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Abstract

Data-driven fuzzy modeling has been used in a wide variety of applications. However, in fuzzy rule-based
models acquired from numerical data, redundancy often exists in the form of redundant rules or similar fuzzy
sets. This results in unnecessary structural complexity and decreases the interpretability of the system. In this
paper, a rule-base self-extraction and simpli&cation method is proposed to establish interpretable fuzzy models
from numerical data. A fuzzy clustering technique associated with the proposed fuzzy partition validity index
is used to extract the initial fuzzy rule-base and &nd out the optimal number of fuzzy rules. To reduce the
complexity of fuzzy models while keeping good model accuracy, some approximate similarity measures are
presented and a parameter &ne-tuning mechanism is introduced to improve the accuracy of the simpli&ed
model. Using the proposed similarity measures, the redundant fuzzy rules are removed and similar fuzzy sets
are merged to create a common fuzzy set in the rule base. The simpli&ed rule base is computationally e8cient
and linguistically interpretable. The approach has been successfully applied to fuzzy models of non-linear
function approximation, dynamical system modeling and mechanical property prediction for hot-rolled steels.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Data-driven fuzzy modeling is &nding a growing number of signi&cant applications in a wide
variety of &elds ranging from pattern recognition, data mining, classi&cation, prediction, non-linear
system approximation, and process control [4,6,8–10,13,17,18,20,21]. Primary advantages of fuzzy
modeling include the facility for the explicit knowledge representation in the form of if-then rules, the
mechanism of human-like reasoning in linguistic terms, and the ability to approximate complicated
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non-linear functions with simpler models. However, the rule base automatically generated from data
may not be interpretable because redundancy in the form of similar fuzzy sets usually exists in data-
driven fuzzy models. This results in unnecessary complexity and poor transparency of the rule-based
model. To improve the interpretability of fuzzy models, several methods have been proposed. Some
of them focused on the tradeoG between numerical accuracy and linguistic interpretability [11,15,19].
In these methods, a formulation of some constraints is imposed in the optimization of the member-
ship functions to guarantee semantic integrity. The fuzzy rules are constructed within a framework
of linguistic integrity to guarantee its interpretability while maintaining good &tness of input=output
data. The main drawback of this kind of methods is the exponential growth of the rule base as
the number of inputs increases [19]. The others emphasize on the trade-oG between model ac-
curacy and simplicity [3,7,14,24]. These methods tried to simplify the acquired data-driven fuzzy
models to improve the interpretability while maintaining model accuracy. In practical applications,
the trade-oG between model accuracy and simplicity is a fundamental of fuzzy modelling, which
is also the focus of this paper. In recent years, several approaches to fuzzy model generation and
simpli&cation have been proposed. Chao and Chen [3] proposed a fuzzy rule-base simpli&cation
method based on similarity analysis. Some fuzzy similarity measures based on triangular member-
ship function were proposed to eliminate redundant fuzzy rules and combine similar input linguistic
terms. Setnes et al. [14] presented a rule-base simpli&cation approach using set-theoretic similar-
ity measures to reduce the number of fuzzy sets in the models. Yen and Wang [24] introduced
several orthogonal transformation-based methods to select a set of important fuzzy rules from a
given rule-base. In these methods, a pre-determined number of fuzzy rules is required to build ini-
tial fuzzy model. More recently, Jin [7] proposed a fuzzy modeling approach for high-dimensional
systems. A distance-based similarity measure was adopted to check the similarity of fuzzy sets to
remove the redundancy in the rule-base, and a regularized learning was introduced to improve the
interpretability of fuzzy models. However, the rule generation approach based on output extreme
proposed in [7] could generate a relatively large rule-base and may not result in an optimal model
structure. In this paper, a more general and eGective fuzzy rule-base extraction and simpli&cation
method is presented, which includes fuzzy clustering with partition validation, gradient-descent based
parameter optimization and approximate similarity analysis based rule-base simpli&cation. The num-
ber of fuzzy rules is determined automatically by the fuzzy clustering procedure associated with
the proposed partition validity index. By using the fuzzy similarity measure, we derive simple ap-
proximate equations for calculating the degree of similarity of two fuzzy sets, both with symmetric
membership functions. The approximate similarity measures for eliminating redundant fuzzy sets
are presented and applied to combine similar linguistic terms into a single linguistic term to re-
duce the complexity of the fuzzy models. Thus we attempt to produce a simple and interpretable
fuzzy inference system with satisfactory accuracy, which is more practical and useful in industrial
applications.

2. Generating fuzzy models from numerical data

Fuzzy modeling can be interpreted as a qualitative modeling scheme which describes system
behavior using fuzzy quantities [17], i.e. fuzzy sets or fuzzy numbers. Generally, the data-driven
fuzzy modeling problem can be formulated as follows:
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Given the n input=output patterns P(x; y) and the speci&ed model error �¿0, obtain the minimal
number p of fuzzy rules and optimal parameters, including membership function parameters 	 in
the antecedent part and linear weights w in the consequent part of the rules, for the fuzzy model
F(	;w; p) such that the error function E = ‖y − F‖ satis&es the inequality E(	;w)¡�.

Based on a collection of s-dimensional data points {P1;P2; : : : ;Pn}, a multi-input and single-output
(MISO) fuzzy model is represented as a collection of fuzzy rules in the following form:

Ri: IF x1 is Ai1 and x2 is Ai2 : : : and xs is Ais THEN yi = zi(x);

where x= (x1; x2; : : : ; xs)∈U1 × U2 × · · · × Us are linguistic variables, Aij are fuzzy sets of the
universes of discourse Uj ∈ R (j = 1; 2; : : : ; s), Ri represents the ith rule, i= 1; 2; : : : ; p, and yi ∈ V
is the output of the ith rule. Typically, zi(x) takes the following forms: singleton, i.e. zi = bi, which
can be represented as Mamdani model, or linear function, i.e. zi(x) = bi0 +

∑s
j=1 bijxj, which is

Takagi–Sugeno (TS) model. In this paper we are concerned with the identi&cation of TS models,
since a Mamdani model can be considered as a zero order TS model under certain conditions.

Fuzzy logic systems with center of average defuzzi&cation, product-inference-rule and singleton
fuzzi&cation are of the following form:

y =
p∑

i=1

zi


 s∏

j=1

uij(xj)



/

p∑
i=1

s∏
j=1

uij(xj) ; (1)

where uij(xj) denotes the membership function of xj belonging to the ith rule. Very commonly, a
radial basis function, especially the Gaussian function is chosen as the membership function, i.e.

uij(xj) = exp

(
−(xj − aij)2

�2
ij

)
; (2)

where aij and �ij are center and width of the jth membership function in the ith rule.
Thus, Eq. (1) can be rewritten as

y =
p∑

i=1

ziqi(x); (3)

where qi(x) =mi(x)=
∑p

i=1 mi(x), and mi(x) =
∏s

j=1 uij(xj) represents the matching degree of the
current input x to the ith fuzzy rule.

Our aim is to develop an automatic rule generating mechanism, without any assumption about
the structure of the data, which is capable of (1) generating a rule base automatically from numeric
data, (2) &nding the optimal number of the rules, and (3) simplifying the obtained fuzzy model to
enhance the model interpretability while maintaining satisfactory accuracy. It is noted that in the case
of rule extraction from data, an eGective data partition in input–output space can lead to reducing
the number of rules and thus improving the computational e8ciency and interpretability of the fuzzy
models. The above objectives can be achieved by incorporating fuzzy c-means (FCM) clustering
associated with a new partition validity index and the approximate similarity analysis.
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2.1. Rule-base self-extraction

It is generally acknowledged that classes or clusters of the data which have similar geometrical
location should be formed. Fuzzy clustering is a well recognized paradigm to generate the initial
fuzzy model. Numerous clustering algorithms have been developed. The most widely used algorithm
is the FCM due to its e8cacy and simplicity. However, the number c of clusters must be pre-
determined. The FCM algorithm partitions a collection of n data points (X = {x1; x2; : : : ; xn}) into c
fuzzy clusters such that the following objective function is minimized:

Jm =
n∑

k=1

c∑
i=1

um
ik(x)‖xk − Ci‖2; 1 ¡ m ¡ ∞; (4)

where m is a fuzzy exponent, Ci is the prototype of the ith cluster generated by fuzzy clustering,
uik ∈ [0; 1] is the membership degree of the kth data belonging to the ith cluster represented by Ci,
uik ∈U , U is a c × n fuzzy partition matrix which satis&es the constraints:

0 ¡
n∑

k=1

uik ¡ n for i = 1; 2; : : : ; c; and
c∑

i=1

uik = 1 for k = 1; 2; : : : ; n:

Cluster validity is the problem of &nding the best value for c subject to minimization of Jm. Since Jm
monotonically decreases with c, an eGective criterion for evaluating the partition quality is required.
Many cluster-validity criteria have been proposed to measure the eGectiveness of the clustering.
The &rst fuzzy cluster-validity criteria associated with FCM introduced by Bezdek are the partition
coe�cient (PC) and the partition entropy (PE) [1,2]. Their main advantage is their simplicity
but the main disadvantage is their monotonic tendency with c [12]. Fukayama and Sugno [5] and
Xie and Beni [23] introduced new fuzzy validity criteria for evaluating fuzzy c-partitions, which
are commonly used as fuzzy cluster validity measures. They combine, with a unique function, the
properties of the fuzzy membership degrees and the structure of the data. These criteria provide
useful tools for cluster validation, each of which has developed its own set of partially successful
validation schemes although they lose their ability to validate partitions from FCM for large m [12].
A good validity index must take into account both compactness and separation of clusters in its
partitioning. In this paper, a simple and eGective fuzzy partition measure is proposed as a cluster
validity criterion associated with the FCM algorithm, which is de&ned as follows:

Vp(U; c) =
1
n

n∑
k=1

max
i

(uik) − 1
K

c−1∑
i=1

c∑
j=i+1

[
1
n

n∑
k=1

min(uik ; ujk)

]
; where K =

c−1∑
i=1

i: (5)

It can be seen that the cluster validity measure Vp is composed of two terms. The &rst one reNects
the compactness within a cluster. The closer the kth pattern xk is to a fuzzy cluster centre, the closer
the maximum membership degrees maxi(uik) is to the value 1. Hence, the fuzzy set maxi(uik) is
considered as a good indicator of the clustering quality for each pattern xk . This quality indicates
how closely the objects are assigned to the fuzzy cluster centres. Thus, a large value of the &rst
item indicates that the data patterns are well classi&ed. On the other hand, the second term indicates
the separation between clusters. Here, the intersection of two fuzzy sets is used to evaluate a fuzzy
separation between clusters Ci and Cj. In fact, if xk is close to the fuzzy cluster centre of Ci,
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min(uik ; ujk) comes close to 0, and consequently the fuzzy sets Ui and Uj are clearly separated. On
the other hand, if min(uik ; ujk) is close to 1=c, xk belongs to all clusters with equal membership
degree and the fuzziest partition is obtained. The new validity Vp criterion combines information on
fuzzy compactness and separation. It tends to indicate a good cohesion within clusters and a small
overlap between pairs of clusters. Thus, the number of clusters c corresponding to the maximum
value of Vp indicates the optimal number of clusters. In contrast to the indexes PC ∈ [1=c; 1] and
PE ∈ [0; loga c], both lower and upper bound of Vp ∈ [0; 1] are independent of c, which overcomes
the main shortcoming of PC and PE. According to experimental results, the proposed validity index
Vp works very well in the range of m ∈ [1:5; 5], which is very usual in practice (m= 2 is so far the
most common choice). It is noted that the proposed index Vp is computationally simple and could
be used as an alternative in existing fuzzy partition validity criteria. A comparative study between
diGerent validity indices is given in Section 4.

The FCM algorithm attempts to classify the given set of data vectors into a certain number
of clusters by searching for local minima of Jm. The procedure of the fuzzy clustering algorithm
associated with the validity measure (5) is carried out in the product space of input–output variables
through an iterative optimization of Jm according to the following steps:
Step 1: Choose the maximum cluster number cmax (heuristically, cmax6

√
n), iteration limit T,

weighting exponent m, and termination criterion �¿0.
Step 2: With c= 2; 3; : : : ; cmax; initialize the position of cluster centres: V0 = (C10; C20; : : : ; Cc0);
Step 3: With the iteration number t = 1; 2; : : : ;T;

calculate uik;t = 1

/
c∑

j=1

(dik=djk)2=(m−1) ; (6)

where dik = ‖xk − Ci‖, i= 1; 2; : : : ; c; k = 1; 2; : : : ; n;

calculate Ci;t =
n∑

k=1

(uik;t)mxk

/
n∑

k=1

(uik;t)m : (7)

If ‖Vt − Vt−1‖¡�, go to next step, otherwise repeat step 3.
Step 4: Calculate Vp(U; c) by (5); if c¡cmax, repeat from Step 2. Otherwise, stop the program

and set the optimal cluster number c= cm, where cm meets the following condition:

Vp(U; cm) = max{Vp(U; c)}; c = 2; 3; : : : ; cmax:

After cluster validation, both the number of rules and the prototypes of the clusters Ci = (vi1; vi2; : : : ; vis;
vi; s+1), are obtained, where i= 1; 2; : : : ; c. Let ai = (ai1; ai2; : : : ; ais) = (vi1; vi2; : : : ; vis), zi = vi; s+1, then
the vector ai denotes the prototype of the ith fuzzy partition in the input space, and it can also
be viewed as the center values of Gaussian membership functions in the antecedent of the ith rule,
while zi is the prototype of the ith fuzzy partition in the output space, and denotes the fuzzy output
value in the consequent part of the ith rule.

Therefore, the rule-base which is composed of c fuzzy rules can be represented as

Ri: IF x1 is Ai1 and x2 is Ai2 : : : and xs is Ais THEN y is zi;
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where Ri denotes the ith rule, Aij is the fuzzy set de&ned by the Gaussian membership function; and
zi = bi or zi =

∑s
j=0 bijxj, is the ith rule output with respect to a Mamdani model or a TS model.

2.2. Parameter estimation

When an initial fuzzy model is constructed in the process of rule-base generation, a parameter
learning procedure is successively applied to obtain a more precise fuzzy model in the process of
parameter identi&cation. There are several methods for training the fuzzy model, that is, to learn
the optimal membership function parameters aij, �ij and linear weights bij. Here, we adopt the
gradient-descent-based approach to optimize the parameters aij, �ij and bij in combination within the
performance index of mean square error (MSE). Using gradient-descent algorithms, the parameter
learning algorithms can be derived as

Obij = &(ydk − yk)xjqi(x); (8)

Oaij = &(ydk − yk)
(xjk − aij)

�2
ij

(zi − yk)qi(x); (9)

O�ij = −&(ydk − yk)
(xjk − aij)2

�3
ij

(zi − yk)qi(x); (10)

where & is the learning rate, ydk , and yk are desired output and model output, respectively.

3. Approximate similarity measures

After parameter learning, the optimal fuzzy rule-base is not yet &nally constructed. The obtained
fuzzy model may exhibit redundancy in terms of highly overlapping membership functions. To ac-
quire an e8cient and transparent fuzzy model, elimination of redundancy and making the fuzzy
model as simple as possible is necessary. Some similarity measures have been introduced to sim-
plify fuzzy models [3,7,9,14]. Generally, there are two types of similarity analysis methods: fuzzy
set-theory based similarity measure and geometric graph based similarity measure, for computing the
similar degree of two fuzzy sets. The former calculates the similarity based on the size (or cardi-
nality) of the fuzzy sets, which is usually not easy and straightforward for non-linear membership
functions. Recently, a simple similarity measure based on triangular membership functions has been
proposed and used to calculate the similarity degree of two fuzzy sets with Gaussian membership
functions [3,9]. This section presents approximate fuzzy similarity measures which can be used to
any symmetric fuzzy sets.

Assume A and B are two fuzzy sets, the similarity of fuzzy sets A and B being de&ned as

SAB =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A| + |B| − |A ∩ B| ; (11)

where ∩ and ∪ denote intersection and union of A and B, respectively. | · | denotes the size of a
fuzzy set. Clearly, computation of two fuzzy sets requires calculating the size of intersection of the
two fuzzy sets. For Gaussian and bell-shaped functions, it is complex to compute the size of the
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Fig. 1. Membership function approximation.

intersection because of the non-linear shape of the functions. To make the computation of (11) feasi-
ble, Chao et al. [3] and Lin and Lee [9] proposed approximate similarity analysis approaches, which
use triangular functions as the tent function to calculate the similarity of two Gaussian membership
functions. However, it is di8cult to use a triangular function to approximate Generalized Gaussian
or bell-shaped functions, which are commonly used in fuzzy systems. It is found that a trapezoidal
function can approximate a radial basis function (including Gaussian and bell-shaped functions) very
well, as shown in Fig. 1, where a, b and d, e denote the boundary points of a trapezoid, and c
denotes the central point. Also, a triangular MF can be viewed as the special case of a trapezoidal
MF when its top width wt = 0, i.e. d= e= c. Hence, we can use a trapezoidal function as the tent
function to calculate similarity of two symmetric membership functions, including triangular, Gaus-
sian, Generalized Gaussian, and bell-shaped functions. The problem is how to generate a trapezoidal
function that can subsequently approximate any radial basis function well.

3.1. Generating trapezoidal membership functions from radial basis functions

To determine a trapezoidal function, T (x) = max{min{(x−a)=(d−a); 1; (b−x)=(b−e)}; 0}, which
can approximate a generalized Gaussian function G(x) = exp{−[|x − c|=�]m}, or more generally, &t
any symmetric membership functions, we introduce the --cut of a fuzzy set de&ned as follows:

The --cut of a fuzzy set A, denoted as A-, is the crisp set comprised of all the elements x of a
universe of discourse X for which the membership function of A is greater than or equal to -, i.e.

A- = {x ∈ X | .(x) ¿ -}; (12)

where - is a parameter in the range 0¡-61; the vertical bar “|” is shorthand for “such that”. So,
the --cut (or --level) set of a fuzzy set A is a closed interval of R. Assume a normal fuzzy set A
is represented by a generalized Gaussian membership function G(x), which can be approximated by
a trapezoidal membership function T (x), as shown in Fig. 2. To identify the parameters a; b; d; e in
T (x), on the basis of G(x), we introduce two special --cut sets of A, the bottom --cut A-0 and the
top --cut A-1 , where -0 = 0.05, -1 = 0:95, as shown in Fig. 2. Thus, the parameters a; b; d; e can be
decided on the basis of G(x) via the --cuts cut A-0 and A-1 , which are represented as

A-0 = [a; b]; A-1 = [d; e]:
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Once the boundary points a, b, d, and e are obtained, the top width wt and bottom width wb can
be derived as: wt = (e − d)=2, wb = (b− a)=2. The centre of the trapezoidal function is given by

c = (d + e)=2 or c = (a + b)=2:

3.2. Approximate similarity measures for fuzzy sets

Based on trapezoidal membership functions, the similarity measure of two fuzzy sets can be
considered for four diGerent cases. The fuzzy sets are denoted by A1 and A2, with the corresponding
centres c1 and c2, and boundary points ai, bi, di, ei. (i= 1; 2), where ci = (ei + di)=2.

Assume c2¿c1 in cases (i)–(iv).
Case (i) (a1¡a2, b1¿b2, & d16d2, e26e1). In this case, the fuzzy set A2 is included in A1, i.e.

A2 ⊂A1, as shown in Fig. 3. The similarity of fuzzy sets A1 and A2 can be calculated simply by

S =
|A2|
|A1| =

w2

w1
; i:e: S =

b2 − a2 + e2 − d2

b1 − a1 + e1 − d1
; (13)

where w1 =wb1 + wt1, w2 =wb2 + wt2.
From (13) we can see that the degree of similarity of A1 and A2 is just the ratio of w2 to w1.
Case (ii) (|wb1 − wb2|6c1 − c26wb1 + wb2). In this case, there are two diGerent overlapping

situations, as shown in Figs. 4(a) and (b). In situation (a), there is no top width overlap between
A1 and A2. The similarity of A1 and A2 can be derived as

S = h
/(

w1 + w2

b1 − a2
− h
)

; (14)

where

h =
b1 − a2

b1 − e1 + b2 − e2
:
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In case (b), there is top width overlap between A1 and A2. The similarity of A1 and A2 can be easily
obtained as follows:

S =
e1 − d2 + b1 − a2

b2 − a1 + e2 − d1
: (15)

Case (iii) (c1 − c26|wb1 − wb2|). Again, this in case, we should consider two diGerent overlap
cases as shown in Fig. 5(a) and (b). We can easily derive

h1 =
b1 − a2

(b1 − e1) + (b2 − e2)
:

For wb1¿wb2,

h2 =
b1 − b2

(b1 − e1) − (b2 − e2)
;

where l1 = h1(b2 − e2); l2 = h2(b2 − e2); l3 = (b2 − a2) − (l1 + l2).
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Fig. 5. Similarity of two fuzzy sets for case 3.

For wb16wb2,

h2 =
a2 − a1

(b1 − e1) − (b2 − e2)
;

where, l1 = h1(b1 − e1); l2 = h2(b1 − e1); l3 = (b1 − a1) − (l1 + l2); h3 = h1 + h2.
The similarity of A1 and A2 is given as follows:

S =
l1h1 + l2h2 + l3h3

2(w1 + w2) − (l1h1 + l2h2 + l3h3)
: (16)

Overlap: c1 − c2¡ =wt1 + wt2
For wb1¿wb2:

h =
b1 − b2

(b1 − e1) − (b2 − e2)
; l1 = h(b2 − e2); l2 = b2 − e1 − l1;

l3 = e1 − d2; l4 = b2 − e2:

For wb16wb2:

h =
a2 − a1

(b1 − e1) − (b2 − e2)
; l1 = h(b1 − e1); l2 = d2 − a1 − l1;

l3 = e2 − d1; l4 = b1 − e1:

Thus we obtain H = l1h + l2(h + 1) + 2l3 + l4, and

S =
H

2(w1 + w2) − H
: (17)

Case (iv) (b16a2). In this case, there is no intersection between Membership functions of A1 and
A2, as shown in Fig. 6, thus |A1 ∩A2|= 0, and S(A1; A2) = 0.
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4. Simpli�cation of fuzzy models

Based on the obtained fuzzy rule-base and the approximate similarity measures, a fuzzy model
simpli&cation approach for minimizing the number of fuzzy sets on the universe of discourses of
each input variable and fuzzy rules is presented. The procedure of model simpli&cation is shown in
Fig. 7. It can be seen that the model simpli&cation procedure consists of similarity-analysis-based
fuzzy sets pruning and rule reduction. The implementation of the model simpli&cation procedure is
presented in the following subsections.

4.1. Reducing the number of fuzzy sets for each input variable

(1) Redundant fuzzy sets removing. For each fuzzy set Aij calculate the similarity S(Aij; Uj),
where .Uj(xj) = 1, ∀xj ∈Uj.

If S(Aij; Uj)¿2r , then remove Aij from the antecedent of rule Ri; where 2r ∈ (0; 1) is the threshold
for removing fuzzy sets similar to the universal set. Usually, we set 2r = 0:9.

(2) Similar fuzzy sets combination. We can use diGerent fuzzy similarity measures to check
the degree of similarity of two fuzzy sets Aij and Akj in diGerent cases. For symmetric continuous
membership functions, the similarity between the fuzzy sets can be calculated by Eqs. (13)–(17).
Otherwise, calculate the similarity by

S(Aij; Akj) =
∑L

l=1 min{uij(xjl); ukj(xjl)}∑L
l=1 max{uij(xjl); ukj(xjl)}

; j = 1; : : : ; s; i; k = 1; : : : ; c; i �= k; (18)

where L is the number of sampling data. If S(Aij; Akj)¿2m, then merge the two fuzzy sets Aij, Akj

into one new fuzzy set Apj, where 2m ∈ (0; 1) is the threshold for merging fuzzy sets that are similar
to one another. The center and the width of the new fuzzy set Apj can be obtained simply by average
values of the fuzzy sets Aij; Akj, i.e. cpj = (cij + ckj)=2, wpj = (wij +wkj)=2. It should be pointed out
that the threshold 2m inNuence the model performance signi&cantly. Smaller 2m results in more sets
merge thus generates simpler fuzzy model, but usually lower model accuracy. We suggest 2m = 0:6
–0.85. It is important to keep balance between model simplicity and accuracy.
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Fig. 7. Schematic diagram of fuzzy model simpli&cation.

4.2. Reducing the number of fuzzy rules

If the redundancy in the model is high, removing the redundant rules with little inNuence and
combining similar fuzzy rules into an equivalent fuzzy rule could result in further simpli&cation of
the fuzzy models. The former is referred to as rule elimination; the latter as rule combination.

(1) Rule elimination. If a fuzzy membership function is always near zero over its own universe
of discourse, i.e. .ji(xi)→ 0 for xi ∈Ui, then remove the rule with this membership function because
the output of this rule is always near zero.

(2) Rule combination. To decide whether two fuzzy rules are similar enough for combination,
we only need to evaluate the similarity of antecedent parts of the rules. Two fuzzy rules with very
similar antecedents but diGerent consequents usually indicate that the two rules conNict each other.
Therefore, we should either combine those rules into one new rule or delete one of them.

To calculate the degree of similarity of the antecedent of two fuzzy rules, we should check the
similarity degree of every fuzzy set pair. With the jth fuzzy rule, the corresponding preconditions
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are Aj1; Aj2; : : : ; Ajs. Similarly, the corresponding antecedent of the kth rule are Ak1; Ak2; : : : ; Aks. Thus,
the similarity measure of the antecedent can be characterized as follows:

Sa(Aj; Ak) = min
i
{S(Aji; Aki)}; i = 1; 2; : : : ; s:

Once Sa(Aj; Ak) reaches a reference value 5a, then all of these fuzzy set pairs are considered to
be very similar. Thus, the two rules can be combined into one new fuzzy rule Rnew. The an-
tecedent of Rnew can be directly obtained by using the combination methods of fuzzy sets presented
in the previous subsection. On the other hand, the consequent of Rnew can be simply chosen as
znew = (zj;+zk)=2.

4.3. Parameter 9ne-tuning

After similarity analysis and rule-base pruning, the obtained model is structurally simpler and
interpretably more tractable. However, this model is less accurate than the originally generated model.
To improve the accuracy of the simpli&ed model, a parameter &ne-tuning procedure is necessary.
In this work, we have introduced a parameter &ne-tuning mechanism for the simpli&ed fuzzy model
using the same gradient-descent algorithms presented in Eqs. (8)–(10). Through &ne-tuning, the loss
of accuracy of the simpli&ed model can be reduced to a minimum.

5. Illustrative examples

In order to demonstrate the validity of our method, diGerent kinds of non-linear system modeling
examples are presented in this section. These examples cover the range of fuzzy clustering, non-
linear function approximation, dynamical system identi&cation and mechanical property prediction
for hot rolled steels.

5.1. Comparative study of di:erent cluster validity indices

To demonstrate the eGectiveness of the proposed clustering validity measure, we compared the
clustering performance associated with diGerent validity criteria to the proposed clustering approach.
To test the performance of diGerent validity criteria, 400 data points consisting of four Gaussian
clusters with 100 points per cluster, were generated as shown in Fig. 8. Five validity indexes: Partition
Entropy PE, Partition Coe8cient PC, Xie-Beni validity index VXB, Fukayama–Sugeno index VFS
and the proposed validity index Vp were used to partition the given data set. Table 1 displays the
validation results of the &ve cluster validity indexes for c= 2–10 with diGerent values of the fuzzy
exponent m, which is considered to inNuence the validation. The highlighted cell values in the table
refer to the optima detected for the corresponding indexes. It can be seen that all indexes point to
the correct choice c= 4 when m= 2. As the value of m increased to 5, only the proposed index Vp
selected the correct number of clusters while all others failed. When the value of m was decreased
to 1.4, PC and VFS were out of working order. With the value of m= 1:2, all validity measures
lost their ability to validate the clusters. Fig. 9 shows the four Gaussian clusters contaminated by
200 randomly distributed noise data. The cluster validation results for the &ve validity indexes are
listed in Table 2. It is seen that all validity indexes except the proposed validity index Vp, failed to
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Fig. 8. Four Gaussian clusters with 100 points per cluster.

&nd the correct number c= 4 when much noise is present in the data. It is clear that the proposed
validity measure is more robust to random noise.

5.2. Function approximation

In this example, the fuzzy model was used to approximate the following two input-single output
non-linear function, which is taken from [4,8,17].

y = (1 + x−2
1 + x−1:5

2 )2: (19)

The input data set consists of 100 randomly generated data points (x1; x2) in the range of 16x165
and 16x265. 50 data were used for training and the remaining 50 data for model testing. Using the
proposed rule-base generation procedure, a 4-rule TSK fuzzy model was created and the correspond-
ing parameters were trained using Eqs. (8)–(10). After parameter training, the MSE of the acquired
model for testing was 0.0043. The membership functions of the input variables are displayed in
Fig. 10(a). Obviously, there exist some highly overlapping fuzzy sets for both input variables.
Using the approximate similarity analysis, the fuzzy sets with high similarity were merged and the
simpli&ed 4-rule model with 5 fuzzy terms is shown in Fig. 10(b). After parameter &ne-tuning,
the MSE of the &nal model for testing data was 0.0078. The model response surface is shown in
Fig. 11. In addition to merging similar fuzzy sets, the 4-rule initial fuzzy model can be simpli&ed to
a 3-rule model by combining two similar rules with smaller threshold. After parameter re-tuning, the
membership functions of the simpli&ed 3-rule fuzzy model are shown in Fig. 10(c). From Fig. 10(a),
we can also see that a fuzzy membership function of x1 is always very small over its own universe
of discourse. Thus, the initial 4-rule fuzzy model can be simpli&ed further to a 2-rule fuzzy model
(as show in Fig. 10(d)) by using both rule elimination and rule combination approaches presented in
Section 4. The performance of the simpli&ed models and the comparison with models developed in
[4,8,17] are displayed in Table 3. It can be seen that the proposed fuzzy models not only improved
its interpretability but also increased the model accuracy. It should be pointed out that the proposed
fuzzy modelling approach can create fuzzy models with diGerent degree of complexity.
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Table 1
Comparison of clustering results for diGerent partition validity (without noise data)

Indices PE PC VXB VFS Vp

m= 1:2
c= 2 0.0065 0.9972 0.2549 −0:6381 0.9963
c= 3 0.0180 0.9918 0.3402 −0:9667 0.9937
c= 4 0.0510 0.9717 1.0283 −1:1953 0.9782
c= 5 0.0475 0.9726 0.1840 −1:5495 0.9793
c= 6 0.0859 0.9508 0.3650 −1:5429 0.9648
c= 7 0.1138 0.9340 0.3270 −1:5492 0.9527
c= 8 0.1064 0.9402 0.2824 −1:5740 0.9591
c= 9 0.1380 0.9209 0.2294 −1:5903 0.9443
c= 10 0.1192 0.9342 0.1589 −1:6040 0.9543

m= 1:4
c= 2 0.0331 0.9880 0.2663 −0:6130 0.9877
c= 3 0.0602 0.9745 0.3208 −0:9795 0.9804
c= 4 0.0276 0.9869 0.0819 −1:5845 0.9909
c= 5 0.0741 0.9596 0.1788 −1:5847 0.9717
c= 6 0.0910 0.9512 0.1788 −1:5923 0.9648
c= 7 0.1566 0.9113 0.2967 −1:5617 0.9364
c= 8 0.2046 0.8826 0.2409 −1:5617 0.9177
c= 9 0.2131 0.8815 0.1537 −1:5813 0.9160
c= 10 0.2444 0.8655 0.1720 −1:5699 0.9085

m= 2
c= 2 0.3102 0.8304 0.2397 −0:4514 0.8059
c= 3 0.3387 0.8328 0.1457 −1:0479 0.8595
c= 4 0.3021 0.8584 0.0702 −1:3953 0.8965
c= 5 0.4388 0.7892 0.1606 −1:2925 0.8438
c= 6 0.5808 0.7109 0.1845 −1:1911 0.7813
c= 7 0.6565 0.6861 0.1416 −1:1437 0.7672
c= 8 0.7473 0.6421 0.1502 −1:0941 0.7329
c= 9 0.7838 0.6313 0.1310 −1:0747 0.7273
c= 10 0.8462 0.6110 0.1005 −1:0439 0.7151

m= 5
c= 2 0.6931 0.5000 3.2997 0.1106 0.0045
c= 3 0.9931 0.4083 0.0109 −0:0698 0.3129
c= 4 1.2361 0.3364 0.0035 −0:0582 0.3228
c= 5 1.5690 0.2164 0.0461 −0:0006 0.1095
c= 6 1.7859 0.1687 0.0262 0.0012 0.0416
c= 7 1.9340 0.1465 0.0061 0.0005 0.0488
c= 8 2.0744 0.1263 0.0128 0.0004 0.0305
c= 9 2.1913 0.1125 0.0033 0.0002 0.0309
c= 10 2.2913 0.1024 0.0054 0.0001 0.0351
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Fig. 9. Four Gaussian clusters contaminated with 200 noise points.

Table 2
Comparison of clustering results for diGerent partition validity (with 200 noise data)

m= 2 PE PC VXB VFS Vp

c= 2 0.3649 0.7789 0.4071 −0:0207 0.7106
c= 3 0.4946 0.7328 0.2965 −0:6238 0.7446
c= 4 0.5340 0.7314 0.2031 −1:0028 0.7713
c= 5 0.6726 0.6703 0.3471 −0:9558 0.7270
c= 6 0.7145 0.6663 0.2595 −1:0800 0.7364
c= 7 0.8067 0.6353 0.1794 −1:0444 0.7203
c= 8 0.9224 0.5823 0.3007 −0:9625 0.6769
c= 9 0.9551 0.5750 0.3377 −1:0344 0.6731
c= 10 1.0358 0.5409 0.3010 −0:9696 0.6448

5.3. Dynamical system identi9cation

The non-linear system studied in [16,22,25] is taken as the next example:

y(k) = g(y(k − 1); y(k − 2)) + u(k); (20)

where

g(y(k − 1); y(k − 2)) =
y(k − 1)y(k − 2)(y(k − 1) − 0:5)

1 + y2(k − 1) + y2(k − 2)
: (21)

The system output depends on both its past values and the current input. The goal is to approximate
the non-linear component g(y(k − 1); y(k − 2)) of the system with a fuzzy model. As in [16], 400
simulated data points were generated from the system model (21). Starting from the equilibrium
state (0; 0), 200 samples of training data were obtained with a random input signal u(k) uniformly
distributed in [−1:5; 1:5], followed by 200 samples of testing data obtained using a sinusoidal input
signal u(k) = sin(27k=25).
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Fig. 10. Membership function distribution of Example B: (a) membership functions of the initial fuzzy model;
(b) membership functions of the simpli&ed 4-rule model; (c) membership functions of the simpli&ed 3-rule model; (d)
membership functions of the simpli&ed 2-rule model.

Fig. 11. Non-linear function approximation: (a) actual system output; (b) the output of the fuzzy model.
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Table 3
Comparison of model performance for the non-linear function approximation

Ref. No. of rules No. of fuzzy sets MSE

[17] 6 (initial) 12 0.318
6 (&nal) 12 0.079

[4] 5 (initial) 10 0.314
5 (&nal) 10 0.115

[8] 3 (&nal) 6 0.0197

This paper 4 (initial) 8 0.0043
4 (simpli&ed) 5 0.0078
3 (simpli&ed) 5 0.0191
2 (simpli&ed) 4 0.0756

In [25] several information criteria were applied to select rules from an initial model with 36 rules
in order to obtain an optimal fuzzy model. The initial rule base was obtained by partitioning each
of the two inputs y(k − 1) and y(k − 2) by six equidistant fuzzy sets. The rules were selected by
their importance in the rule base determined by the rule reduction approach based on singular value
decomposition. 1000 data were used for model training and 200 data used for testing. The obtained
&nal optimized model consisted of 24 rules with 12 fuzzy sets.

In [22] an architecture of dynamic fuzzy neural networks (D-FNN) implementing TSK fuzzy
systems was proposed. A hierarchical on-line self-organizing learning was used to generate rule-
base. Fuzzy rules can be recruited or deleted dynamically according to their signi&cance to the
system’s performance. The obtained &nal model consisted of 6 rules with 12 fuzzy sets. No fuzzy
sets simpli&cation was carried out in [22].

In [16] a Genetic Algorithm (GA)-based fuzzy modeling approach was proposed. An initial fuzzy
model with 5 rules was generated by fuzzy clustering, and simpli&ed by the set-theory based similar-
ity measure. The &nal optimized model with 5 rules and 10 fuzzy sets was obtained by using genetic
algorithms. A further simpli&ed and optimized 4-rule TSK model also showed good performance.

Using the proposed approach in this paper, a 5-rule fuzzy model with 5 fuzzy sets for each input
variable was generated. Fig. 12(a) illustrates the distribution of the membership functions on the
y(k − 1) and y(k − 2) dimensions. It is easy to see that some membership functions have high
similarity degree and can be merged together. After rule-base simpli&cation and parameter &ne-
tuning, a simpli&ed model with only 6 membership functions (3 fuzzy sets for y(k − 1) and 3
fuzzy sets for y(k − 2), respectively) was obtained, as shown in Fig. 12(b). In research of further
simpli&cation of the model, we reduced the merging threshold and generated a reduced 4-rule model
with 5 fuzzy sets. After &ne-training, the model accuracy kept in an acceptable level, MSE = 1:1e−3

and 3:7e−4 for training and testing, respectively. We compared the performances of the proposed
fuzzy model to those in the literatures. The comparative results are listed in Table 4. It can be
seen that compared to the fuzzy models in the literatures, the proposed models keep good balance
between numerical accuracy and model simplicity.
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Fig. 12. The distribution of membership functions on the y(k − 1) and y(k − 2): (a) original fuzzy model; (b) simpli&ed
fuzzy model.

Table 4
Comparative results of diGerent fuzzy models for dynamical system modeling

Ref. No. of rules No. of fuzzy sets MSE train MSE test

[25] 36 (initial) 12 1:9e−6 2:9e−3

24 (&nal) 12 2:0e−6 6:4e−4

[22] 6 (&nal) 12 —a 8:0e−4

[16] 5 (initial) 10 5:8e−3 2:5e−3

5 (&nal) 8 7:5e−4 3:5e−4

4 (&nal) 4 1:2e−3 4:7e−4

This paper 5 (initial) 10 1:9e−4 3:8e−4

5 (&nal) 6 1:0e−4 3:2e−4

4 (&nal) 5 1:1e−3 3:7e−4

aThe result is not listed in the original paper.

5.4. Mechanical property prediction for hot rolled steels

The problem in modeling the properties of hot-rolled metal materials can be broadly stated as:
given a certain material which undergoes a speci&ed set of manufacturing processes, what are the
&nal properties of this material? Typical &nal mechanical properties in which we are interested
are tensile strength, yield stress, elongation, etc. By using the proposed fuzzy modeling approach,
we have developed composition-microstructure-property models for a wide range of hot-rolled steels.
601 industrial data from carbon-manganese steels and niobium microalloyed steels have been used
to train and test the fuzzy model, which relates the chemical compositions and microstructure to
the mechanical properties. Six inputs (carbon, silicon, manganese, nitrogen and niobium contents
and ferrite grain size D−1=2) were selected from the 14 possible input variables. To determine the
number of fuzzy rules, the proposed fuzzy clustering method was used to &nd out the data structure
and the optimal number of clusters. DiGerent cluster validity measures have been used on this data
set and the corresponding clustering results are listed in Table 5. It can be seen that PE and PC
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Table 5
Comparison of clustering performance for diGerent validity criteria (601 industrial data)

m= 2 PE PC VXB VFS Vp

c= 2 0.2702 0.8374 8.9513 −980:6 0.7120
c= 3 0.4119 0.7704 6.6778 −1804:8 0.7447
c= 4 0.4607 0.7593 4.6909 −2088:2 0.7803
c= 5 0.5468 0.7263 3.6978 −2136:2 0.7650
c= 6 0.5516 0.7304 3.3155 −2223:8 0.7890
c= 7 0.6048 0.7118 3.0335 −2229:7 0.7826
c= 8 0.6150 0.7099 2.6182 −2209:7 0.7842
c= 9 0.6399 0.7085 2.2865 −2212:0 0.7817
c= 10 0.6526 0.6996 2.4062 −2235:6 0.7820
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Fig. 13. Membership functions of the property prediction model.

monotonically tend to the minimum number of clusters, i.e. cmin = 2, while VXB and VFS are close
to the maximum number cmax. Only the proposed index Vp selected c= 6, which is consistent with
expert recommendation and experimental results. It is shown that the Vp is more reliable on high-
dimensional data.

After rule-base generation and parameter learning, a 6-rule fuzzy model of the Mamdani type
was obtained. The distribution of the membership functions for each input variable is represented
in Fig. 13(a). Using this model, we obtained the standard deviation (SD) of the prediction error:
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Fig. 14. Final fuzzy model for Nb-alloy steels.

SD= 15:16 and 19.74 for training (301 data) and testing (300 data), respectively. Again, we can
see some similar fuzzy sets existing in the generated model as shown in Fig. 13(a). Obviously,
this model can be further simpli&ed to a more transparent model displayed in Fig. 13(b) via the
approximate similarity measures proposed in the previous sections. After &ne-tuning, the &nal fuzzy
model with SD= 16:94 and 21.65 (for training and model testing, respectively) was obtained as
shown in Fig. 14. From this fuzzy model, we can use the linguistic hedges approach [5] to derive
the corresponding interpretable linguistic model as follows:

R1: If C is quite large and Si is more or less medium and Mn is more or less large and N is
slightly small and Nb is slightly small and D−1=2 is slightly small, Then TS is large.

R2: If C is quite large and Si is medium and Mn is medium and N is slightly small and Nb is
more or less small and D−1=2 is slightly large, Then TS is quite large.

R3: If C is more or less medium and Si is more or less medium and Mn is medium and N is
slightly small and Nb is small and D−1=2 is slightly small, Then TS is medium.

R4: If C is more or less medium and Si is more or less medium and Mn is medium and N is more
or less medium and Nb is small and D−1=2 is slightly small, Then TS is quite large.

R5: If C is more or less medium and Si is more or less medium and Mn is medium and N is
slightly small and Nb is more or less small and D−1=2 is slightly small, Then TS is medium.

R6: If C is more or less small and Si is more or less small and Mn is medium and N is slightly
small and Nb is more or less small and D−1=2 is more or less small, Then TS is small.
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It is worth noting that the obtained fuzzy rule-based model reveals relationships between compo-
sition-microstructure and tensile strength, which are consistent with metallurgical knowledge. The
performances of the &nal simpli&ed model is shown in Fig. 15. Thus it has been shown that the
simpli&ed fuzzy model has a much simpler structure and better interpretability with only slight loss
of accuracy.

6. Conclusions

In this paper, a data-driven fuzzy modeling and simpli&cation approach is proposed. Using this
approach, an interpretable fuzzy rule-based model can be generated and optimized automatically from
the training data. Due to its multi-paradigm nature, including fuzzy clustering, partition validation,
approximate similarity analysis and parameter learning, the obtained model not only provides an
interpretable and simple model structure but also maintains good model accuracy. Thus we obtain a
method for &nding a good balance between model accuracy and model transparency. The simpli&ed
rule base is computationally e8cient and linguistically tractable, from which it may also reveal a
useful qualitative description of the system that generated the data. Such a description can be exam-
ined and possibly combined with the knowledge of experts, helping to understand the system and
validate the model at the same time. Experimental validation shows that the produced rule-based
fuzzy models have satisfactory prediction accuracy and good interpretation features. Clearly, the
proposed fuzzy modeling approach provides a simple and eGective framework for system identi&-
cation and prediction. Further improvement in the model optimization and incorporation of a priori
physically-based linguistic information into the modeling procedure would be bene&cial.
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