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Abstract

This paper presents a method for an automatic and complete design of fuzzy systems from data. The main objective
is to build fuzzy systems with a user-controllable trade-off between accuracy and interpretability. Whereas criteria
for accuracy mostly follow straightforwardly from the application, definition of interpretability and its criteria
are subject to controversial discussion. For this reason, a set of interpretability criteria is given which guide the
design process. Consequently, interpretability is maintained by structural choices regarding the type of membership
functions, rules, and inference mechanism, on the one hand, and by including interpretability criteria in the rule/rule
base evaluation, on the other hand. An application in Instrumented Gait Analysis, to characterize a certain group of
patients in comparison to healthy subjects, illustrates the proposed algorithm.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Interpretability is considered to be the main advantage of fuzzy systems over alternatives like statistical
models or neural networks. Interpretability means that human beings are able to understand the fuzzy
system’s behavior by inspecting the rule base. It is crucial in the field of data mining and knowledge
discovery where knowledge should be extracted from data bases and represented in a comprehensible
form or for decision support systems where the reasoning process should be transparent to the user. Fuzzy
systems constructed from expert knowledge—the traditional approach—usually are well understandable.
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At present, a vast number of algorithms exist for automatic data-based fuzzy modeling, which can be clas-
sified as clustering[2,16,54], neuro-fuzzy[8,26,30], machine learning[17,20,24,47,51]or evolutionary
approaches[4,13,31]. However, fuzzy systems generated by these algorithms are not necessarily compre-
hensible, especially when the algorithm aims at reaching a maximum accuracy. In recent years, research
has therefore started to focus on the trade-off between interpretability and accuracy (for an overview
see[10]).

Whereas the definition of accuracy in a certain application is straightforward, the definition of in-
terpretability is rather problematic. Most researchers and practitioners would agree on interpretability
involving the following aspects[3,9,14,28,49]:

• The number of rules is small enough to be comprehensible. Moreover, rules should not contain degrees
of plausibility or rule weights.

• The rule base is formed of rules describing (locally) relevant relationships. The rules are consistent
(similar premises lead to similar conclusions).

• Rule premises should be easy in structure and contain only a few features (input variables) only.
• The fuzzy system should preferably use features and combinations of these, which are familiar to the

user.
• Linguistic terms should be intuitively comprehensible. The form and parameters of the membership

functions should correspond to the understanding of the linguistic expressions.
• The inference mechanism should produce technically and intuitively correct results.

Generally, interpretability can be maintained or enhanced during the fuzzy system’s generation or obtained
by post-processing of the resulting data-driven fuzzy system.

Examples for the first approach include constraints on membership functions and their parameters
[3,19,42], a special syntax of fuzzy rules [14,24] or a special structure of the fuzzy system, e.g. a hierar-
chical structure[15,22,52]. The second approach comprises simplification by merging similar fuzzy sets
or rules[11,27,48,53]or using linguistic hedges[18,50].

This paper proposes a modular data-driven algorithm for fuzzy system learning according to the first
alternative. Different elements to improve interpretability are explicitly (in form of evaluation measures)
or implicitly (in form of efficient heuristics in all steps of the learning algorithm) integrated in this
algorithm:

• Feature selection finds the most relevant features. The relevance measure can incorporate a priori
information on preferred features (user or technical preference).

• Automatic generation of membership functions and labels takes their interpretability into account (form
of membership functions, reasonable rounded parameters, adaptation to the distribution of feature
values).

• Generation of rule hypotheses by decision tree induction and their pruning favor simple premises and
lead to derived linguistic terms.

• Textual presentation of rules provides additional information in natural language and is better readable
than a formal fuzzy rule.

An implementation as MATLAB toolbox KAFKA enables the user to solve complex real-world problems
interactively controlling the trade-off between interpretability and accuracy.

The paper is organized as follows: Section2 introduces the data and a priori information as the input to
the learning algorithm as well as basic settings of the fuzzy system. Criteria for evaluating features and
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rules are discussed in Section3. Section4 presents the learning algorithm. In Section5, the application
to a diagnosis problem in Instrumented Gait Analysis is described.

2. Learning data, a priori information, and basic settings of the fuzzy system

As the main aim is to identify input–output relationships, e.g. between features and classes, the data
set is organized as follows: Given arek = 1, . . . , N samples (often called examples)

(xT[k], �T
y [k]) = (x1[k], . . . , xl[k], . . . , xs[k], �B1

[k], . . . , �Bmy [k]),

wherexl[k] represent feature values and�Bi [k] a class assignment, such that
∑my
i=1 �Bi [k] = 1. In case

of �y ∈ {0,1}my , the problem is a “crisp”, in case of�y ∈ [0,1]my a fuzzy classification problem. The
former may be regarded a special case of the latter one.

In approximation or regression problems, the outputy is assumed to have a domain ofY ⊂ R. By
defining a fuzzy partition with fuzzy sets�B1

, . . . , �Bmy onY, this problem is transformed into a fuzzy
classification problem. Therefore, only fuzzy classification will be considered in the following sections.

Input variables or featuresxl ∈ Xl are assumed to be ordinal, real or categorical. Ordinal or real
numbers are transformed into membership values ofml fuzzy sets�Al,i

defined onXl resulting in vectors
�xl ∈ [0,1]ml . For categorical features, values are taken from the finite set{Al,i |i = 1, . . . , ml} and can,
therefore, be coded by a vector of membership values�xl ∈ {0,1}ml .

The learning algorithm uses the following data matrices: The block matrix�X with vector elements
�xl [k] and an overall dimension(m1 + · · · +ms,N), the matrix�Y with dimension(my,N), consisting
of vectors�y[k], the matrix�P of rule activations�Pr (x[k]) of dimension(rmax + 1, N) and the matrix
�̂Y of estimates of membership values for the output classes (fuzzy sets) with dimension(my,N).

Additionally, the user may provide an a priori relevance weightMl,ap ∈ [0,1], by defaultMl,ap = 1,
for each feature. These a priori relevance weights give preference to those features, which are familiar to
the user or values of which can be obtained with greater confidence or less effort.

The fuzzy system to be generated contains rules (r = 1, . . . , rmax) with a general structure
Rr : IF x1 = A1,Rr︸ ︷︷ ︸

partial premisePr1

AND · · · AND xs = As,Rr︸ ︷︷ ︸
partial premisePrs︸ ︷︷ ︸

premisePr

THEN y = BRr︸ ︷︷ ︸
conclusionCr

and a default ruleRrmax+1: ELSE y = BRrmax+1. The premisePr consists of a conjunctive (AND,∧)
combination of partial premisesPr1, . . . , Prs . The linguistic termAl,Rr can be a primary linguistic term
Al,i of the featurexl or a disjunctive (OR,∨) combination of some neighboring or all linguistic terms of
xl , e.g.Al,Rr = Al,1 ORAl,2 ORAl,3, which is referred to as derived linguistic term[23]. In the latter
case, this partial premise has no influence on the rule activation and in the presentation of the rule it is
omitted.

Primary linguistic termsAl,i possess triangular (interior terms) or trapezoidal membership functions
(first and last term). For each value ofxl they add up to one, i.e. they form a complete fuzzy partition. Thus,
ml parametersal,i , thex-coordinates of the maximum of the triangular or inflexion point of trapezoidal
membership functions, are sufficient to determine the latter. Membership functions of derived terms result
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from an operation with an appropriate co-t-norm on the membership functions of the primary terms. The
chosen co-t-norm is the bounded sumSb(u, v) = min{u + v,1}. This is the only co-t-norm for which
firstly the resulting fuzzy sets of the derived terms are convex and secondly the membership function
of disjunction of all primary terms of a variablexl is identical to one on the whole universeXl (for a
detailed discussion see[24]). Hence, membership functions of derived terms in the form of disjunctive
connections of neighboring primary terms are trapezoidal.

The conjunctive connection of partial premises is accomplished with the product as t-norm since
features are assumed to be independent or non-interacting. Use of derived terms typically results in
partially redundant rules. Conventional inference schemes likemax–min or sum–prod often produce
results that contradict the expectation from reading the rule base. Therefore, a special inference scheme
[38], which takes the redundancy of rules into consideration, is applied.

3. Evaluation of features and rules

The evaluation of features and rules is based on a statistical approach since the relationship between
values of the features and the output class in general is not deterministic. Possible reasons are missing
features in deterministic relationships, measurement errors or erroneous class assignments.

Feature selection requires an appropriate definition of the concept of feature relevance and an adequate
measure. Here, a feature is considered relevant for the solution to a classification problem if its presence in
the set of inputs of a classifier improves the expected classification accuracy. A measure of the relevance
of featurexl , which is independent of the classifier and includes a priori preferences (Ml,ap, Section2) is

Ml = M�
l,ap
H(xl; y)
H(y)︸ ︷︷ ︸
Ml,ig

, ��0, (1)

whereMl,ig is the normalized mutual information or information gain. The parameter� controls the
strength of preference for features with high a priori preference set by the user and, therefore, the
accuracy/interpretability trade-off. Choosing� � 1 strengthens user preferences, with� going to zero
the influence of a priori preferences diminishes, setting� = 1 is typically a good compromise.
H(y) is the entropy of the outputy in the learning data set

H(y) = −
my∑
j=1

p(Bj ) ld p(Bj ), (2)

a measure of the average information needed for identifying the output class of an example.p(Bj ) denotes
the probability of the event “y is in classBj ”. The mutual informationH(xl; y)

H(xl; y)=H(y)−H(y|xl)

= −
my∑
j=1

p(Bj ) ld p(Bj )+
ml∑
i=1

p(Al,i)

my∑
j=1

p(Bj |Al,i) ld p(Bj |Al,i), (3)
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is a measure of the average information provided by featurexl about the class ofy. Normalizing of (3)
with H(y) yields 0�Ml,ig �1 withMl,ig = 0 indicating an irrelevant feature andMl,ig = 1 indicating a
feature for which an unique relationship between its value and the output class exists.

Assessing the quality or relevance of a rule or rule base involves several aspects: Accuracy, statistical
significance, and clearness. A single rule is considered as a rule base withrmax = 1 (the investigated rule)
and an ELSE rule with�P,ELSE = 1 − �P .

The classificationaccuracyinvolves the minimum quadratic errorE in terms of membership values of
the output classes, which is obtained by the rule base according to

E = min
RB|P

‖RB|P · �P︸ ︷︷ ︸
�̂Y

−�Y ‖2
F s.t.RB|P �0my×rmax+1,1T

my
RB|P = 1T

rmax+1. (4)

with

RB|P =


p̂(B1|P1) · · · p̂(B1|Prmax) p̂(B1|PELSE)

...
. . .

...
...

p̂(Bmy |P1) · · · p̂(Bmy |Prmax) p̂(Bmy |PELSE)


 .

The minimum quadratic error of the trivial model (a rule with an always true premise) is

E0 = min
rB

‖rB1T
N − �Y ‖2

F with rB = (p̂(B1), . . . , p̂(Bmy ))
T.

Here, it is assumed that all possible rules exist for each premise and thatRB|P andrB , respectively, consist
of rule weights. Each column ofRB|P corresponds to a premise in the rule base, each row to a possible
conclusion (output class). The matrix of rule activations is assumed to have all column sums equaling
one.1 In this setting, the matrixRB|P has another interesting interpretation as its elementsp̂(Bj |Pr)
may be regarded the probability of “y is in classBj ” given the event in the premise has occurred (the
inputs assume the specified values), i. e. the posterior probability of classBj . Hence, forp̂(Bj |Pr) = 1
the output classBj can be predicted unambiguously by a rule with the premisePr . Therefore,p̂(Bj |Pr)
is the precision or hit rate of the rule “IFPr THENBj ”.

Thestatistical significanceof each rule is tested assumingp̂(Bj |Pr) andp̂(B̄j |Pr) for different r to
be probabilities of binomially distributed events. They are examined for significant differences[32]. This
test provides information on

• the significance of individual rules (testp̂(Bj |Pr) againstp̂(Bj |P̄r )) as well as,
• on the necessity of further generalization with a new premisePr,gen; Pr ⊂ Pr,gen(testp̂(Bj |Pr) against
p̂(Bj |(P̄r ∧ Pr,gen))) (see Section4.3).

Both tests take the number of examples covered by the respective premises into account. A rule is
rejected if one of these tests is not fulfilled. They delete especially rules with premises only covering

1 This means that the rule base is complete and the rules are mutually disjoint. If necessary, completeness and disjointness
have to be ensured by appropriate procedures (Section4.4and[38]).
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a few examples and rules with minor difference between premise and negated premise or premise and
generalized premise. The latter finally leads to simpler and more interpretable rules.

To ensure an optimal interpretability, the final rule base should only contain unweighted rules. Conse-
quently, the measure ofclearnessQcl

Qcl =
rmax∏
r=1

max
j
(p̂(Bj |Pr)) (5)

assesses the deviation from the optimal situation.
Finally, the relevance is measured by

Q =
(

1 − E

E0

)
︸ ︷︷ ︸

Qac

Q
�
cl, ��0 (6)

a compromise between classification accuracy (Qac) and clearness of the rules (Qcl) [23].The compromise
can be controlled using�. The larger� is, the more important is a conditional probability near one, at
� = 0 the clearness is ignored. Rule bases withQ = 1 (E = 0,Qac = 1,Qcl = 1) are optimal. For
Q = 0 (E = E0,Qac = 0), they are not relevant because their performance is not better than that of
the trivial modelE0. Rule bases withQ<0 (E>E0,Qac<0) contain false rules, thus decreasing the
classification accuracy.

In (2)–(4), p(Al,i), p(Bj ), p(Pr), p(Bj |Al,i) andp(Bj |Pr) are probabilities of ordinary (in the case
of an ordinary partition of the domain) or fuzzy events (in the case of a fuzzy partition).2 For ordinary
partitions3 appropriate estimates are frequencies calculated from the data set. For fuzzy events the
estimates

p̂(Al,i) =
N∑
k=1

�Al,i
(xl[k])/N, p̂(Bj ) =

N∑
k=1

�Bj (y[k])/N, p̂(Pr) =
N∑
k=1

�Pr (x[k])/N

and (4) for p̂(Bj |Pr) andp̂(Bj |Al,i) with Pr = Al,i , respectively, are used.4

From the conditional probabilitieŝp(Bj |Pr) in RB|P and the analogously estimated (conditional)
probabilities or likelihoods, e.g.̂p(Al,i |Bj) (frequency of the termAl,i when the class isBj ) or p̂(Pr |Cr)
(sensitivity of the rule—fraction of examples with class as inCr covered by its premise), additional
information for explaining rules can be extracted (Section5).

2 Because of the specifications concerning membership functions the fuzzy partitions are complete and disjoint.
3 If each term is assigned its�-cut with � = 0.5 instead of the fuzzy set, then an ordinary partition of the domain of the

respective feature results.
4 In order to estimate joint probabilities of two fuzzy events—here, of the premise and the conclusion, some authors, e.g.

[32,56], propose to use the product as t-norm. However, this choice, in a certain sense, assumes independence of both events
and introduces a bias in rule evaluation and search[25].
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4. Learning algorithm

4.1. Membership functions and labels

For the typically large number of features a manual specification of membership functions and labels is
not feasible. Hence, a large number of data-based approaches has been conceived from simple heuristics
(membership functions of equal width) to clustering and optimization-based methods[12,21]. However,
it is a common problem of most of these methods that they often produce membership functions that are
lacking interpretability and parameter values with an unreasonable precision.

The first problem can be tackled by incorporating restrictions on parameters (here:al,i for the trapezoidal
and triangular membership functions as described in Section2), the second by favoring reasonable rounded
values. Both methods can be included in an optimization-based method[37]. Its main objective is to
maximize a compromise between the entropy of the partition of the feature and the mutual information
between the feature and the output for a given number of membership functions. However, this method
requires a high computational effort due to the nonlinear optimization problem. For an interactive design
procedure this is unacceptable.

A computationally efficient approach to avoid nonlinear optimization was found to produce good
results in many applications. It aims at obtaining a uniform distribution of examples between linguistic
terms (related to maximum entropy of the partition) and interpretable parameters. For this purpose, the
learning data for each featurexl[1], . . . , xl[N ] are sorted in ascending order. From the sorted valuesml
valuesxsort

l [j ] are chosen such that each intervalxsort
l [j ]�xsort

l [k] < xsort
l [j+1] contains approximately

N/(ml − 1) values. The numberml of linguistic terms has to specified in advance and is a parameter of
the algorithm. Regarding interpretabilityml should be in the range from 5 to 9[41], however, the choice
is not very critical as forming disjunctions of linguistic terms in the pruning process effectively reduces
the number of terms.

The chosenxsort
l [j ] will be rounded in order to improve interpretability (rd: rounding operator):

al,i = rd(10pl,i xsort
l [j ])

10pl,i
with j = rd

(
1 + (i − 1)

N − 1

ml − 1

)
, i = 1, . . . , ml . (7)

Here,pl,i denotes an iteratively determined parameter specifying the number of significant decimal digits
of al,i . The initial value of alli is chosen with respect to the range ofxl

pl,i = −rd(log10(x
sort
l [N ] − xsort

l [1])− 0.5).

If (7) results in identical values for someal,i , then the respectivepl,i are increased by one until allal,i
have different values or a termination condition forpl,i is met.

If the number of different values forxsort
l is smaller thanml , then the feature is assumed to be a

categorical one and the values ofxsort
l are used as parametersal,i .

The labels of the linguistic termsAl,i are chosen with respect to the values of theal,i and the number
of termsml . Terms withal,i = 0 are labeled ZE (zero). The label of terms withal,i > 0 depends on
their number (1 term: POS, 2 terms: PS–PB, 3 terms PS–PM–PB, 4 terms PS–PM–PB–PVB, 5 terms
PVS–PS–PM–PB–PVB). Here, POS stands for positive, PVS for positive very small, PS for positive
small, PM for positive medium, PB for positive big and PVB for positive very big. For terms withal,i <0
labeling is analog (NEG-negative, NVS, NS, NM, NB, NVB). Hence, the labels like small, medium or big
are related to the distribution in the learning data set which parallels human usage. However, this method
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just like all data-driven methods cannot guarantee to result in intuitively understandable membership
functions and labels. In the presentation of rules the linguistic terms are therefore complemented by the
�-cuts (� = 0.5) (see Section4.5). Section5 gives an example illustrating the method.

4.2. Feature selection

Feature selection aims at finding a small subset of features with high-discriminating power and
acceptance by the user (expressed as relevance weights). As an additional feature selection takes place
implicitly in further stages of the algorithm, namely, in the induction of decision trees and rule prun-
ing, there is no strong need for finding the optimal subset in this stage. Instead, it is the task to discard
superfluous, strongly redundant or irrelevant features to speed up the search.

The relevance measure (1) only reflects the relevance and preference of individual features without
accounting for the redundancy between them. It could be generalized to measure the relevance of feature
combinations, but the estimate of normalized mutual information will be rather unreliable even in case
of a moderate number of features.

The applied feature-selection algorithm performs step-wise forward selection. This means that starting
from an empty set of selected features, the best feature according to (1) is selected in each step and
removed from the set of potential features. In addition, all features that are redundant to the selected one
are removed as well. Redundancy could be measured by mutual information or the magnitude of the
(linear) correlation coefficient. If the value of the redundancy measure exceeds a specified threshold the
feature is considered redundant. The algorithm is terminated, if the set of potential features is empty or
a specified maximum number of selected features is reached.

As an alternative, wrapper approaches (see e.g.[29]) evaluate features and feature sets by the perfor-
mance of the complete classifier. This may lead to better results—but the necessary computing time is
much higher in comparison to the chosen filter approach due to the design effort for the classifier. This is
not acceptable in interactive design for problems with some hundred or thousands of potential features
in real-world problems.

4.3. Rule search

In the first step, rule hypotheses are generated by inducing a decision tree. In the second step, these
rule hypotheses are generalized by different modifications of their premises. Finally, a subset is selected
from the generalized rules to build the rule base.

4.3.1. Generating rules from decision trees
A decision tree represents a multi-step decision process for classifying an object (an example) based on

the feature values. It consists of nodes (decision nodes or leaves) and branches. A decision node indicates
a classBj and contains a test on the value of a feature (xl = ?). A node without a test is called a leaf.
For each outcome of the test, a linguistic termAl,i of the tested feature, a branch starts from the decision
node. Fig.1 shows an example withs = 2 features andmy = 4 classes.

The induction algorithm employed here is similar to the popular ID3 algorithm[44] and several methods
for fuzzy decision tree induction[6,36,55]. In contrast to these methods, the feature relevance (1) is used
to choose features for decision nodes taking interpretability and discriminative power into account. For
the purpose of decision tree induction, the linguistic terms of each feature are assigned the�-cuts (� = 0.5)
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y = B1

x1 = ?
A11 A12 A13 A14 A15

y = B3 y = B1 y = B4y = B2

x2 = ?

y = B4

y = B3 y = B2

A21 A22

x1

x2

B3

B1B2

A11 A12 A13 A14 A15

A23

A22

A21

B4

Fig. 1. Example (left) and decision tree (right).

of their fuzzy sets, thus resulting in an ordinary partition of its domain. If necessary, the same has to be
done for the output.

Starting with the root node, the algorithm selects the most frequent classBj in theN examples and the
most relevant featurexl according to (1) from the feature set which is then removed from it. It creates
ml new nodes and splits the examples up intoml subsets according to the linguistic termsAl,i . For each
new node it repeats this procedure for theNr examples contained in the node, i. e. the feature relevance
(1) is calculated for theNr examples. A node becomes a leaf, if there are no more features in the feature
set with an estimated lower bound ofMl > 0 [40]. The algorithm terminates when all new nodes have
become a decision node or a leaf.

For each leaf a ruleRr is extracted from the decision tree, with its conclusionCr being obtained from
this leaf. Traversing the tree from the leaf to the root node, a partial premisePr l results from each node.
It consists of the featurexl and the linguistic termAl,i on the branch to the node. The decision tree in
Fig. 1 possesses six leaves and, hence, yields six rules.

Assuming noise-free data from a deterministic relationship between classes and qualitative feature
values, the algorithm produces a decision tree which classifies each example of the training set correctly.
In the case of noisy data and a relatively small number of examples, the probability of misclassifica-
tion of examples not contained in the training set may be substantial, i.e. the decision tree shows poor
generalization ability. Therefore, pruning methods exist, which generalize the fully developed decision
tree by taking back several splits. However, these methods cannot remedy non-optimal selections of fea-
tures in the first stages, thus often leading to many identical subtrees at lower levels. For this reason, it
is advantageous not to prune the decision tree, but the rules extracted from it (for a detailed discussion
see[45]).

In order to obtain a comprehensive set of rule hypotheses, several decision trees are generated. Using
this option, the user may define a compromise between a fast (only a single decision tree separating all
classes) and a broad search for candidate rules by the number of additional trees. In the multi-class case
withmy classes,my trees are generated to separate the classBj from the union of all other classes. Hence,
the leaves contain the classBj or its negationB̄j .Bj -leaves leading to rules according to Section2. Using
this strategy, the induction algorithm is not forced to find a compromise for separatingall classes with a
single tree. Consequently, extracted rule hypotheses tend to be simpler.
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x1

x2

B3

B1B2

A11 A12 A13 A14 A15

A23

A22

A21

B4

Fig. 2. Visualization of pruning possibilities for ruleR1 in Step 1.

In the two-class case, the trees are accomplished by the step-wise discarding of the most relevant feature
in the feature set.

Both types of additional trees may contribute to a better performance and simpler rules with higher
interpretability by finding additional candidate rules for the following steps.

4.3.2. Rule pruning
To improve the generalization ability, the rules are pruned using two kinds of modifications: (1) deleting

a partial premise and removing the respective feature from the premise and (2) adding a linguistic term
within a partial premise and forming a disjunctive combination. By restricting this extension to neigh-
boring terms only interpretable derived terms result. The first modification may correct a non-optimal
selection of a feature in upper nodes of the decision tree. The second one extends the scope of the rule
with respect to one feature.

Pruning is performed for each rule in a hill-climbing procedure. In each pruning step all rules derivable
using modifications (1) and (2) are generated, evaluated with the rule relevance measure (6) and compared
to the original rule. For the calculation ofE in (4) the matrix of premise activations�P is formed for
the rule premisePr and its complement̄Pr , the matrix�Y for conclusionCr = Bj , and its complement
C̄r = B̄j . The best statistically significant rule will be accepted, if it is rated higher than the original
one. The significance is measured against the negated premise and against all rules with a deleted partial
premisePr,gen (testp̂(Bj |Pr) againstp̂(Bj |(P̄r ∧ Pr,gen))) (see Section3). Pruning can lead to identical
rules from which all but one will be deleted.

This procedure is illustrated for the ruleR1 : IF x1 = A12 AND x2 = A21 THEN y = B3 (Fig. 2,
Table1, Step 0: Rule from decision tree). In the first step, five rules are derived, of which the one marked
with an asterisk with premisex2 = A21 obtains the best evaluation. This rule is accepted, as in Step 2 no
rule can be found with a better evaluation.

4.4. Building rule bases

Pruning leads to more general rules which have mostly simpler premises and are better interpretable.
However, the set of rules possibly contains very similar rules, i. e. rules with partially redundant premises.
In order to obtain a compact rule base, a subset of individually good rules that complement each other is
selected.
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Table 1
Premises and conclusions of the rules derived by admissible modifications of ruleR1

Step Pr Cr

0* x1 = A12 ∧ x2 = A21 B3

1 x1 = A12 B3
1* x2 = A21 B3
1 x1 = (A11 ∨ A12) ∧ x2 = A21 B3
1 x1 = (A12 ∨ A13) ∧ x2 = A21 B3
1 x1 = A12 ∨ x2 = (A21 ∨ A22) B3

2 x2 = (A21 ∨ A22) B3
2 1 B3

The rule selection algorithm performs a step-wise forward selection. It starts with an empty rule base
(rmax = 0) and an ELSE rule. The conclusion of the ELSE rule may be set by the user (to a pre-defined
class or an additional rejection class asB5 in Table2) or determined from the data (the most frequent
class in the examples not covered by other rules).

In subsequent steps, the best rule base withrmax rules is complemented by the candidate rule from
pruning maximizing the relevance measureQ (6) for the rule base. The resulting rule base now contains
rmax := rmax + 1 rules and the ELSE rule. For calculatingE in (4), �P is formed for the premises
of rmax rules under consideration and their joint complement

⋃rmax
r=1 Pr and �Y for all output classes

B1, . . . , Bmy .
5 The complement to the disjunction of all premises (corresponding to an ELSE rule)

ensures the completeness of the rule base (the sum of rule activations for each example equals one).
Furthermore, it has to be guaranteed that the premises are mutually disjoint[38].The rule search terminates
if no further rule significantly increasesQ.

All approaches to choose the conclusion of the ELSE rule have some advantages and disadvantages.
A rejection class as conclusion enforces the specification of all other classes by at least one rule. The use of
a (user-defined or automatically found) classBj may reduce the necessary number of rules. This may be
reasonable e.g. for fault-detection where the rules for different faults should be found with a user-defined
default rule “ELSE no fault”. A further application is the search for compact regions of classesBi �= Bj
in a widely spread classBj . Depending on this choice, different rule bases result (Table2).

4.5. Presentation of results

The primary result of the algorithm described above are fuzzy rules in the form given in Section2.
In addition, the information e.g. on the precision of rules gained during the generation may be very
valuable for the user when interpreting them. It is complemented by further information obtained ex post,
for example, on the rule sensitivity (recall). This information and the rules themselves are presented in a

5 Instead of estimatingRB|P in order to calculateQ, this matrix can also be fixed such that in each column corresponding to
a rule premise the element corresponding to the conclusion is set to one, the remaining to zero.
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Table 2
Two rule bases from the same data set as in Figs.1and2: 5+1 rules with rejection classB5 (left) and 3+1 rules with automatically
chosen classB3 for the ELSE rule (right)

IF THEN IF THEN

x1 = A12 ∧ x2 = A22 B2 x1 = A12 ∧ x2 = A22 B2
x1 = A13 B1 x1 = A13 B1
x1 = (A14 ∨ A15) B4 x1 = (A14 ∨ A15) B4
x2 = A21 B3
x1 = A11 B3
ELSE B5 ELSE B3

Table 3
Linguistic terms expressing frequencies or fractions

p̂ Linguistic term for Linguistic term for
all p̂ but p̂(Pr |Cr) p̂(Pr |Cr)

[0,0.025] Never None
(0.025,0.20] Rarely Few
(0.20,0.50] Sometimes Some
(0.50,0.80] Usually Many
(0.80,0.975] Mostly Most
(0.975,1.00] Always All

textual form based on the Generalized Constraint Language[57,58]. This section only presents the textual
frames and building blocks, for a detailed example the reader is referred to Section5.

The additional information regarding rule precision and sensitivity is contained in the values of
p̂(Cr |Pr) and p̂(Pr |Cr). These numeric values are converted into linguistic terms for the purpose of
presentation usingtext (p̂). Here, it is distinguished between terms expressing frequencies of occur-
rence and the fraction of examples for an output class covered by a premisep̂(Pr |Cr) (see Table3 and
[1,5,46]).

For the presentation of a ruleRr , a first text frame lists the features appearing in the premise with
their complete nametext (xl), a statement on their relative values in comparison to examples of other
classestext (comparison), their linguistic termstext (Al,i) andtext (BRr ), respectively, and the
frequency of occurrencetext (p̂(Al,i |Cr)):

The samples fortext (BRr) are characterized bytext (xl). This feature istext
(p̂(comparison)) text (comparison) than otherwise(text (p̂(Asort

l,1 |Cr)) text

(Asort
l,1 ) and. . . andtext (p̂(Al,msort

l
|Cr)) text (Asort

l,msort
l
)).

To improve readability the linguistic termsAl,i are sorted according to their frequenciesp̂(Al,i |Cr) in
decreasing order (Asort

l,i ) and termsAsort
l,msort

l +1
. . . Asort

l,ml
with p̂(Al,i |Cr) < 0.2 are discarded.
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The building block for comparisons consists oftext (comparison) with the terms ofgreater, smaller,
anddifferent. It provides statements on the values ofxl for classCr = Bj in comparison to the other
classes̄Bj . The analysis is based on conditional probabilities of terms as described in[33]. The frequency
of this comparison being true is expressed byp̂(comparison) and also presented as a termtext
(p̂(comparison)).

Furthermore, the meaning of linguistic terms of features is explained by providing the�-cut (� = 0.5)
of their membership functions. For the first and the last term, the building blockssmaller thanandgreater
than, for interior termsbetween. . . and. . . are used to express these intervals.

Text blocks for further features start withIn addition, the samples for. . . .
A second text frame presents the rule itself:

From this dependencies follows a rule to describetext (p̂(Pr |Cr)) cases oftext
(BRr). If text (Pr1) and· · · andtext (Prs) follows text (p̂(Cr |Pr)) text (BRr).

To shorten the partial premises terms combined by disjunction (first term, second term,... or last term)
are replaced byfirst termto last term, the statements on�-cuts are summarized by the�-cut corresponding
to the disjunction.

5. Application to diagnosis in Instrumented Gait Analysis

This section presents a complex example to demonstrate the potential of the methodology introduced.
The example is a problem from Instrumented Gait Analysis[43], where the task consists in finding a
characterization of patients with diplegic cerebral palsy (ICP) in comparison to healthy test persons in
terms of their gait patterns. This task is solved as a classification problem with four classes: ICP patients—
B1 (86 examples), test persons with medium walking paceB2, slow walking paceB3 and fast walking
paceB4 (20 examples in each class)[34–39]. From the recordings of a 3D video system time series of
several joint angles (pelvis, hip, knee, foot) in three different planes (sagittal, coronal, transverse) are
computed. Feature extraction from the time series results ins = 4620 features which are assigned a priori
relevance weights according to their category reflecting interpretability and measurement reliability. The
mean a priori preference for all features is�Ml,ap = 0.43. There are 16 features withMl,ap = 1.

The rule base generated by the algorithm described in Section4 (see Complete Design in Table4) with
� = 1, � = 10 contains six rules using eight features altogether. A tenfold cross-validation estimates a
mean classification error (MCE) of approx. 3.9%. The most important rule

R1: IF x298 = (PM ∨ PB∨ PVB) ∧ x540 = (PVS∨ PS∨ PM)
THEN Person = ICP patient

characterizes the gait pattern of ICP patients (Fig.3).
The parameters of the membership functions are found by the algorithm from Section4.1withmi = 5

for all features, illustrated for featurex540

xsort
540[j1, . . . , j5] = ( 0.66 1.58 2.61 3.46 5.28),

p= −rd(log10(5.28− 0.66)− 0.5) = 0,
a540,1...5 = ( 1 2 3 3 5)→ a540,1...5 = ( 1 2 2.6 3.5 5).
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Fig. 3. Most important rule to characterize the gait pattern of ICP patients in a 2D display (left) and membership functions of
featurex540 with histogram (right).

Such rounded parameters and automatically defined labels are a step ahead to solve the problem of
intuitively understandable membership functions and terms in data-driven design. The labels always
refer to relative statements for the distribution in the given training data set. A better interpretability
would require a manual design—which is not feasible for real-world problems with so many features.
All five terms have positive parameters which according to Section4.1are labeled PVS, PS, PM, PB and
PVB.

Their conditional probabilities given classB1 are

p̂(A540,1...5|B1) = ( 0.36 0.39 0.15 0.08 0.02). (8)

The conditional probabilities of premise and conclusion are

RB|P =
(
p̂(C1|P1) p̂(C1|P̄1)

p̂(C̄1|P1) p̂(C̄1|P̄1)

)
=

(
1.00 0.14
0.00 0.86

)
, (9)

RP |B =
(
p̂(P1|C1) p̂(P1|C̄1)

p̂(P̄1|C1) p̂(P̄1|C̄1)

)
=

(
0.85 0.02
0.15 0.98

)
. (10)

These values lead to the following interpretations: There are no misclassificationsp̂(C1|P1) = 1. The rule
covers 85% of the examples of ICP patients:p̂(P1|C1) = 0.85. Rule evaluation with (4–6) and� = 10
yields a value ofQ = 0.48 for the relevance measure (E = 4.3, E0 = 8.4,Qcl = 1.00).

The complete names of featurestext (xl) are generated from the name of the times series and the
feature type. With the building blocks expressing the probabilities in (8,9) and the respective values for
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Table 4
Comparison of different classifier concepts withsC : number of used features and their average a priori preference(�Ml,ap),
rmax: number of rules,�Pr l : average number of partial premises per rule, MCE: mean classification error in [%] for training
data set and for 10× 10 crossvalidation: mean value± standard deviation

Classifier sC rmax �Pr l MCE [%] MCE [%]
(�Ml,ap) Train 10× 10 CV

Complete design (CD) 8 (0.78) 6 2.0 0.7 3.9 ± 1.1
CD, MBF without (7) 7 (0.82) 7 1.9 2.7 6.2 ± 1.2
CD, only single DT with IP 5 (0.81) 5 2.2 2.7 9.2 ± 1.3
CD, noMl,ap 8 (0.58) 7 1.9 0.7 6.8 ± 2.6
CD, � = 10 in (1) 8 (0.86) 7 1.9 2.7 6.6 ± 2.2
CD, no rule base search 13 (0.78) 20 1.9 1.4 4.0 ± 1.6
DT, IP, noMl,ap 5 (0.50) 21 2.1 1.4 8.8 ± 2.6
DT, IP, withMl,ap 7 (0.83) 33 2.7 0.7 12.7 ± 1.7
DT, no IP, noMl,ap 6 (0.38) 25 2.3 0.0 12.8 ± 3.5
DT, no IP, withMl,ap 9 (0.94) 41 2.9 0.0 9.8 ± 1.5
RPART 3 (0.73) 4 2.2 4.8 7.5 ± 4.9
CART 3 (0.66) 4 2.0 2.7 10.2 ± 9.0
ML, sm = 8, sd = 2 8 (0.54) — — 2.0 3.6 ± 1.5

x298 the following textual description of ruleR1 is produced:

The samples for ICP patient are characterized by the range of motion of pelvis anterior–posterior
tilt during stride (x298). This feature is mostly bigger than otherwise (usually big (between 7 and
14.5) and sometimes medium (between 4 and 7) ). In addition, these samples can be described by
the maximum value of velocity of knee flexion–extension during stride (x540). It is usually smaller
than otherwise (sometimes very small (smaller than 1.5) and sometimes small (between 1.5 and
2.3)). From this dependencies follows a rule to describe most cases for ICP patient. If the range
of motion of pelvis anterior–posterior tilt during stride (x298) is medium to very big (more than 4)
and the maximum value of velocity of knee flexion–extension during stride (x540) is very small to
medium (smaller than 3.05) follows always ICP patient.

Analogously, the remaining rules can be presented in this automatically generated textual form. By this
means, the user is offered additional information, which is not comprehensible by IF–THEN rules as in
Section2.

Table4 compares different classifiers. The proposed complete design concept (CD) with all elements
to improve the interpretability is characterized by a good compromise between accuracy (MCE CV 3.9%)
and interpretability. It bases on 4 decision trees for the multi-class problem as proposed in Section4.3.

The same concept without the interpretability modification of membership functions (MBF) in (7) has
a reduced accuracy (MCE CV 6.2%). This result is counter-intuitive because a better accuracy might
be expected. A possible explanation is a lower stability of found MBF parameters in comparison to CD
with rounded parameters during crossvalidation. In addition, its MBF parameters are more difficult to
understand.
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A generation of only one single decision tree (DT) separating all classes simultaneously also leads to
a reduced accuracy (MCE CV 9.2%). The reason is a too small set of hypotheses for pruning and rule
base search.

If a concept uses a priori preferences of featuresMl,ap, the mean a priori preference of the used features
in the classifier is higher because the classifiers try to use similar features with higher user preferences
(e.g.�Ml,ap = 0.58 → 0.78 for CD). There is no clear accuracy difference between approaches with
and withoutMl,ap. Here, two opposite effects might interact: (1) a reduced accuracy withMl,ap due to
more interpretable, but less discriminative features, (2) an increased accuracy withMl,apdue to exploiting
user knowledge about more reliable features. The user can control the first trade-off by tuning� in (1).
As an example,� = 10 leads to a higher average a priori preference within the set of used features (e.g.
�Ml,ap = 0.78 → 0.86), but to a lower accuracy.

All DT algorithms use five membership functions per feature without (7). Implicit pruning (IP) means
that the development of new leaves is stopped if a statistical evaluation does not find features with
significant positive information gains. Approaches without IP are overfitted with bad classification errors.
All trees need many rules (21–41) to discriminate classes which is mainly caused by the five membership
functions per feature.

A CD stopped after pruning without a search for a rule base with cooperating rules has an acceptable
accuracy but a lower interpretability due to much more features and rules in comparison to the CD.

Other decision tree algorithms as RPART and CART[7] tend to oversimplified solutions resulting in
higher classification errors.

The maximum-likelihood classifier (ML; feature selection ofsm = 8 features by a multivariate analysis
of variances—MANOVA, dimension reduction tosd = 2 aggregated features by a discriminant analysis,
maximum likelihood classification with estimated parameters of Gaussian distributions for each class)
has the best accuracy due to a small number of unknown parameters and only limited deviations from
a Gaussian distribution in this problem. Nevertheless, it is hardly interpretable due to using probability
distributions in linear-transformed features spaces. In addition, it also prefers features with low-user
preferences.

Altogether, the interpretability modifications lead in the discussed problem to small rule bases with
only few rules, a small feature set with high a priori preferences and with understandable membership
functions—without any significant loss of classifier accuracy. As a consequence, they contribute to an
improved interpretability according to all aspects discussed in Section1.

6. Conclusion

Interpretability is the main advantage of fuzzy systems in applications like knowledge extraction from
data and decision support. A data-based design of fuzzy systems has to include measures to enhance
interpretability according to the initially stated criteria. The paper presents a method for an automatic
and complete design which makes little assumptions on a priori information besides the learning data
set. However, additional information, e.g. on the preference of features or their membership functions,
can be included in the design. Interpretability of the generated fuzzy system is obtained by structural
choices regarding the type of membership functions, rules and inference mechanism on the one hand,
and including interpretability criteria in the rule/rule base evaluation, on the other hand. Moreover, the
developed algorithm enables the user to control the trade-off between accuracy and interpretability. As



R. Mikut et al. / Fuzzy Sets and Systems 150 (2005) 179–197 195

a result, the learning algorithm produces relevant individual rules from which a rather small subset of
cooperating rules is selected for the rule base. To improve the acceptance of the method itself and the
results, rules and additional information are presented in a textual form. Experience gained in the field of
Instrumented Gait Analysis, from which the presented example is taken, is very promising.
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