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Abstract:

A systematic fuzzy modeling method that includes the
initial fuzzy model self-generation, significant input
selection, partition validation, parameter optimisation and
rule-base simplification is proposed in this paper. In this
framework, the whole procedure of structure identification
and parameter optimisation is carried out automatically
and efficiently by the combined use of a self-organisation
network, fuzzy clustering, adaptive back-propagation
learning and similarity analysis. The proposed fuzzy
modeling approach has been used to non-linear system
identification and mechanical property prediction in hot
rolled steels. Experimental studies demonstrate that the
proposed fuzzy models have a good balance between
model accuracy and interpretability.
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1. Introduction

Fuzzy modelling is a very important and active
research field in fuzzy logic systems. Compared to
traditional mathematical modeling and pure neural
network modeling, fuzzy modeling possesses some
distinctive advantages, such as the mechanism of
reasoning in human understandable terms, the capacity of
taking linguistic information from human experts and
combining it with numerical data, and the ability of
approximating complicated non-linear functions with
simpler models. In recent years, a variety of different fuzzy
modelling approaches have been developed and applied in
engineering practice [1]-[7]. These approaches provided
powerful tools to solve complex non-linear system
modeling and control problems. However, most existing
fuzzy modeling approaches concentrate on model accuracy
that simply fit the data with the highest possible accuracy,
paying little attention to simplicity and interpretability of
the obtained models, which is considered as a primary
merit of fuzzy rule-based systems. In many cases, users
require the model to not only predict the system’s output
accurately but also to provide useful description of the
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system that generated the data. Such a description can be
elicited and possibly combined with the knowledge of
experts, helping to understand the system and validate the
model acquired from data. Thus, it is desired to establish a
fuzzy model with satisfactory accuracy and good
interpretation capability.

Our aim is to develop a systematic fuzzy modeling
mechanism, without any assumption about the structure of
the data, which is capable of 1) generating a rule base
automatically from numeric data, 2) finding the optimal
number of the rules and fuzzy sets, 3) optimising the
parameters of fuzzy membership functions, and 4)
providing a readily interpretable model. To achieve these
objectives, this paper proposes a systematic neuro-fuzzy
modeling paradigm by incorporating a modified self-
organisation network, fuzzy c-means (FCM) clustering
associated with a proposed cluster validity measure,
similarity analysis and back-propagation learning. The
methodology and implementation of the neuro-fuzzy
modeling will be described in the following section.

2. Methodology of Fuzzy Modeling

Consider a collection of N data points { Py, Py,..., Py} in
a m+| dimensional space that combines both input and
output dimensions. A generic fuzzy model is presented as
a collection of fuzzy rules in the following form
R;: TFx, 18 Ap and X, 18 A;; ... and x,,, 18 4,

THEN y=z(x)

where x=(x, , X2, ... , X») )€ U and ye V are linguistic
variables, 4; are fuzzy sets of the universes of discourse
U,eR, and z(x) is a function of the input variables.
Typically, z can take one of the following three forms:
singleton, fuzzy set or linear function. Fuzzy logic systems
with center of average defuzzification, product-inference-

rule and singleton fuzzification are of the following form:
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where 4,(x,) denotes the membership function of x;
belonging to the ith rule. Very commonly, Gaussian
function is chosen as the membership function. Thus,

equation (1) can be rewritten as

y= i zm,(x ) i m(x) (2)



where my(x)=exp(-|x—c;||’/c*) represents the matching
degree of the current input x to the ith fuzzy rule.
According to the fuzzy modelling paradigm proposed
in [8], a fuzzy modelling problem is equivalent to solving
the following problems: 1) generating an initial fuzzy rule-
base from data; 2) selecting the important input variables;
3) determining the optimal number of fuzzy rules; 4)
optimising the parameters both in the antecedent part and
consequent part of the rules; and 5) optimise the acquired
fuzzy model by removing the redundant membership
functions. The methodology of fuzzy model construction

and implementation will be discussed in the following sub-

sections.
A. Fuzzy Model Initialisation

Creating the initial fuzzy model can be considered as a
clustering process which groups the data scattered in the
input-output space into a collection of clusters. A fuzzy
competitive neural network is exploited as a pre-processor
to extract a number of clusters which can be viewed as an
initial fuzzy model from raw data [{8]. This step is used to
perform fuzzy classification with the two objectives of
providing the fuzzy model for subsequent input selection
and reducing the total number of training instances for
model optimisation. ’

Consider a set of N data points {Py, P ,..., Py}, the
input-output data pair can be represented as  Pr=(Xi1, Xr2,
s Xi V&), &=1, 2, .., m. The self-organising network is
introduced to produce the sub-clusters based on the given
data set. In contrast to the Kohonen network [9], the
proposed network has a variable structure in which the
number of nodes in the competitive layer can be changed
dynamically in response to the incoming data. Starting
with one node at the competitive layer, as the learning
process proceeds with increasing iteration, the number of
the nodes grows accordingly. The number of clusters can
be controlled by the cluster radius and the activation
threshold. The procedure for the modified competitive
learning algorithm is described as follows.

Step 1. Initialisation.
Given unlabelled data set {P,, P,, ..., Py}, where; input
the first input pattern Py; set the iteration number /=1. Let
the first weight vector be w(0)=P;, i.e. wi(0)=xy;, i=1, 2,
..., m+1. Specify the valid radius & for all nodes. Set the
number of nodes Ny=1, and the activation number of node
1 N_;]:l;
Step 2. Dissimilarity calculation
For the Ith input pattern (at the /th sampling instance): find
the node J which has the minimum distance to the current
input pattern P; by
IPwADli= min |[PwiDll

The distance is defined as ||P—w|[=(Pw,) (P—w,)

i=1,2,., N

Step 3. Determine the winning node.
Use the following rule:
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j=1, 2, ..., p, where w=(w;;, wp, ...

If ||P—w,D)|< & Then node J is the winner

If |P—wAD|>6 Then create a new node

If J is the winner, modify the weight vector of node J to

WAD=WAF1 )t Pr-wAD)

where o is the learning rate which is determined by

o=a/(Ny+1), where o, €[0,1] is the initial rate; and set

N=NosH L =1L

If creating a new node, then the weight vector of the new

node is given by

W, (D=x,  NENeH

If I<N, go to Step 2, otherwise set p=Ny and stop.

The activation value of an output node is defined as: o;=w;;

, ;)| represents the

prototype of the jth fuzzy cluster in input-output space.
When unsupervised learning is completed, a collection

of p fuzzy clusters C=(¢,, ¢,...,¢,) is produced. Each

cluster center ¢;=(x; y;) can be considered as a fuzzy rule

that describes the system behavior. Intuitively, cluster

centre ci represents the rule "If input is around x; Then

output is around y,.‘ ". Given an input vector x", the

degree to which rule { is fulfilled is determined by the
membership function p(x;). This initial fuzzy model is
used as the basis for subsequent model structure
identification.

B. Input Selection

Selecting the important input variables from all
possible input variables is important for system modeling.
Obviously, incorporating only the important variables into
a model provides a simpler, more useful and more reliable
model. Based on the initial fuzzy model that incorporates
all possible input variables, we can evaluate the
importance of each input variable. The objective of this
work is to reduce the input dimensionality of the model
without significant loss in accuracy. It is known that the
change of system output is contributed to by all input
variables. The larger the output change caused by a
specified input variable, the more important this input
variable is. The fuzzy inference system provides an easy
mechanism to test the importance of each input variable
without having to generate new models. The basic idea is
to let all antecedent clauses except one associated with a
particular input variable (e.g., Xy iS 4y ) in the rules be
assigned a truth value of 1 and then compute the fuzzy
output with respect to this input variable. A neurofuzzy-
network-based model, which can generate all fuzzy
outputs in parallel with respect to every individual input
variable and test the importance of all input variables
simultaneously, was proposed in [10]. Based on the
neurofuzzy model, the output of the fuzzy inference
system using multiplication as the AND operator and
defuzzification using the center of area algorithm can be
computed by



* - [‘ -
z, =5iu,-,-(x, W, [ 2, () .
(3)

The output vector z=(z;, Zp, ..., Zp) denotes the fuzzy
inference output corresponding to the contribution of the
ith input variable. On the basis of m fuzzy output vectors,
the importance of the input variables can be determined by
calculating the change range of the corresponding z,
obtained by

Rz/=max(z;)-min(z;).
Hence, the importance factor of the ith input can be
defined by F=Rz/R,,;
where R,=max{Rz,, Rz, ..., Rz,}.

Clearly, Fi=1 corresponds to the most important input
variable, the large range of the fuzzy output indicating the
big influence of the corresponding input variable. A small
value of F; corresponds to a relatively unimportant input.
When F; is less than the chosen threshold, ie. F<A,
A€(0,1), the corresponding input variable is believed
unimportant and can be removed.

Assume that there are » inputs with the values of F;2A,
thus, a collection of r inputs is selected from m input
variables. Further recognition of the closely related input
variables (independent input variable testing) can be
realized by calculating the correlation functions, p(x; X;),
between the selected input variables:

Pxs, x5) =]1,'i(.’ci -%)x,-X,)
by A k=1
V2.9,

where p(x; x)€[0,1], X,, X f’¢x,’ ¢x/ are the means and

(4)

variances of vector x; and x; respectively, i, j=1,2, ..., ». The
independent variables among the r selected inputs can be
recognized by the following rule: if [o(x,, x;)|>t, then x; is
closely related with x;, thus, remove the one which has a
smaller value of importance factor from the list of selected
significant input variables. 7 is the chosen threshold.

The task of input selection is completed and a
collection of ¢ (g<r) significant input variables is selected
for the fuzzy model. It should be noted that the input
selecting procedure is proceeded on the basis of central
points ¢=(x ¥, ) of the p clusters obtained through self-

organising network instead of raw data. The computational
cost in this stage is reduced drastically due to p<<M.

C. Partition Validation

Although we can generate the initial fuzzy model
associated with only the significant inputs by using the
modified competitive network, the number of rules of the
initial rule-base is not optimal because the competitive
learning process is not based on optimising any model of
the data. Determination of the optimal number of the fuzzy
rules is a very important issue, which is equivalent to
finding out a suitable number of clusters for the given data
set. It is noted that an effective partition in input-output
space can lead to reducing the number of rules and thus
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improving the computational efficiency and interpretability
of the fuzzy model. Numerous clustering algorithms have
been developed. The most widely used algorithm is the
fuzzy c-means (FCM) due to its efficacy and simplicity.
However, the number ¢ of clusters is required to be pre-
determined. FCM algorithm partitions a collection of n
data points (X={x,, X,, ..., X,}) into ¢ fuzzy clusters such
that the following objective function is minimised.
T= 3 2 My (%) vl 1<m<eo
k=1 (=1
where m is a fuzzy coefficient, v; is the prototype of the ith
cluster generated by fuzzy clustering, u, is the

membership degree of the ith data belonging to the ith
cluster represented by w, u,eU, U is a cXn fuzzy
partition matrix which satisfies the constraints:

0<u, <1 Vik & Yu, =1 Vk
i=1

(5)

Partition validation is the problem of finding the best
value for ¢ subject to minimisation of .J,. Since J,
monotonically decreases with ¢, an efficient criterion for
evaluating the performance is required. Various cluster
validity criteria have been proposed, such as partition
coefficient [11], partition entropy [12], hypervolume and
partition density [13], and some other effective validity
measures ([1],[14], [15]). These criteria provide useful
tools for cluster validation, each of which has developed
its own set of partially successful validation schemes. In
this work, a new fuzzy partition measure is proposed as a
cluster validity criterion associated with the FCM
algorithm, which is defined as follows:

J(U.c)=_1_ zn:mfix(u,.k) —%il i[limm(uibujk” (6)

nok=l i=1 j=i+l B k=1
-1
where K= Zi
i=1

It can be seen that the proposed criterion includes two
items. The first item reflects the compactness within
clusters. and the second item represents the separation
between clusters. That is, the optimal clustering means
minimizing J over the whole ¢ space. It should be pointed
out that the criterion J only involves the information of
membership degree and concentrates on the maximum and
minimum values of uy, thus it is computationally simple
and fast. Simulation experiments demonstrated that the
proposed validity measure works very well when me[1.5,
3]. Fortunately, m=2 is the most common choice in fuzzy
clustering. Partition validation based on the above criterion
is carried out by the fuzzy clustering algorithms through an
iterative optimisation of J, according to the following
steps:

Step 1. Choose the maximum cluster number ¢, iteration
limit T, weighting exponent m, and terminpation criterion
£>().



Step 2. With ¢=2, 3, .., Cuas initialise the position of
cluster centres: Vo=(v\0, Va0, ..., Veo);
Step 3. With the iteration number =1,2,...,T,

calculate; 1y,=1 Z(dﬂc ld, )" (7
J=t
where  dy=|—v), i=1,2,.,¢k=1,2,.,p;
Calculate Vir= Z (uik,t )m X, /Z (u.'}u )m (8)
=1 k=1

If [[F—V,l<e,go to next step, otherwise repeat step 3.

Step 4. Calculate J(c) by (6); if c<Cuax, repeat from Step 2.

Otherwise, stop the program and set the optimal cluster

number ¢=c,,, where ¢, meets the following condition:
J(em ymindJ(e)}, =2, 3, ..., Cuas

Based on cluster validation, both the number of rules
and the prototypes of the clusters ¥v=(V;i, Vi2, ..., Vims Vim+1)
can be obtained, where j=1, 2, ..., c.

Let a=(an, ap, ... Gm)=Vn, Vizs -os Vim)y Z7Vjme1, then
the vector a; denotes the prototype of the jth fuzzy partition
in the input space. It can also be viewed as the center
values of the Gaussian membership functions in the
antecedent of the jth rule, while z; is the prototype of the
jth fuzzy partition in the output space, and denotes the
fuzzy output value in the consequent part of the jth rule.

Therefore, the rule-base which is composed of ¢ fuzzy
rules can be represented as
R;: 1F xy is Ay and x, is 4p...and x, is 4;; THEN y is z
where R; denotes the jth rule, 4; is the fuzzy set defined by
the Gaussian membership function; and z =b; or

z, =Zq:bﬂx,, is the jth rule output with respect to a
i=0

Mamdani model or model

respectively, with x,=1.

Takagi-Sugeno (TS)

D. Parameter Optimisation

After structure identification, we obtain not only the
number of rules but also the initial parameters which can
be used to build the fuzzy models. To improve the model
performance and achieve higher modeling accuracy, the
obtained parameters should be optimised under a certain
performance index. There are several methods for training
fuzzy models, that is, to learn the optimal membership
function parameters gy, oy and linear weights by The
commonly used back-propagation learning algorithm is
applied to optimise the parameters @;;, o; and b under the
performance index of Mean Square Error (MSE). Using
the back-propagation technique, the parameter learning
algorithms can be derived as

Aay()=Ber P~ 90) (zrpe)g/x)+Aa (1) (10)
o
acy=-Bes e~ ) (sryagrivagi-1) (1)

g

H
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where J is the learning rate, y is momentum rate, t refers to
the iteration  number, xo=1, e=(d~) and

=) 2 ).
J=1

To increase the convergence speed and improve the
learning efficiency of the back-propagation algorithm, an
adaptive learning rate tuning algorithm was introduced for
self-adjusting both learning rate B and the momentum rate
Y. The basic idea of this algorithm is to introduce the

X . l n
performance index b=—Ze,f values at the current and

k=1

previous iteration as feedback information, and adjust the
learning rate and momentum strength according to the
change trend of E. The adaptive algorithm is represented
as follows:

If E()2E(—1) then B(O)=hP(-1), v=0

If E()<E(t-1) & |AE/E(£)|<d then B(H)=hH(-1), v=Yo,

If E()<E(t-1) & |AE/E(£)|2 8 then B(ty=B(-1), y=y(t~1)
where E(f) is the performance index value at the fth
iteration, AE=E(f)-E(t-1), hy and A; are a decreasing factor
and increasing factor respectively, 0<h<l and A>1, 7, is
the initial momentum rate, and & is the threshold of the
relative index change rate. In this work, we set 4,=0.9,
h;=1.05 and 6=0.05.

It can be seen that the learning rate § and momentum
rate y are automatically adjusted according to the change
trend of £. When the value of E is decreasing at a
reasonable change rate, both § and y remain unchanged. If
the convergent speed is too slow, i.e. the decreasing rate is
too small, the learning rate would be enhanced by
increasing factor h; thus speeding up the learning process.
On the other hand, once a divergent trend is observed, i.e.
AE is non-negative, both B and y will be reduced
automatically, thus avoiding the occurrence of divergence.
The learning efficiency is improved greatly due to
introducing the adaptive learning algorithm. Through
parameter learning, the optimal parameters of the fuzzy
model are thus obtained.

E. Model Simplification

After parameter learning, the optimal fuzzy rule-base is
not finally constructed. The obtained model may exhibit
redundancy in terms of highly overlapping membership
functions. To acquire an efficient and transparent fuzzy
model, elimination of redundancy and making the fuzzy
model as simple as possible is necessary. Based on the
obtained fuzzy rule-based model, a rule base simplification
approach to minimise the number of fuzzy sets in the
universe of discourses of each input variable and remove
possible redundant rules is performed as follows:

1. Removing redundant fuzzy rules

If a fuzzy membership function is always near zero

over its whole universe, i.e. gi(x;)=0, Vx;€ U, then

remove the rule corresponding to this membership



function because this rule will almost never be fired,

which means the output of this rule is always near zero.
2. Merging similar fuzzy sets

Calculate the similarity between fuzzy sets 4y and Ay

T, (x) A 1, (%)}

n
2 {4, () v 44,(x,)}
where i=1,...,n; jk=1,....c,j#k
If S(4;;, Ai)>hy, ie. fuzzy sets 4; and Ay are highly
overlapping, then merge the two fuzzy sets 4;, Ay into
one new fuzzy set 4;, where A, € (0,1) is the threshold
for merging fuzzy sets that are similar to one another.
3. Removing redundant fuzzy sets
For each fuzzy set 4, calculate the similarity to
the universal set U, If S(4;, Up>A,, (i.e. gudx;) YA,
Y x;€ U,,), then remove Aj; from the antecedent of rule
R;; where A, €(0,1) is the threshold of similarity degree
for removing fuzzy sets similar to the universal set.
After the completion of structure identification,
parameter optimisation and rule-base simplification, the
final fuzzy model is thus obtained.

by S(d;s,4k)= (12)

3. INustrative Examples

To verify the effectiveness of the proposed fuzzy
modeling methodology and evaluate the performance of
the obtained fuzzy models, different application examples
including non-linear system identification and material
property prediction for C-Mn steels are presented in this
section.

A.  Non-linear System Identification
The non-linear system is taken from [16].
y=x,8in(x;)+x,c0s(x;) (13)

100 training data were chosen randomly (instead of 441
evenly distributed data in [16]) from 0<x,, x,<m, and the
corresponding output data were obtained from equation
(15). In order to illustrate input variable selection, two
random variables x; and x; in the range of [0,r] were added
as the dummy inputs. Using the proposed input selection

paradigm, the importance factors with respect to x;, xa, X3,

x4 are obtained as: 0.702, 1.00, 0.295, 0.135. Clearly, x;
and x, are important and thus selected as the model input
variables. After structure identification and parameter
learning, a 4-rule fuzzy model was produced as shown in
Fig. 1. Compared to the 9-rule model with the mean-square
error of 0.016 in [16], the mean-square error of this 4-rule
model is 0.006. The system approximation result using the
produced fuzzy model is shown in Fig.2. Using the
proposed rule-base simplification approach, the four fuzzy
items of x, were merged into two and it results in a
stmplified 4-rule with 6 membership functions model. The
mean-square error of the simplified fuzzy model for this
nonlinear system is 0.027.
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Fig.2. Simulation result.(a)Actual system output;(b)Model output

B. PROPERTY PREDICTION FOR C-Mn STEELS

The problem in modelling of hot-rolled metal materials
can be broadly stated as: given a certain material which
undergoes a specified set of manufacturing processes, what
are the final properties of this material? By using, the
proposed neural fuzzy modelling approach, we have
developed composition-microstructure-property models for
some classes of hot-rolled steels.

Applying the proposed input selection paradigm, 5
inputs (C, Si, Mn, Nb and Ferrite grain size mm™? (D)),
were selected from the 15 possible inputs variables. 358
industrial data were used, 50% for training and 50% for
model testing. After partition validation and parameter
learning, the final fuzzy models of the Mamdani type
consisting of 6 rules were obtained. The rule-based fuzzy
model is represented in Fig.3.

Experimental results of this model with RMSE=
training and testing are shown in Fig. 4. According to the
simulation result, the out-of-10% error band prediction
patterns for the testing data is 2.2%. It can be seen that the
fuzzy model gives good prediction and generalisation.
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Fig.4. Measured versus predicted TS of C-Mn model

4. Conclusion Remarks

In this paper, a hybrid neuro-fuzzy modeling
framework is proposed. It can be seen that a fuzzy rule-
base can be generated and optimised automatically from
the training data through the proposed hybrid neural fuzzy
model. Due to its multi-paradigm nature, the proposed
hybrid model not only takes advantage of the
computational efficiency of the neural network approach
but also maintains the clarity of the fuzzy rule-base
paradigm, thus providing an explanation facility for the
network. The proposed neural fuzzy mode! also provides a
fast and effective mechanism for generating fuzzy models
based on nteural network and fuzzy clustering techniques.

Using this neurofuzzy modeling approach, the acquired
fuzzy model has a simple structure and thus has low
computation cost. Extensive experimental validation
shows that the produced rule-based fuzzy models have
satisfactory prediction accuracy and good interpretation
features. Clearly, the proposed fuzzy modeling approach
provides a simple and effective framework for system
identification and prediction. Further improvement in the
model optimisation and incorporation of linguistic
information into the modeling procedure would be
beneficial. Also, further work will be carried out for other
industrial applications of microstructure modeling and
property prediction.
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