.5) [3.6] 19.9 (1.6) [3.3]
LMSFRWE+ 11.0 (8.7) [4.8] 16.6 (5.4) [3.7] 19.1 (1.9) [3.3]
W&M 16.2 (–) [2.0] 30.2 (–) [2.0] 40.4 (–) [2.0]

f2 LMSFR 12.3 (–) [6.9] 21.9 (–) [5.2] 28.3 (–) [3.9]
LMSFRWE 14.3 (9.2) [4.3] 23.0 (6.2) [3.2] 28.3 (2.1) [2.7]
LMSFRWE+ 13.0 (9.4) [4.5] 21.7 (7.8) [3.3] 27.5 (3.3) [2.8]
W&M 16.0 (–) [2.0] 30.3 (–) [2.0] 40.9 (–) [2.0]

f3 LMSFR 11.2 (–) [7.1] 18.6 (–) [5.5] 21.3 (–) [4.5]
LMSFRWE 12.7 (8.7) [4.5] 18.5 (5.7) [3.6] 20.0 (2.0) [3.3]
LMSFRWE+ 11.1 (9.0) [4.8] 16.3 (6.1) [3.8] 18.6 (2.5) [3.4]
W&M 16.0 (–) [2.0] 30.4 (–) [2.0] 40.3 (–) [2.0]

Besides, in order to analyse the identi1cation performances with respect to other identi1cation al-
gorithms, we considered the well-known method proposed by Wang and Mendel in [10], which is
widely used in the literature for comparison purposes (e.g., [1,4,5]).

The identi1cation processes were carried out with three di?erent training set sizes: 20, 50, and
100 randomly generated examples. For each algorithm and each training set size, 100 runs were
performed and the averaged results were obtained.

In order to analyse both the interpretability and the accuracy of the resulting fuzzy models, two
di?erent measures were used. On the one hand, the number of rules and exceptions describing
the model together with the averaged number of labels in each antecedent were considered for
evaluating its interpretability. On the other hand, the mean square error (MSE) between the model
and the system outputs was obtained for accuracy evaluation, using the equation

MSE =
∑N

i=1 [y − ŷ]2

N

for N = 2500 test examples randomly generated.
Table 3 summarizes the interpretability results, which are averaged values over the 100 runs.

They are depicted as the averaged number of rules describing the model, the averaged number
of exceptions in parenthesis, and the averaged number of labels in the antecedent of the rules
in brackets. An intermediate certainty degree threshold � equal to 0.5 was considered for con.ict
resolutions.

Firstly, it can be observed that, in some cases, the LMSFRWE increases slightly the averaged
number of rules of the model with respect to the original LMSFR method. Nevertheless, although
this increase is due to the addition of rules during the con.ict resolution, it is not very signi1cant
because of the rule merging algorithm presented in Section 4.2, which allows some of these rules
to be merged with other rules. In fact, this merging algorithm even allows to reduce the number
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Table 4
Accuracy results

Function Method Training set size

20 50 100

f1 LMSFR 0.0285 0.0160 0.0076
LMSFRWE 0.0153 0.0044 0.0021
LMSFRWE+ 0.0154 0.0049 0.0023
W&M 0.0247 0.0051 0.0022

f2 LMSFR 0.0561 0.0360 0.0203
LMSFRWE 0.0329 0.0104 0.0038
LMSFRWE+ 0.0352 0.0111 0.0039
W&M 0.0389 0.0093 0.0032

f3 LMSFR 0.0315 0.0183 0.0102
LMSFRWE 0.0255 0.0116 0.0080
LMSFRWE+ 0.0266 0.0117 0.0079
W&M 0.0389 0.0138 0.0078

of rules obtained with LMSFR method sometimes. Moreover, the averaged number of labels in the
antecedent of the rules is also signi1cantly decreased with the con.ict resolution, due to the rule
reduction algorithm.

Regarding exceptions added to the model by LMSFRWE, at 1rst sight they could look like a loss
of interpretability in comparison with a model with the same number of rules but without exceptions,
due to the higher number of input regions that must be considered. However, they indeed improve
the interpretability of the model in two ways: on one hand, they remove the contradictions contained
in the models, and, on the other hand, they can replace other rules of the model (as was shown in
the example in Section 3) and, in such cases, they will not increase the number of input regions to
be considered.

Secondly, it can be observed the reduction in the number of rules achieved by LMSFRWE+
method when compared with the LMSFRWE method, while keeping the simplicity of the antecedents.
This reduction even allows to outperform the results obtained by the LMSFR method in 11 out of
12 cases, achieving a more compact description of the model. However, a slight increase in the
averaged number of exceptions can also be observed.

Finally, both identi1cation methods proposed in this paper outperform the number of rules gener-
ated by Wang and Mendel’s algorithm, especially when large training set sizes are used. Obviously,
the number of labels in the rules generated by Wang and Mendel’s algorithm is always the same,
since those rules are simple rules. Nevertheless, it must be noted that, most of the cases, Wang
and Mendel’s algorithm provides an incomplete rule base (the averaged number of rules is signif-
icantly below 7 × 7 = 49 rules), which does the model correctness to be dependent on the strategy
for dealing with the holes in the rule base (see below).

In Table 4 the accuracy results are shown. The superiority of the LMSFRWE and LMSFRWE+
methods over the original LMSFR method is clear, con1rming the reduction in the model error
achieved by the resolution of con.icts. Concerning Wang and Mendel’s method, although it reaches
similar accuracy results to the ones achieved by LMSFRWE and LMSFRWE+ methods when using
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Fig. 3. An example of a 1nal model without con.icts.

large training set sizes, these are precisely the cases where Wang and Mendel’s algorithm presents
the worst interpretability results. 2

An example of the fuzzy models obtained by the method LMSFRWE+ for a training set with 50
examples is:

R1 : {XXS; L; XL; XXL}; {XXS; L} →XS R9 : {S;M}; {XXS; L} →M
excepting {XXL}; {XXS}; excepting {S}; {XXS};

R2 : {L}; {XL} →XS; R10 : {XXS;M; XL; XXL}; {XS;M} →M ;
R3 : {XS}; {XXS; L} → S; R11 : {XS}; {XS;M} → L;
R4 : {XXS; XL; XXL}; {XL; XXL} → S; R12 : {XXS; XL; XXL}; {S} → L;
R5 : {L}; {M; XXL} → S; R13 : {S}; {XXS; XL; XXL} → L;
R6 : {XXL}; {XXS} → S; R14 : {S}; {XS;M} →XL;
R7 : {L}; {XS; S} →M ; R15 : {XS;M}; {S} →XL;
R8 : {XS;M}; {XL; XXL} →M ; R16 : {S}; {S} →XXL;

where linguistic labels are {XXS; XS; S;M; L; XL; XXL} for all the fuzzy domains. The tabular form
of such a model is shown in Fig. 3(a) and its output surface is shown in Fig. 3(b), providing an

2 Besides, it must be noted that the incompleteness of the rule base provided by Wang and Mendel’s method could
a?ect seriously the model accuracy depending on the strategy for dealing with holes and the system to be identi1ed. In
this paper, a random output is provided only when no rule is 1red. Whereas this strategy will favour the model accuracy
for smooth systems (the surrounding rules will be 1red when an input lies in a hole), such strategy—and any other—could
be inappropriate for any other system.
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MSE equal to 0.0052. This model uses only 16 rules with two exceptions, whereas it will need 49
simple rules. Moreover, since the antecedent of rule R6 coincides with the exception in R1, this rule
could be included as an extension of the exception as follows:

R1 : {XXS; L; XL; XXL}; {XXS; L} →XS
excepting{XXL}; {XXS} → S

which increases the compactness of the model description further.

7. Conclusions

The present paper proposes a method for solving con.icts in the framework of fuzzy model
identi1cation with maximal rules. The resolution of con.icts uses the information contained in the
training set by de1ning a certainty degree for every con.icting rule.

Besides, the inclusion of exceptions is proposed as the method for representing the resolution of
con.icts, resulting in a more compact description of the model. Furthermore, several strategies are
proposed that increase the model interpretability, such as reduction of rules, merger of exceptions
and merger of rules.

Finally, a heuristic is proposed in order to reduce the number of rules and con.icts generated
when obtaining the maximal rules, with the aim to prevent the selection of an inappropriate set of
general rules.
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