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Abstract

The identification of a model is one of the key issues in the field of fuzzy system modeling and
function approximation theory. An important characteristic that distinguishes fuzzy systems from
other techniques in this area is their transparency and interpretability. Especially in the construction
of a fuzzy system from a set of given training examples, little attention has been paid to the analysis
of the trade-off between complexity and accuracy maintaining the interpretability of the final fuzzy
system. In this paper a multi-objective evolutionary approach is proposed to determine a Pareto-
optimum set of fuzzy systems with different compromises between their accuracy and complexity.
In particular, two fundamental and competing objectives concerning fuzzy system modeling are
addressed: fuzzy rule parameter optimization and the identification of system structure (i.e. the
number of membership functions and fuzzy rules), taking always in mind the transparency of
the obtained system. Another key aspect of the algorithm presented in this work is the use of
some new expert evolutionary operators, specifically designed for the problem of fuzzy function
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approximation, that try to avoid the generation of worse solutions in order to accelerate the conver-
gence of the algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of estimating an unknown function F from samples of the form fð~xk; ykÞ;
k = 1,2, . . . ,n; with yk ¼Fð~xkÞ 2 R, and ~xk 2 Rdg (i.e. function approximation from a
finite number of data points), is one of the key issues in the field of fuzzy system modeling
and function approximation theory [6,8,11,22,46]. The principal goal is to learn an
unknown functional mapping between input and output vectors, using a set of known
training samples. Once this mapping is generated, it can be used for predicting the output
values given new input vectors. Inputs and outputs can be continuous and/or categorical
variables. This paper is concerned with continuous output variables, thus considering
regression or function approximation problems, as opposed to classification problems in
which the output variable is categorical [8].

Recently, model-free systems, such as artificial neural networks or fuzzy systems
[8,22,36–38], have been proposed to avoid the knowledge-acquisition bottleneck. Fuzzy
systems provide an attractive alternative to the ‘‘black boxes’’ characteristic of neural
network models, because their behavior can be easily explained by a human being. In
fact, the popularity and practicality of fuzzy systems derives from their ability to express
relations that are either complex or not sufficiently understood, in terms of linguistic
rules.

Although one of the most widely used approaches for the design of a fuzzy system is the
use of a complete table of rules, in this work we have designed a fuzzy system architecture
based on free rules [22] or fuzzy patches [11], since the former approach suffers the curse of

dimensionality as the number of inputs and membership functions is increased, and the
latter one lets to allocate fuzzy rules only in the areas of the input space that contribute
to minimize the output error, thus producing systems that are better fitted, with fewer
parameters and more interpretable. These free rules or fuzzy patches have been imple-
mented using gaussian membership functions (see Fig. 1), because as they are continuous
and differentiable, they produce a smoother output and improve the system’s interpolation
capability. Fixed a position~pi and a width wi in the input space, the following equation is
used to model a fuzzy patch

aið~xÞ ¼ exp �
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where d is the number inputs to the system, ~x ¼ ðx1; . . . ; xdÞ is an input vector, and
i = 1, . . . ,m is the number of patches in the system.

Finding an adequate configuration for a fixed-structure system is a complex problem
with many local optima, due to the non linear dependencies between the parameters defin-
ing the model, and this problem becomes harder if we also have to adjust complexity of the



Fig. 1. Gaussian fuzzy patch.
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model (number of patches) simultaneously, because different solutions can be found with
different compromises between their accuracy and their generalization properties.

The selection of the adequate compromise between the accuracy and the complexity of
the model may be subjective and usually depends on the problem to be solved, so we have
chosen a Multi-Objective Evolutionary Algorithm (MOEA) to find a complete set of Par-
eto-optimal solutions. This set is presented to the final user, who can select the most
appropriate model for his particular application.

Multi-Objective Optimization (MOO) techniques have been applied to design fuzzy sys-
tems since the mid-1990s. For example, in [14] a classical MOO technique is used to aggre-
gate multiple objectives in a single function to optimize a fuzzy system. MOEAs have also
been used to design fuzzy systems in the last years. In [19], a MOEA is used to select lin-
guistic rules for pattern classification problems; in [15] a single step EA is proposed to find
multiple Pareto-optimal solutions to the problems of generation and/or tuning of fuzzy
models. Several multi-objective evolutionary approaches are proposed in [23–25] to con-
sider different objectives dealing with transparence and compactness. It is also noteworthy
the work proposed by Ishibuchi and Yamamoto [20], where a MOEA is used to construct
an ensemble of fuzzy rule-based classifiers with high diversity, and the work proposed in
[44], where a MOEA is used to extract interpretable rule-based knowledge from data.

MOEAs can also obtain better solutions if some expert knowledge about the problem
to be solved is incorporated [3]. So, in this paper we propose the incorporation of this
expert knowledge to the well known Nondominated Sorting Genetic Algorithm II
(NSGA-II) [10]. This specialization is performed first, with an initialization of the popu-
lation with relatively good solutions through the use of several heuristics, and second,
by designing some problem-specific crossover and mutation operators for the problem
of approximating a target function with a set of fuzzy patches.

The paper is arranged as follows. First, the training algorithm, with its expert initiali-
zation and evolutionary operators, is described in Section 2. Then, Section 3 presents some
experimental results and comparisons with other approaches used to forecast the Mackey–
Glass time series, and finally, in Section 4 some concluding remarks are pointed out.
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2. The training algorithm

An EA is a probabilistic search algorithm that evolves a population of individuals until
a convergence criterion is met. In this context, each individual represents a potential solu-
tion to the problem with a particular structure and configuration. This evolution is per-
formed by the application of mutation and crossover operators in each generation and
by the application of the ‘‘survival of the fittest’’ principle to keep the probably better solu-
tions for the next generation. In multimodal and multi-objective problems it is also neces-
sary to include a niche-formation method to distribute the population over the optimal
solutions and avoid the premature convergence of the algorithm.

As EAs are generic optimization tools, there are many possibilities to fine-tune them for
a specific problem. They are able to use different data structures to represent individuals,
different genetic operators to transform them, different ways of initializing the population,
additional methods to handle restrictions, different schemes for the selection process, dif-
ferent termination criteria, different niching and fitness sharing strategies, different ways of
handling Multi-Objective Problems (MOPs), etc., so, in this section we will explain the
configuration used for the problem of constructing fuzzy systems from training examples.

Basically, we have implemented a variation of NSGA-II, a fast and elitist MOEA able
to find a good spread of solutions for a MOP that avoids the problem of fixing a sharing
parameter to preserve the diversity of the population. In the reamining of this section we
will explain the changes we have applied to NSGA-II to adapt it to the problem of func-
tion approximation from a set of traning data using a patch-based fuzzy system. The rest
of the features of the algorithm not commented below have been kept as in the original
NSGA-II. For more details about NSGA-II, readers are encouraged to refer to [10].

2.1. Initial population

Although ideally a MOEA can converge to the best solutions in an infinite number of
iterations from any sufficiently diverse initial population, in practice we want to obtain a
set of appropriate solutions in a reasonable computation time. Thus, if the initial individ-
uals can be constructed using some heuristics or expert knowledge, we can save many gen-
erations of evolutionary search. With this idea in mind, and knowing that the consequents
of the fuzzy model can be obtained optimally, we can apply some heuristics to fix the posi-
tion ~pi and width wi of the patches that form each individual in the population.

The initialization procedure also uses three parameters, s, mmin, and mmax, representing
the size of the population, and the minimum and maximum threshold we want for the
number of patches in each initial fuzzy system. The two steps used to obtain the initial
population are described below.

2.1.1. First step

To generate a set of initial configurations we have applied CFA [17] and other cluster-
ing techniques such as the C-means [12] and the Enhanced LBG (ELBG) algorithm [32].
These three techniques are applied to the set of training examples with all the possible
number of patches m in the range [mmin,mmax], obtaining a set of 3 Æ (mmax � mmin + 1) ini-
tial configurations for the positions.

Once we have obtained a variety of configurations for the number of fuzzy patches and
their positions, it is time to obtain their widths. Thus, CIV and KNN with k 2 {1,2,3} are
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applied to all the configurations for the positions obtained above, obtaining a set of
4 Æ 3 Æ (mmax � mmin + 1) possible initial fuzzy systems.

After obtaining the positions and widths of this initial set of fuzzy systems, we can cal-
culate their optimum consequents using SVD.
2.1.2. Final step

After executing the initial step, we obtain a set of 4 Æ 3 Æ (mmax � mmin + 1) fuzzy sys-
tems. This number of potential solutions will probably be different from s, thus we will
need to generate or eliminate some solutions.

If we need more individuals to form a set of s initial solutions, we can generate the
remaining ones applying mutation operators (see Section 2.3) to the solutions obtained
in the initial step. On the contrary, if we have to eliminate some individuals to reduce
the population size to s, we perform a nondominating sorting of the population (see Sec-
tion 2.2) and erase the worst solutions.

Generating the initial population in this way, along with the expert evolutionary oper-
ators described below, is expected to be sufficient to find very good solutions with rela-
tively small populations and in a reasonable number of iterations.
2.2. Evaluation function

The evaluation function is the part of the EA that is responsible for guiding the
search towards the global optima. For this purpose, it must be designed to be able
to compare two different individuals in order to distinguish the better solutions from
the others. We also have to take into account that the set of solutions is not com-
pletely ordered for MOPs. In our case, we face a problem with two competing objec-
tives: the accuracy and the complexity of the model. The accuracy of each fuzzy
approximator is estimated with the Normalized Mean Squared Error (NMRSE) index,
calculated as

f1 ¼ NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðyk � F ð~xkÞÞ2Pn

k¼1 yk � �yð Þ2

s
; ð2Þ

where F ð~xkÞ is the approximated output for~xk obtained with the fuzzy model, yk is its tar-
get output, and �y is the mean of the n training outputs. The other objective, the complexity
of the model, is estimated with its number of fuzzy patches m, that is,

f2 ¼ m: ð3Þ

The Pareto-dominance criterion allows comparing two different solutions, but it can
not measure the difference between them. There have been proposed several approaches
in the literature to overcome this problem, such as the Multi-Objective Genetic Algo-

rithm (MOGA) presented in [13], the Nondominated Sorting Genetic Algorithm (NSGA)
described in [41] or the Nondominated Sorting Genetic Algorithm-II (NSGA-II) [10]. As
the MOEA presented in this paper is based on NSGA-II, we also use the crowded-com-

parison operator (�n) [10], which orders solutions according to their rank and when
two solutions have the same rank, prefers the solution located in a lesser crowded
region.
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2.3. Reproduction process

Genetic operators are applied to each individual within the population, with an appli-
cation probability of pc for the crossover operators, and of pm for the mutation operators.
Due to the problems of establishing these probabilities a priori, the algorithm presented
here implements a dynamic adaptation mechanism of pc and pm [40] which chooses the val-
ues that are appropriate at all times, based on the state of convergence of the population.
Once the probabilities have been chosen, the genetic operators described below are
applied.

The evolutionary operators described in this section have been specifically designed for
the problem of optimizing the parameters of a fuzzy system. These new operators apply
random changes to the individuals they affect to maintain the diversity in the population
and to provide mechanisms to escape from local minima [16,18], but also try to avoid the
application of changes that could worsen the fitness of the solutions.

We will present a crossover operator, together with some mutation operators that can
be organized into two groups: operators to change the structure of the fuzzy system and
operators to adjust its parameters. The former group contains SVD-based Pruning

(SVDP), OLS based-Pruning (OLSP), and the Splitting of Fuzzy Systems (SPLIT), while
the latter group is composed of the OLS-based Mutation (OLSM), and the SVD-based

Mutation (SVDM).

2.3.1. Crossover of fuzzy systems

This operator takes two fuzzy systems and returns two offspring combining the genetic
information from their ancestors. The descendants are generated by interchanging several
fuzzy patches in the original solutions. Some patches are selected randomly in one of the
ancestors and are replaced by the closest patches in the input space belonging to the sec-
ond progenitor, in order to avoid the generation of two new fuzzy systems that could leave
input regions uncovered. After the exchange of information, the optimum consequents are
obtained for the descendants using the Cholesky method [35].

2.3.2. SVD-based pruning

Singular Value Decomposition has been widely applied to detect the less relevant rules
in a fuzzy system [30,48,49]. This decomposition returns a set of singular values (each one
associated with one patch of the model) with an important property: the most relevant
patches are detected because they have the highest singular values.

Taking this information into account, this mutation operator assigns a pruning prob-
ability to each patch that is inversely proportional to its associated singular value. Less
important rules are assigned a greater pruning probability than more relevant ones. Once
these pruning probabilities have been calculated, a patch is randomly selected and deleted,
and the optimum consequents for the remaining patches are obtained.

2.3.3. OLS-based pruning

Another orthogonal transformation used in the literature to detect less relevant rules is
OLS [7,45,49]. This method also assigns a relevance value to each patch, but with an
important difference: OLS takes into account the expected output for each input vector
in the training set. Thus, the relevance of each patch is closely related to its contribution
to the reduction of the training error. The patches making a bigger contribution to the



38 J. González et al. / Internat. J. Approx. Reason. 44 (2007) 32–44
training error reduction will be more sensitive to the pruning than those making a smaller
contribution. Thus, this mutation operator assigns a pruning probability to each patch
inversely proportional to its error reduction ratio and selects one patch to be deleted
according to this probability distribution. After the deletion the optimum consequents
of the model are recalculated.
2.3.4. Splitting of patches

The objective of this mutation operator is to detect the input areas that are worse mod-
eled by the fuzzy system, i.e. those with a higher approximation error, and to increase the
number of patches in these areas in order to increase the variance of the data explained by
the fuzzy system. To carry out this task, the operator estimates the contribution of each
patch to the whole approximation error using the following expression

ej ¼
Xn

k¼1

ajð~xkÞPm
i¼1aið~xkÞ jF ð~x

kÞ � ykj; j ¼ 1; . . . ;m: ð4Þ

A high value of ej means that the j-th rule is not able to model correctly the training data
that most activate it, so, it would be desirable to increment the number of fuzzy rules in
this input zone, in order to minimize the approximation error caused by the training exam-
ples. Thus, the mutation operator assigns a splitting probability to each rule proportional
to its contribution to the approximation error. This means that those rules with a higher
contribution to the approximation error will have more probability of being split. Once
that all the rules have been assigned a splitting probability, one of them is randomly
selected according to these probabilities distribution.

After the j-th rule has been selected, the two-means algorithm is run with the input
examples that are closer to it than to any other rule, obtaining two new positions for
two new patches, which will substitute the j-th rule in the affected fuzzy system. The widths
of the MFs defining the antecedents of these two new rules are calculated using the KNN
heuristic [26,29], and the optimum consequents for all the rules of the new fuzzy system are
obtained.
2.3.5. SVD-based mutation

Another way of hybridization between SVD and a mutation operator is to select the
fuzzy rule to be altered uniformly (all the rules have the same likelihood of being chosen)
and apply a random displacement according to its associated singular value. Rules with
small singular values will undergo large changes, while only small perturbations will be
applied to sensitive patches.

This behavior can be implemented by applying a random shift to the position or the
width of the selected patch whose modulus varies inversely with the magnitude of its sin-
gular value.
2.3.6. OLS-based mutation

This evolutionary operator implements exactly the same steps as SVDM, but uses
OLS instead of SVD to detect the relevance of the patches. All the patches have the same
likelihood of being altered, and when one of them is chosen, its position or its width
undergoes a random displacement that is inversely proportional to its error reduction
ratio.
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2.4. Termination criterion

As the MOEA is used to find a good Pareto-optimum frontier which later will be fine-
tuned using a minimization algorithm, the solutions found by the evolutionary algorithm
only have to be reasonably close to a good set of solutions in order that the minimization
algorithm can reach them. There have been several studies to fix a threshold for the max-
imum number of generations for an evolutionary algorithm [1,2,28,31,42,43], but all of
them are based on a binary representation of the solutions and for very simple problems;
besides, they all fix a maximum number of generations, thus making the algorithm execute
more iterations than necessary.

The proposed algorithm incorporates a termination criterion based on the linear regres-
sion of the fitness of the best individuals found in the last iterations to detect the conver-
gence of the population. This criterion calculates the slope of the linear regression of the
best individuals’ fitness found in the last m iterations (one slope is calculated for each solu-
tion i in the Pareto-optimum frontier), i.e.,

slopeiðmÞ ¼
Pt

k¼t�mþ1ðk � tÞOk
i �

Pt

k¼t�mþ1
Ok

i

� � Pt

k¼t�mþ1
k�t

� �
m

Pt
k¼t�mþ1ðk � tÞ2 �

Pt

k¼t�mþ1
k�t

� �2

m

; ð5Þ

where t indicates the actual generation and Ok
i is the fitness of the Pareto-optimum solu-

tion with i patches in the k-th generation. Once calculated the slopes for all the solutions in
the Pareto-optimum frontier, the evolutionary algorithm will stop if

max
i
fslopeig < Stopth; ð6Þ

where Stopth is the stopping threshold to detect the convergence of the population. As the
computation time is also an important factor, this termination criterion also uses the
parameter maxGens to stop the algorithm after a given maximum number of generations
in case the population has not converged yet.
2.5. Fine-tuning the solutions

Evolutionary algorithms comprise a powerful search tool, but they are incapable of
reaching a solution that precisely fits the problem in the time available; nevertheless,
they do achieve an intermediate solution that could serve as a starting point for a local
search process that would achieve a solution with the desired degree of precision. To
speed up the evolution of the system, we introduce a gradient-descent step into each
generation, which is applied only to the Pareto-optimum individuals in the population
to minimize their approximation error. This step, which represents an improvement on
the best solutions of the previous generation, should not be carried out in too many
iterations, as gradient descent is a very costly process. It is intended to refine the best
solutions generated in the current generation within the population, so that in the fol-
lowing generation they can be crossed with others and thus generate partially-fitted
solutions; this local fit can then be transmitted to the whole population in successive
generations.
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When the evolutionary algorithm has finished searching, the Pareto-optimal solutions
found are subjected to a gradient descent, this time with a higher number of iterations
to reach the closest local optima to the Pareto-optimal region returned by the algorithm.

3. Experimental results

The MOEA proposed in this paper has also been tested with the time series generated
by the Mackey–Glass time-delay differential equation [27]

dsðtÞ
dt
¼ a � sðt � sÞ

1þ s10ðt � sÞ � bsðtÞ: ð7Þ

Following previous studies [47], the parameters were fixed to a = 0.2, b = 0.1, thus obtain-
ing a chaotic time series with no clearly defined period; it does not converge or diverge,
and is very sensitive to initial conditions.

As in [21], the time series values at integer points were obtained applying the fourth-
order Runge–Kutta method to find the numerical solution for the above equation. The
values s(0) = 1.2, s = 17, and s(t) = 0 for t < 0 were assumed. This data set can be found
in the file mgdata.dat belonging to the FUZZY LOGIC TOOLBOX OF MATLAB.

2

Following the conventional settings to perform a long term prediction of these time ser-
ies, we predict the value s(t + 85) from the current value s(t) and the past values s(t � 6),
s(t � 12), and s(t � 18); thus, the training vectors for the model have the following format

½sðt � 18Þ; sðt � 12Þ; sðt � 6Þ; sðtÞ; sðt þ 85Þ�: ð8Þ
The first 500 input vectors were used to train the model and the next 500 vectors were used
to test the fuzzy systems obtained. The proposed algorithm was run several times with a
population of 90 individuals until the population has converged or a maximum number of
generations maxGens = 1000 is reached. Table 1 compares the mean and standard devia-
tion over five executions of the solutions found by the proposed algorithm with other pre-
sented in the literature.

Some of the approaches being compared are based on Radial Basis Function Neural

Networks (RBFNNs), such as the Resource Allocation Network (RAN) algorithm [34],
which iteratively constructs an RBFNN analyzing the novelty of the input data, or the
modifications of RAN proposed in [39], which include the Givens QR decomposition

(RAN–GQRD) to obtain the weights of the net and a pruning criterion (RAN–P–GQRD)
to reduce the complexity of the net. The results are compared with other fuzzy systems too.
In [4] two different algorithms to train fuzzy systems are presented, one using brute force
and another incremental, and it is shown that the brute force approach presents an unsta-
ble behavior as the number of rules is increased and besides it does not reach the approx-
imation errors obtained by the incremental algorithm. The last approach [9] applies
Breeder Genetic Algorithms (BGAs) to train MLPs. Again, it should be noted that the pro-
posed algorithm is able to find a set of Pareto-optimum solutions that dominate all the
solutions in the table. Fig. 2 summarizes graphically the results.

For most applications, and with suitable guards to prevent overfitting, the model with
minimum approximation error in the Pareto-optimum frontier would seem the best one.
2
MATLAB is a trademark of The Math Works Inc.



Table 1
Comparison of the proposed algorithm with others applied in the literature to predict the s(t + 85) value of the
Mackey–Glass time series; m represents the number of rules or RBFs (depending on the model), and np is the
number of free parameters

Algorithm m np Test NRMSE

MLP + BGA [9] 16 80 0.2666

RAN [34] � = 0.1 57 342 0.378
� = 0.05 92 552 0.376
� = 0.02 113 678 0.373
� = 0.01 123 738 0.374

RAN–GQRD [39] � = 0.1 14 84 0.206
� = 0.05 24 144 0.170
� = 0.02 44 264 0.172
� = 0.01 55 330 0.165

RAN–P–GQRD [39] � = 0.1 14 84 0.206
� = 0.05 24 144 0.174
� = 0.02 31 186 0.160
� = 0.01 38 228 0.183

Fuzzy systems [4] Brute force 10 190 0.1086
11 206 0.1098
12 228 0.1026
13 247 0.2235
14 266 0.1568
15 285 0.1028

Incremental 14 266 0.0965

Proposed algorithm 13 78 0.1984 ± 0.0163
14 84 0.1856 ± 0.0159
15 90 0.1693 ± 0.0425
16 96 0.1548 ± 0.0233
17 102 0.1453 ± 0.0146
18 108 0.1354 ± 0.0109
19 114 0.1233 ± 0.0154
20 120 0.1172 ± 0.0124
21 126 0.1112 ± 0.0123
22 132 0.1045 ± 0.0099
23 138 0.1023 ± 0.0126
24 144 0.0945 ± 0.0074
25 150 0.0855 ± 0.0058
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Nevertheless, in other applications, such as classification [33], or the control of a plant [5],
the user may be interested in other Pareto-optimum solutions with fewer parameters
(rules), which although less accurated, are more interpretable, in order to understand
the functioning of the system that has been modeled with the fuzzy system.

4. Conclusions

This study presents a different approach to the study of fuzzy systems in which the rules
are adapted to the problem by covering the zones of the input space that most contribute
to reducing the global approximation error of the system.



Fig. 2. Comparison of the proposed algorithm with others applied in the literature to predict the s(t + 85) value
of the Mackey–Glass time series.
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We have also presented a modification of the well known NSGA-II algorithm for the
problem of modeling a fuzzy system for function approximation from a set of training
data that applies expert mutation operators to avoid the generation of less fitted solutions,
hybridizing the fundamental principles of genetic algorithms with those of classical opti-
mization algorithms, thus achieving an algorithm that provides the power of evolutionary
algorithms but at the same time one that fits the solutions with the desired degree of pre-
cision. The simulations performed show that the synergy of the different paradigms and
techniques used produce excellent results for the construction of fuzzy systems.

Other important issue is the possibility of obtaining a wide range of solutions with dif-
ferent compromises between the accuracy and the complexity of the models in only one run
of the algorithm, therefore the user can select the trade-off between accuracy and interpret-
ability. It is also important to note that the proposed methodology is robust, being able to
find similar set of solutions starting from different initial populations, as shown in Section 3.
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[23] F. Jiménez, A.F. Gómez-Skarmeta, H. Roubos, R. Babuska, A multi-objective evolutionary algorithm for
fuzzy modeling, in: Proceedings of the IX IFSA World Congress and XX NAFIPS International Conference,
IFSA-NAFIPS’01, Vancouver, Canada, 2001, pp. 1222–1228.
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