A distance metric suitable for fuzzy partitioning

Serge Guillaume

Cemagref
361 rue Jean-Frangois Breton
34033 Montpellier - France

Brigitte Charnomordic, André Titli
INRA, LASB, 2 Place Viala, 34060 Montpellier, France
LAAS, CNRS, 7, avenue du Colonel Roche, 31400 Toulouse, France

Abstract— In this paper, we address the problem to build up from data
a fuzzy partition in an iterative procedure based on an original distance
metric. Thanks to the used distances: internal distance within a fuzzy set,
external distance between two fuzzy sets, distance between prototypes, the
family of generated fuzzy partitions keeps the relevant properties of leg-
ibility and interpretability. A small and academic example, the iris data,
demonstrates the efficiency of the proposed approach.
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1. INTRODUCTION

In order to manage complex systems, such as production pro-
cesses in food industry, the decision maker has to take profit
of different kinds of knowledge: expertise, local mathematical
models and, probably, a lot of data ! We are here considering
this last situation trying to structure the hidden knowledge in
data, under the form of a fuzzy partition from which we want
to build up a fuzzy rule base. This fuzzy rule base that will be
used to develop approximate reasoning to take a decision must
be interpretable, with a controlled complexity. Hence, the same
properties are needed for the fuzzy partition we are looking for

[1]-

The importance of the concept of distance and the sensitivity
of the results with respect to the choice of different distances has
often been underlined in clustering [2], [3], but not in fuzzy par-
titioning. In fuzzy logic distances are usually defined between
fuzzy sets (4], [5] for approximate reasoning. Some of the dis-
tances fulfill the triangle irequality [6], [7], other distances are
pseudo metrics only [8]. The distance introduced by [9], [10] is
close to human appreciation. :

The goal of this paper is to propose the definition of internal
and external distances of different data points in a fuzzy par-
tition. These definitions are used to fuse adjacent fuzzy sets
according to a given criterion. At each step of the iterative pro-
cedure we get an interpretable partition. The rest of the paper is
organized as follows. In the section 2, we present the proposed
distance metric introducing internal and external distances be-
tween data points, distance between prototypes. In the second
part of the paper, we develop the hierarchical fuzzy partitioning
procedure based on thesce distances. Due to the lack of space,
we only illustrate the efficiency of the approach on a classical
academic example with the iris data.

II. PROPOSED DISTANCE METRIC

In this section we first recall some basic properties of a dis-
tance, and we define some constraints on the fuzzy partition,
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Then we explain the basic concept of a pairwise distance metric
compatible with muitiple membership. We introduce the terms
of internal distance, external distance, which are necessary for
taking account of the fuzzy partition structure. Finally we give
the definition of the proposed metric.

A. Distance properties

A function d is a dissimilarity if

d(g, 7} >0
Va,r d(g:q) =10 (1)
d(g,7) = d(r,q)
A dissimilarity is semi-proper if
d{g,”)=0 = Vs d(g,s) = d(r,s) 2)
A dissimilarity is proper if
d(g,r)=0 = g=r (3)

A semi distance is a dissimilarity which verifies the triangle
inequality

Vagr,s  d{g,r) <d(g,s)+d{r,s) 4

A proper scmi distance is called a distance.

B. Managing multiple membership )

We limit our study to convex standardized fuzzy sets. The
fuzzy sets have triangular or trapezoidal shape. They are la-
beled 1,2, ... ,m and they overlap so that the fuzzy partition is
standardized as follows:

ve ¥ pliE) =1
f=12,....m s (5)
>
Y e (z) =05

An illustration of the standardized fuzzy partition we are us-
ing is given on Figure 1. The definition (5) yields some useful
properties for a fuzzy partition, as shown in a recent study [11].
However the proposed distance is general and can be applied to
any kind of fuzzy partition.

Let us consider two data points with respective :rg,, z1 coordi-
nates in the jth dimension. Due to the fuzzification procedure,
they can belong to several fuzzy sets with a non zero degree.
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Fig, 1, A standardized fuzzy partition and the multiple membership bandwidth

‘When using a standardized partition, any data point has at most
two non zero membership degrees. To alleviate the notations
we will denote uf = uf (7).

We introduce the terms of internal distance and external dis-
tance, Internal distance concerns partial membership of two
points ¢, 7 to the same fuzzy set f, uf > 0, uf > 0.

External distance deals with their partial membership to two
different fuzzy sets fand g, u,{ >0,p8>0,f#g.

We impose on any internal distance always to be less than
any external distance. This fundamentai restriction insures that
the distance will reflect the partition structure and preserve the
fuzzy set label semantic. Two points which mainly belong to
the same fuzzy set will always be considered closer than others
which mainly belong to distinct fuzzy sets.

C. Internal Distance

The membership degree complement (1 — p{ ) can be inter-
preted as the distance of &} to the fuzzy set f. It measures the
dissimilarity of z} to the fuzzy set protetypes that delimit the
kernel. Given two data points with 3, 2] coordinates, we com-
pute the internal distance by differencing the prototype similar-
ities, which comes to differencing the membership degrees:

dine(g,7) = |pf — pf

Property (1) is trivial and equation (2) is casily checked.
Counterexamples for property 3 are aisc easy to find. Many dis-
tinct data pairs have an identical membership degree, yielding a
zero internal distance, as illustrated in figure 2.

q T

Fig. 2. Taternal distance d(g, ) equals zero

A (g,7,s) triplet is relevant of one of the following three
cases for which Property (4) is to be checked.

1. Trivial casc : identical membership for all three points: ;] =

=yl
Py = M5
2. identical membership for two points: pf = pf and ,ug #*

pf, with for instance pf > pf. The following inequalities are

to be proven:

dine(qs 7} < dine(g: 8) + dine(r, 5) 0< 2(#5 —ul)
int(9,5) < dins (9,7 + dims(r,8) de. ) —pd Spf —ud
dine (1, 8) < dint(g,7) + dine(q, 3) ph—pd <uf-ul

i.e.

i.e.

3. All membership degrees are distinct, for instance ,ug <ul <p
The inequalities to be checked are written as

then pf <pf

wf —pf <ud —pf vl - ud :
af - uh <l —pf+pl

wf —nl <pd —pd 4l - uf

then pf —pf <pf—pf
then uf <pl

In all cases the proof is straightforward therefore the proposed
internal distance function d;y,; is a semi distance.

D. Prototype distance

Distances are made independent of measurement units by
scaling data into the unit space. We propose two different def-
initions of the distance dproi(f, g} between the prototypes of
fuzzy sets f and g. Recall that a prototype is a point z such as
plz) =1.

1. A numerical distance: dpror (f,9) = +/{(@k, — 2, )%. This
definition corresponds to the kemel Euclidean distance. When
using triangular fuzzy sets, the prototype is unique and corre-
sponds to the coordinate of the triangle top, as shown in figure
1 for fuzzy sets 2 and 3. In the case of trapezoidal fuzzy sets,
defined by their breakpoints a, b, ¢, d, all points in the interval
[b, ¢} are prototypes. The chosen prototype distance is the short-
est one.

g—f

2. A mote symbolic prototype distance: die: (f, g) = m—r

where m is the partition size, f and g are the indices of the
fuzzy sets sorted in ascending order when an order relation is
meaningful on the fuzzy partition.

Within the partition itlustrated on figure 1, the symbolic
choice for the prototype distance makes the fuzzy set 3 at the
same distance from 2 and 4, while the numerical choice puts it
closer to 4. The symbolic distance is more faithful to the sym-
bolic representation of the data.

Both definitions can easily be checked to fulfill conditions 3
and 4.

E. External distance

The external distance must take account of the point location
within its reference fuzzy set, and of the relative fuzzy set lo-
cation within the fuzzy partition, which implies combining the
internal and the prototype distances.

We propose the following definition for the external distance
between two points which belong to f and g

_dezt(q| Ty = |.“L§ — 1| + dprot (£, 9) + D¢ ©

where D, is a constant correction factor, which ensures that the
external distance is always greater than any internal distance.

Figure 3 illustrates the calculation of external distances on a
(g, r, 3) triplet. To simplify, let us consider only the membership
to the three fuzzy sets labeled (2, 3,4). The external distances
can be written as:
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demt(‘la T') = .’-':13: - ”2 + dpfﬂt(213) + Dc
de:rt(ra 3) = ,u.i - P’i + dprot(3s 4) + De
de:t (Qas) = .ug - P’é + dproi‘.(2:4) -+ Dc

which proves the triangle inequality (4).

Note that the external distance reduces to the prototype dis-
tance plus the correction factor, when points ¢, r have internal
identical membership degrees.

F. Distance combination and continuity

To manage multiple membership, the pairwise distance
d{g,r)} is taken as a combination of the internal and external
distances defined above, depending on the fuzzy sets for which
Hq and p, are non zero. In the most complicated case, both
points have dual membership:

7
ur > 0,4l >0 @

{,u{ >0,uf >0
Letus denote dy 5 (g, ) the partial (g, v) distance that represents
respective memberships to f and A. It is an internal distance if
f = h, an external distance otherwise.
d(g, r) results from the combination of four distances:

1 ( e pr x dpplg,r) + pd xdpala,r)
f g q
7 T Hg

d(q,r
(@) [Ty
h ¢
Hr ¥ dg,h(qs T) + g ® dg,l(qir)) ’
+ ﬂg % 8
e R+ ®

For a standardized fuzzy partition, all denominators in the pre-
vious formula are equal to 1.

It is possible to use a simple way to manage multiple mem-
bership. Any point could be considered as mainly belonging
to one fuzzy set, the one for which its degree is maximum,
except those whose degrees fall into a bandwidth centered on
0.5, as shown on figure 1. It comes to consider as non signif-
icant all membership degrees below the bandwidth. Assume
uf > 0, pf > 0. We deduce maz(uf,g) > 0.5, and
max(dine(g, 7)) < 0.5. We therefore set D, = 0.5 in Equa-
tion 6.

In the following formulae, all non significant degrees are set
to zero.

Three cases are to be considered:

[ T 8

Fig. 3. An illustration of external distarces

1. Each point belongs to one fuzzy set only. The distance is
cither purely internal or purely external: )

. = |uf — g
dlg,r) = {dznt(fhr) iﬂq s

®

2. One point, say g significantly belongs to two fuzzy sets f
and g. The other one belongs to k. The distance is evaluated as
follows, assuming that < z:

dar) = {'“3 — 1+ 2 (dpra£,9) +0.5)

(10)

The simplification in 10 comes from assuming similar membes-
ship degrees pj =~ pJ.
3. Both points have significant dual membership:

1
k>0, >0 an

{ #f > 0,48 >0
Instead of combining all four distances, the economical way of
managing continuity in the overlapping areas consists of keep-
ing only the smallest one of the four. Equation 9 is thus used
again and corresponds either to an internal distance or to an ex-
ternal distance.

The term d{g, ) defined by (9) or (10), and in general by
equation {8), has been shown to be a combination of semi dis-
tances. It is therefore a semi distance. Nevertheless to alleviate
the notations we will refer to d as a distance,

[II. HIERARCHICAL FUZZY PARTITIONING

Hierarchical Fuzzy Partitioning makes use of the proposed
distance metric and generates a collection of univadiate fuzzy
partitions frem a multidimensional training dataset. The data set
is a collection of N multiple input-singie output numerical data
pairs (g, yx), k= 1,2,... , N where zy, is the p dimensional
input vector =}, 23, ..., z}, and yj, is the one-dimensional out-
put vector. The method will be introduced in the next section,
followed by an application to the iris Fisher data set.

A. Principle

A univariate fuzzy partition is composed of mn fuzzy sets, the
fth fuzzy set for the jih input variable being defined by its

membership function (1-, ,u;{' (z)) . Denote m the fuzzy partition
size.
A partition can be characterized by the standardized sum of

pairwise distances over all the data points:

1
Dp=—r——
mTN(N-1) >
.r=12,...,N, g#r

dlg,r) (1)

The procedure is carried independently over all dimensions.
In each dimension it builds a family of fuzzy partitions as fol-
lows.
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dezt(g,7) = W; = 4| + dprot(f,9) +0.5  if f#yg

ifg=h
dest(g,7) = |.uq _.”'?l +dprot{g,h) +0.5 ifg#k



The initial fuzzy partition is determined by choosing M;
fuzzy sets according to the data sample distribution in the con-
sidered dimension, with M; < N.

The family of fuzzy partitions is obtained using recursive
fuzzy set merging so that at each step, the resulting partition
is of size m — 1, m > 1 and best satisfies a merging criterion.
The final partition is composed of a single fuzzy set which cov-
ers the entire data range in the considered dimension. Merging
is restricted to adjacent fuzzy sets, and seeks the best possi-
ble arrangement. Following merging, some external distances
become internal distances, inducing a change on the D,, in-
dex. On figure 4, this is the case for all d{g, ), = € [a,],
xi € [e,d]. The best merge at a given stage can be considered
as the one that minimizes the variation of D,,. The underly-
ing idea is to maintain as far as possible the homogeneity of the
structure built at the previous stage, In some way the Dy, index
is analogous to the within class variance used in hierarchical
clustering.

Each triangle fuzzy set f is defined by its breakpoints
left! topf, right!. It is assigned a weight equal to its fuzzy
cardinality w/ = ¥ H3 I (x).

Merging two fuzzy sets labeled 2 and 3 is illustrated on figure
4. The resulting fuzzy set is labeled 2” and defined as follows:

left* =top!

top® = w? % top® + wd * top®
, w2 + wa

right> = top®

The neighbouring fuzzy sets 1 and 4 are trned into 1 and 3.
Their respective right and left breakpoints are modified so that
the fuzzy partition is kept standardized.

Fig. 4. Merging fuzzy sets 2and 3 results in 2,1 =1, 4 = 3’

B. Case study

The Hierarchical Fuzzy Partitioning method has been tested
on the well known iris data, and especially the petat features,
petal length and petal width. The corresponding histograms
are plotted on figure 5. Remember that the iris are from three
species Setosa, Virginica and Versicolor.

The numerical prototype distance is used. The results are
reported in table I. The fuzzy set centers obtained with the pro-
posed method, 5 F' P, are compared with the ones found by the
k — means algorithm,

The petal lenpth histogram clearly shows a two mode distri-
bution. The second mode is issued from a combination of two
iris species, very difficult to discriminate. For this reason we
give the corresponding fuzzy partitions including two or three
fuzzy sets.

35, 3,
a0 30,
25 25
20| 20
15 15
10 10
5 5
T2 34 s 7 6 05 1 15 2 25
(a) Length (b) Width

Fig. 5. Histograms of iris petal features

Petal width Petal length
31 sets 31 sets 2f sets
HFP 024 122 196|141 436 597|141 496
k-means | 025 132 206} 146 423 556|149 493
TABLEI

FUZZY SET CENTER COORDINATES FOR IRIS FETAL FEATURES

IV. CONCLUSION

In this paper we proposed a distance metric suitable for fuzzy
partitioning, which we used for generating a family of univariate
fuzzy partitions. For each partition of the family the fuzzy sets
can be interpreied as linguistic labels. This is due to the stan-
dardized partition constraint maintained all through the proce-
dure, and favored by the semantic attached to the distance used
in the merging criterion. The key idea of differentiating the dis-
tances as internal and external distances makes it fit for reflect-
ing the fuzzy set linguistic meaning. Such a partitioning can be
useful as an input to rule induction methods, instead of classical
grids or partitions derived from fuzzy clustering techniques.

The main benefit of the method is to leave the user with a
possible choice of the fuzzy partition size. The final decision
can be based on a priori knowledge. It can also be guided by
validity eriteria to be developed in further work.
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