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Designing Fuzzy Inference Systems from Data:
An Interpretability-Oriented Review

Serge Guillaume

Abstract—Fuzzy inference systems (FIS) are widely used for
process simulation or control. They can be designed either from
expert knowledge or from data. For complex systems, FIS based
on expert knowledge only may suffer from a loss of accuracy. This
is the main incentive for using fuzzy rules inferred from data. De-
signing a FIS from data can be decomposed into two main phases:
automatic rule generation and system optimization. Rule genera-
tion leads to a basic system with a given space partitioning and
the corresponding set of rules. System optimization can be done at
various levels. Variable selection can be an overall selection or it
can be managed rule by rule. Rule base optimization aims to select
the most useful rules and to optimize rule conclusions. Space par-
titioning can be improved by adding or removing fuzzy sets and
by tuning membership function parameters. Structure optimiza-
tion is of a major importance: selecting variables, reducing the
rule base and optimizing the number of fuzzy sets. Over the years,
many methods have become available for designing FIS from data.
Their efficiency is usually characterized by a numerical perfor-
mance index. However, for human-computer cooperation another
criterion is needed: the rule interpretability. An implicit assump-
tion states that fuzzy rules are by nature easy to be interpreted.
This could be wrong when dealing with complex multivariable sys-
tems or when the generated partitioning is meaningless for experts.
This paper analyzes the main methods for automatic rule gener-
ation and structure optimization. They are grouped into several
families and compared according to the rule interpretability cri-
terion. For this purpose, three conditions for a set of rules to be
interpretable are defined.

Index Terms—Fuzzy inference systems, fuzzy partitioning, inter-
pretability, rule induction, system optimization.

I. INTRODUCTION

FUZZY inference systems (FIS) are one of the most fa-
mous applications of fuzzy logic and fuzzy sets theory

[1]. They can be helpful to achieve classification tasks, offline
process simulation and diagnosis, online decision support tools
and process control.

The strength of FIS relies on their twofold identity. On the one
hand, they are able to handle linguistic concepts. On the other
hand, they are universal approximators able to perform non-
linear mappings between inputs and outputs. These two char-
acteristics have been used to design two kinds of FIS.

The first kind of FIS to appear focused on the ability of fuzzy
logic to model natural language [2]. These FIS contain fuzzy
rules built from expert knowledge and they are called fuzzy
expert systems or fuzzy controllers, depending on their final
use. Prior to FIS, expert knowledge was already used to build
expert systems for simulation purposes. These expert systems
were based on classical boolean logic and were not well suited
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to managing the progressiveness in the underlying process phe-
nomena. Fuzzy logic allows gradual rules to be introduced into
expert knowledge based simulators. It also points out the limi-
tations of human knowledge, particularly the difficulties in for-
malizing interactions in complex processes. This kind of FIS of-
fers a high semantic level and a good generalization capability.
Unfortunately, the complexity of large systems may lead to an
insufficient accuracy in the simulation results. Expert knowl-
edge only based FIS may show poor performances.

Another class of simulation tools is based on automatic
learning from data. This study is restricted to supervised
learning and observed outputs are part of the training data.
Thus, a numerical performance index can be defined which is
usually based on the mean square error. Neural networks have
become very popular. Their main advantage is the numerical
accuracy while a major drawback is theirblack boxbehavior.
Indeed, they provide a numerical model, whose coefficients
have no meaning for experts. Sugeno [3] was one of the first
to propose self-learning FIS and to open the way to a second
kind of FIS; those designed from data. Even if the fuzzy rules,
which are automatically generated from data, are expressed
in the same form as expert rules, there is generally a loss of
semantic. Since Sugeno’s early work, a lot of researchers have
been involved in designing fuzzy systems from databases.
This paper aims to introduce the main methods for designing
fuzzy inference systems from data. All these methods can
be considered as rule generation techniques. Rule generation
can be decomposed into two main steps: 1) rule induction
and 2) rule-base optimization. Originally, automatic induction
methods were applied to simple systems with a few variables.
In these conditions, there is no need for optimizing the rule
base. The situation is different for large systems. The number
of induced rules becomes enormous and the rule description
is complex because of the number of variables. Obviously, the
rules will be easier to interpret if they are defined by the most
influential variables and the system behavior will be easier to
understand as the number of rules is getting smaller. Variable
selection and rule reduction are, thus, two important steps
of the rule generation process. They are ususally referred as
structure optimization.

Apart from structure optimization, a FIS has many parame-
ters that can also be optimized, i.e., membership functions pa-
rameters and rule conclusion adjustment. This is called param-
eter optimization. A thorough study has been done by various
authors [4], [5], their respective advantages and drawbacks are
well known.

In this review, rule induction and rule-base optimization
methods will be compared and analyzed according to the
most important criterion for human-computer cooperation:
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their interpretability. Many authors seem to consider that
interpretability is automatically given by the fuzzy formalism,
but when dealing with large systems it is not true. The rule-base
legibility is an important condition to take full advantage
of fuzzy inference systems. That means providing a good
framework for cooperation between two kinds of information:
expert knowledge and hidden knowledge in data.

Section II gives the notation used in this paper, which consists
of two main parts dealing with rule induction and structure opti-
mization. Rule induction techniques are gathered in three main
families, each of them analyzed in one separate section. Sec-
tion III introduces the shared partitioning induction methods.
Section IV is devoted to clustering. Hybrid methods are pre-
sented in Section V. In Section VI, the different approaches are
compared and summarized. The optimization part is divided
into two sections. Section VII deals with variable selection and
Section VIII discusses rule-base optimization methods. Finally,
the paper is concluded in Section IX, which recalls the main fea-
tures from an interpretability point of view.

II. NOTATION

Let us give some basic definitions. The training set contains
data pairs. Each pair is made of a-dimensionalinput-vector
and a -dimensionaloutput-vector . The number of rules in

the FIS rule base is.
Mamdani’s rule within this system is written as follows:

where and are fuzzy sets that define an input and output
space partitioning.

In Sugeno’s model, the conclusion of the rulefor output
is computed as a linear function of the inputs:= +
+ + + , also written as: = .

A fuzzy rule is called an incomplete rule if its premise
is defined by a subset of the available variables only. Let
us consider a two input, one output system. The rule:

, is an incomplete one because it does
not use the input variable. Expert rules are mainly incom-
plete rules, they contain only the most influential variables.
Formally, an incomplete rule uses implicit and logical
connectors. If the input variable space is partitioned into
three fuzzy sets, the incomplete rule given above can be written
as

For a given rule , its firestrength, also called weight and
written , is computed as a conjunction operation between the
premise elements: = ,
where is the membership degree of to the fuzzy set

and is theandoperator. Minimum and product are the most
commonandoperators.

The input variable partitioning is called a strong parti-
tioning, if , = 1.

The mean square error (MSE) is computed as follows:

being the inferred output for example.

PART I—RULE INDUCTION

There are two kinds of rule induction methods. The first kind
uses a grid partitioning of the multidimensional space. The par-
titioning can be generated from data or given by experts. It de-
fines a number of fuzzy sets for each variable, which are inter-
preted as linguistic labels and shared by all the rules. A training
procedure optimizes the grid structure, as well as the rule con-
sequences, according to data samples. These methods are intro-
duced in Section III.

The second kind is the clustering introduced in Section IV.
The training pairs are gathered into homogeneous groups and a
rule is associated to each group. The fuzzy sets are not shared
by the rules, but each of them is tailored for one particular rule.

Section V presents another family called hybrid methods.
They are based on soft computing techniques. Their group is
more heterogenous than the others, the results are highly de-
pendent on implementation and encoding.

III. T HE FUZZY SETSSHARED BY ALL THE RULES

A common way to generate a grid partitioning consists in di-
viding each input variable domain into a given number of inter-
vals whose limits do not necessarily have any physical meaning
and do not take into account a data density repartition function.
We will introduce several approaches.

The first, and most intuitive approach implements all pos-
sible combinations of the given fuzzy sets as rules. This way
of doing shows some drawbacks, which are handled by addi-
tional methods. Due to an insufficient work-space coverage,
some rules may never be fired. However, a diffusion procedure
can be used to initialize the unfired rules.

The choice of the number of fuzzy sets in each dimension
carries significant consequences: it can be dynamically chosen
within the second approach.

When the number of combinations increases, it is necessary
to limit the number of rules: the third approach initializes one
rule per data pair.

At last, the decision trees are introduced at the end of this
section. They generate incomplete rules but require a predeter-
mined fuzzy partitioning.

A. All the Rules Implemented

Ishibuchiet al. [6] consider a multiple input, single output
system. They assume the input and output spaces to be [0, 1]
and [0, 1]. For theth input variable , its domain interval is
evenly divided into fuzzy sets labeled as ,
as shown in Fig. 1 for the variable with = 5. Any kind of
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Fig. 1. Automatic partitioning with 5 triangular membership functions.

membership function can be used, the most common being the
triangle-shaped one

All the rules corresponding to the possible combinations of
the inputs are implemented. The total number of rules for a
input system is: .

Nozaki et al. [7] propose a simple heuristic to calculate the
rule conclusions, which are real numbers. For rule, the conclu-
sion is written and computed as

being the pair observed output and the rule fire-
strength for the pair.

The pair inferred output is then

(1)

Depending on both the choice of the values and the input
space covering, some rules may never be fired by training ex-
amples. Glorennec [5] proposes a diffusion procedure in order
to initialize the corresponding conclusions.

Let be the set of rules whose conclusions have already been
initialized; let us define the neighborhood, being the
neighborhood of rule

if
otherwise

is basically defined by the sets of rules whose premises differ
from rule by only one fuzzy set. According to this definition,

each rule has at most two neighbors in each input space dimen-
sion and, thus, . The diffusion is done according to
the following series

if
otherwise

The series converges whengoes toward infinity and the
diffusion procedure is stable.

B. Number of Fuzzy Sets Dynamically Chosen

The former method requires the to be set. For a given input
variable the choice of carries significant consequences. If

is too small, the system won’t be able to model a nonlinear
behavior, it won’t be accurate enough. Conversely it is difficult
to increase too much, due to the following reasons: 1) if
is too large, the corresponding fuzzy sets tend to be too specific,
resulting in a loss of generality and 2) the number of rules is the
product of all the coefficients.

To avoid fixing the values, some authors propose to derive
them from the data.

1) Partition Refinement:Bortolet [8] uses a partition refine-
ment. At each step of the algorithm, a fuzzy set is added on the
input that is responsible for the greatest part of the error.

Initially, each input is divided into two triangle-shaped fuzzy
sets. They are centered on the minimum and the maximum
values of the considered input domain.

At each step, all the rules corresponding to the possible com-
binations are implemented. Theth rule conclusion is first es-
timated using the least square regression. Let us notethe
number of linearly independent pairs whose weight for ruleis
greater than a given threshold, typically set to 0.5

(2)

The coefficients are those that minimize the difference be-
tween and the observed output for the pairs1. The rule
conclusion is obtained by replacing thevalues in (2) by the
centers of the corresponding fuzzy sets.

The system for the corresponding fuzzy partitioning is, thus,
completely defined. It is now possible to process all of the
pairs. A new fuzzy set is added to prepare the next step of the
algorithm. This is done by identifying the region of the input
space, then the input variable, and finally the center of the new
fuzzy set. A region of the input space is bounded by the vertices
of two consecutive membership functions on each input vari-
able.

An error index is associated to each region. It is computed as
the product of the mean error for the pairs belonging to the re-
gion ( for region ) by the ratio of the input domain covered by
the considered region. An error index associated to each input
variable within the considered region is computed in the same
way. As an example, Fig. 2 shows the region defined by four

1If n < p+1, the regression cannot be achieved and less precise methods
are proposed.
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Fig. 2. Partition refinement.

fuzzy sets ( , , , ) in a two-input system and the for-
mulae corresponding to the error indices.

The selected region and input are the ones for which the in-
dices are the greatest. The new center coordinate on the selected
input, , is computed as

The limits of the new triangular membership function are the
centers of the fuzzy sets between which the new fuzzy set has
been inserted. So, the input partitioning is still a strong parti-
tioning.

Finally, the rule conclusions corresponding to the modified
part of the input space are updated. The system is ready for the
next iteration.

The algorithm stops when the error reaches a minimum or
when it becomes smaller than a given threshold. The method
does not contain any protection against introducing into the
model the noise included in data: the only criterion to add a
new fuzzy set is the error and it does not take into account the
current system.

In [9], the refinement is based upon a controversy index. This
index, defined at the rule level, indicates the difference between
the rule conclusion and the observed output for the datapoints
that activate the corresponding rule. It is computed as follows
for rule

th rule conclusion;
th example observed output;
th rule firestrength for theth data point.

This definition can be extended to a membership function.
The index is then called the sum of controversies associated with
a given membership function and written as

SCMF

is the set of rules whose antecedent in thevariable refers
to the th membership function.

To make the index values comparable it is normalized by the
product of the number of fuzzy sets for the remaining variables

CI
CI

is the number of membership functions of theth variable.
A new membership function is added for variables whose

controversy index variance is high. The authors use a strong tri-
angular partitioning, so that only the centers have to be stored.
The new center location is computed as

SCMF

SCMF

Contrary to Bortolet’s method, the criterion is not evaluated
in an input space region, but at the rule level.

2) Using a Genetic Algorithm:Ishibuchi et al. [10] deal
with classification problems. They want to generate fuzzy rules
that divide the input space into disjoint decision areas,
being the number of classes to discriminate.

Different fuzzy partitions are automatically generated with
different values of , the number of fuzzy sets for theth vari-
able. The coarser partitioning corresponds to small values of.
The genetic algorithm is used to select the best suited level for
each of the input space regions according to the data. All rules
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corresponding to a given partitioning are considered as possible
and the objective function of the genetic algorithm takes into ac-
count both the performance of the system and the rule base size.
Through the evolution process the selected systems are those
which maximize

pairs well classified by system;
rules in the system;

, corresponding weights.

C. Only One Rule per Data Pair

In the method introduced by Wang and Mendel [11], the
number of rules is limited by the number of training pairs. It
does not depend on the fuzzy partition resolution level, i.e., the
number of fuzzy sets for each input variable. They propose the
following five step procedure:

1) Each variable of the input space is automatically divided
into a user defined number of triangular membership
fuzzy sets.

2) One fuzzy rule is generated for each data pair, theth pair
one is written

The fuzzy sets are those for which the degree of match
of is maximum for each input variablefrom pair .
The fuzzy set is the one for which the degree of match
of the observed output, , is maximum.

3) A degree is assigned to each rule. For a given rule it is
equal to the rule firestrength for the considered pair. If
somea priori information is available, the confidence
level of each pair will be used too, the degree being the
product of the firestrength by the confidence level. In case
of identical premises for two rules, only the one with the
higher degree is kept.

4) Experts rules are allowed. Theand rules induced from
data may be combined withor rules given by experts. The
membership degree for the missing variables is set to one,
the neutral element for the product operation.Or andand
type rules are equally managed.

5) The output is computed through the centroid defuzzifica-
tion.

This procedure allows the rule base to be adaptive: new rules
competing with existing ones.

D. Decision Trees

The decision trees were proposed by Quinlan [12]. Their ap-
plication is restricted to classification approaches. The objective
is to design paths leading to pure leaves with each leaf corre-
sponding to an incomplete rule. The tree represents a subspace
of all the possible rules.

Ichihashiet al.[13] propose a neuro-fuzzy implementation of
Quinlan’s interactive dichotomizer (ID3) algorithm. Unlike the
other methods mentioned in Section III, the input space parti-
tioning must be user defined prior to running the algorithm.

The tree induction is an iterative process. At each step a new
node is added. A node corresponds to an input variable and gen-
erates a number of subnodes equal to the number of fuzzy sets

(also called attributes) of the selected variable. The process is
repeated until all leaves are pure, i.e., they contain elements be-
longing to the same given class.

The selected variable at a given step, is the one that maximizes
the information gain. The tree can be regarded as a source of a
message. The information needed to generate this message is the
sum for all the nodes, of the node entropies. The rule associated
to a given node is written as

corresponds to the first node of the path starting from the
root and leading to the node, meaning that the first selected
variable is and the subtree leading to nodestarts from the

attribute of this variable. is the most represented class in
node . An illustration is shown in Fig. 3.

The premise of the rule corresponding to nodeis defined by
the set, , of the couples , the th attribute of theth input
variable, along the branch from the root to node.

The entropy for node is defined as

is the class density within node, that means the propor-
tion ratio of elements belonging to class. The cardinalities are
fuzzy and computed as the sum of the rule firestrengths for all
the elements in the node

with

is the membership degree of pairinput value to the
fuzzy set of input . is defined in the same way but with

the subset of which belongs to class.
Let be the node entropy and the number of fuzzy sets of

the considered input variable. The new entropy is the weighted
sum of the subnode entropies

with

The information gained by selecting the considered input
variable is .

To cope with expert uncertainty, the algorithm is adapted to
deal with belief functions within the evidence theory formalism
proposed by Dempster and Shafer [14].

The main advantage of fuzzy decision trees is that they gen-
erate incomplete rules constrained to a given partitioning. In-
complete rules were introduced in Section II. They offer a com-
pact description of a given context by using only the locally most
significant variables. The rules generated by decision trees will
be informative for experts provided that the initial partitioning
was carefully defined.

IV. FUZZY CLUSTERING

Fuzzy clustering algorithms form a well- identified family of
rule induction techniques. They are used to organize and catego-
rize data. The result is a partition of the data into homogeneous
groups. The space partitioning is derived from the data parti-
tioning and a rule is associated to each cluster. Unlike within
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Fig. 3. An illustration of a fuzzy decision tree.

the previous section, the fuzzy sets are not shared by the set of
rules. For a given dimension, each of them is tailored for one
rule only. The resulting fuzzy sets are usually difficult to inter-
pret.

A. Fuzzy C-Means Clustering

The first method, called FuzzyC-means, was introduced by
Dunn in 1973 [15]. Bezdek demonstrated its properties and pro-
posed the first cluster validity criteria [16], [17]. Each of the
data pairs belongs to each of thegroups with a membership co-
efficient, being the membership degree of pairto cluster .
Let be the distance between pairand cluster , basically
defined as the Euclidean norm and more generally as

being the data pair used for the clustering, being a
positive definite symmetric matrix, and being the prototype
of cluster .

Let be the coefficient matrix and the center coordi-
nate matrix. The algorithm yields and which minimize the
following loss function

under the probabilistic constraint:

, is the fuzzy exponent.

The function optimization is done by an alternating optimiza-
tion procedure. First, the coefficients are randomly initial-
ized. Then, at each step, the two following operations are suc-
cessively carried out.

1) Compute the fuzzy centers, assuming the degrees
are constant numbers, using the following equation:

(3)

2) Compute the memberships , assuming the centers
are constant vectors, using

(4)

These operations are reiterated until convergence when the
center coordinates are stable with respect to a given tolerance.

The FCM algorithm is suitable for clusters with comparable
size and shape (spherical when using the identity matrix) or
when the clusters are well separated. The cluster prototypes are
data points chosen as the cluster centers.

1) Variations of the Original Algorithm:A lot of improve-
ments or generalizations of the basic algorithm have been pro-
posed.
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Krishnapuram [18], [19] introduced the possibilistic C-means
by releasing the probabilistic constraint and by adding a punish-
ment term in the loss function in order to penalize low member-
ship degrees. The PCM loss function is written as

In the Gustafson–Kessel algorithm [20], thematrix is de-
fined according to the data. The covariance matrix, for group,
is

And the distance between pairand group becomes

det

The fuzzyC-regression model (FCRM) [21]–[23] produces
hyperplane-shaped clusters, instead of hypersphere-shaped ones
for FCM and the prototypes are hyperplanes instead of data-
points. The prototype of theth group is

The premise membership functions are generalized Gaus-
sians expressed as

and are tuned by a gradient method.
2) Which Data for Fuzzy Clustering?:Fuzzy clustering can

be done using input–output data, input data only, or output data
only. Depending on this choice the induced rules may or may
not be completely defined.

Some authors [24], [25] want to take advantage of all the
available information and apply the clustering to the product
space, . Therefore, the corresponding rule is completely
defined: the premise corresponds to the input part, and the con-
clusion to the output part. Input plus output based clustering
could be confusing. Some items could belong to the same cluster
while being neither close in the input space nor in the output
space. Their closeness in the cluster is due to distances com-
pensating each other in the input-output space.

Sugeno and Emami [26], [27] run the clustering in the output
space. The rule premises are then defined by projecting clusters
onto the input space. This operation is not trivial and the result is
usually affected by some noise. It can happen that several rules

be generated from a single cluster. Indeed, projection of the mul-
tidimensional cluster onto one input dimension may yield more
than one fuzzy set. This feature could reflect a real property as
there exist different premises leading to the same conclusion.

When using only the input part of the data pairs, a conflict
management procedure is needed: some pairs with different
output values may belong to the same group because their input
parts are similar.

The FCM algorithm and its derivatives requires some param-
eters such as the number of clusters and the value of the fuzzy
exponent.

B. Cluster Validity

Since Bezdek’s early work, many teams have been involved
in finding the optimal number of groups, also called the
cluster validity problem. Two main techniques are available:
run the FCM algorithm with an increased number of clusters
( ) and characterize each partition using indexes
or, run one time only an algorithm which determines by itself
the best suited number of groups.

1) Indices to Characterize Fuzzy Partitions:Xie and Beni
[28] define the best partition as the one that minimizes the ratio
of compactness, to separation . These measures ares
defined as follows

Sugeno [26] suggests choosing the number of groups which
minimizes the following criterion

being the centroid of the data set. The first term is thewithin
group variance, the second one is thebetweengroup variance.

Emami et al. [27] use a similar formula, the centroid is
replaced by its fuzzy extension. The difference between
Enami’s and Sugeno’s criteria gets larger as the fuzzy exponent
increases.

Burroughet al. [29] use a coefficient partition and a clas-
sification entropy , to characterize each partition. They are
defined as

Their values depend on the number of clusters. In order to
make and independent, they can be scaled as

and
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For good partitions values are expected to be large while
values are expected to be small. The user has to find a com-

promise.
2) Subtractive Clustering:the algorithm proposed by Chiu

[24] is an improvement of the one called “mountain method”
developed by Yager [30].

Each data point is considered as a potential cluster center. A
measure of the potential is associated to each point according
to its neighborhood, itself being defined by a radius,. For the
point , it is written as

with

The point with the highest potential, written , is selected
to become the first cluster center. Once the center is selected,
the potential of each pair is decreased according to its distance
to . The new potential for pair becomes

with

The process is repeated. To avoid introducing the noisy part
of the data into the model, two thresholds are defined.and

typically set to 0.5 and 0.15, and a new center candidate
at step with its associated potential , is managed as follows:

if , is accepted as a new cluster center;
if , is rejected as a new cluster center and the

algorithm stops;
else

let be the shortest distance betweenand all previ-
ously found cluster centers;

if is accepted as a new
cluster center;

(that means if it is far enough from the closest cluster)
else is rejected, its potential is set to 0 and the algorithm

goes on.

This algorithm is quite sensitive to the different parameters
such as the neighborhood radius and the potential thresholds.
Unfortunately, there is no theoretical guidance for choosing
them.

Fig. 4 shows the results of the subtractive clustering on a 100
random pair set. The five centers found by the algorithm are
highlighted in Fig. 4(a). They correspond to five rules whose
premises are defined by Gaussian membership functions shown
in Figs. 4(b) and 4(c). These functions are computed by pro-
jecting the points belonging to each cluster onto each dimen-
sion.

C. Tuning the Fuzzy Exponent

The value of the fuzzy exponent controls the amount of fuzzi-
ness in the clustering process. The larger it is, the fuzzier the par-
tition. When tends toward infinity, all cluster centers tend to-
ward the centroid of the data. Many authors recommend a fixed
value of , usually 1.5 or 2.

(a) (b)

(c)

Fig. 4. The subtractive clustering. (a) Data pairs and clusters. (b)X variable
membership functions. (c)X variable membership functions.

Chen and Wang [31] propose an iterative method to tune the
fuzzy exponent. The membership function associated to cluster

is

MF

center, width, and crossover slope of the function;
square root of the trace of thegroup covariance
matrix;
chosen according to and cluster center locations
to make sure membership functions overlap enough
to avoid inference breaking.

The objective is to find a value of , such as there exists for
each dimension of the work space; at least one cluster for which
the inner deviation for theth dimension, , is greater than the
training set deviation for the given dimension,. The value of

, initially set to 1.5, is increased by 0.1 at each step of the
algorithm. This costly method needs to run the FCM algorithm
and to compute the covariance matrices for each increment. An
alternative way would be to check the sensitivity of the final
model to the fuzzy exponent.

Another method, proposed by Li and Mukaidono [32], does
not use any fuzzy exponent. The loss function to minimize is
written

This last method called Gaussian-clustering method, maximizes
the entropy with respect to each input pair, under the two fol-
lowing constraints: (a) minimization of the loss function for pair
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, and (b) normalization of membership degrees. The problem
becomes

maximize

subject to (a)

being a small positive number

and (b) (5)

Their algorithm is similar to the FCM one, the cluster proto-
types are updated using (3), while (4) to update the is re-
placed by (6) which is the solution of the optimization problem
(5)

(6)

is called the temperature,being related to by constraint
(a).

V. HYBRID METHODS

This set of methods integrates many different tools, the
most famous and widely used being the genetic algorithms and
the neural networks. Neural networks brought their learning
algorithms and numerical accuracy to FIS without paying much
attention to the semantic. Genetic algorithms are more likely
to find a global optimum and may optimize both the structure
and the parameters of the corresponding FIS. These tools prove
useful when there is no available expert knowledge and for
applications for which semantic is not a prime concern.

A. Neuro-Fuzzy Modeling

Neuro-fuzzy models [33], including adaptive neuro fuzzy in-
ference systems (ANFIS) [34], [4] are fuzzy inference systems
implemented as neural nets. Each layer in the network corre-
sponds to a part of the FIS: input fuzzification, rule inference
and firestrength computation, and output defuzzification. The
main advantage of this kind of representation is that the FIS pa-
rameters are encoded as weights in the neural network and, thus,
can be optimized via powerful well known neural net learning
methods (Hebbian rule, back-propagation, etc.).

In this paper, we first focus on a particular type called radial
basis functions (RBF) networks. The main idea of RBF relies on
a local tuning of the process units, each of them corresponding
to a local model. The architecture was first proposed by Moody
and Darken [35], since then a lot of work has been done to bridge
the gap between neural nets and FIS. Jang showed that RBF
are equivalent to FIS under few restrictive conditions [36], the
most important being that the rule conclusion are scalars. More
recently Cho and Wang [37] suggested improvements to deal
with polynomial or fuzzy conclusions.

An RBF is a three layer network: 1) the input layer of size
equal to the input vector size; 2) the output layer of size; and

3) one hidden layer. The number of nodes in the hidden layer
corresponds to the number of rules and it is upper bounded by
the number of pairs.

Hidden layer units are locally tuned radial receptive fields.
Learning aims to setup the network so that a hidden unit rec-
ognizes one and only one kind of pattern. The hidden layer is
fully connected to the input layer2 and unit performs the fol-
lowing operation: , and being the
center and the standard deviation of the Gaussian membership
function,3 respectively.

The output layer is fully connected to the hidden layer. Within
the configuration where rule conclusion are scalars, the defuzzi-
fication is easy. For each output, the corresponding unit com-
putes the weighted sum of the connections and the weight is the
firestrength of the rule for the current pair. When the rule con-
clusions are polynomial, , the
weights between input and hidden layers are not constant. The
weights correspond to the coefficients, and a fixed
input, set to 1, is artificially added with a weight.

Learning consists of determining the minimum number of
units in the hidden layer, i.e., the number of rules, the corre-
sponding vectors and , and their weights.

First, the number of rules is set to 0. Then, at each step all the
pairs of the training set are processed in turn. For each pair,
at step , where is the th hypersphere radius andis a
tolerance value

if , then
if there exists node such as , then

modify and using the gradient method
else create new node whose center is4

else train the hidden nodes using the gradient method.

Once all the pairs have been processed, the hypersphere radii
are decreased before the next step.

The algorithm terminates when the squared sum of errors is
less than a given tolerance or after a predefined number of itera-
tions have been done. Note that this algorithm may be sensitive
to the data processing order.

This technique is close to the subtractive algorithm intro-
duced in Section IV-B.2 and, thus, could be classified as a clus-
tering one.

Recent work attempts to use neural networks in a different
way, with interpretability in mind. In [38], [39] the authors build
a network for classification purposes. Each input is partitioned
into three fuzzy sets; each fuzzy set being in turn modified by
three hedges. The network has two output nodes per class or
convex subclass. The first node is used to classify items which
belong to the output class (positive items), and the second one to
recognize negative items for the same class. The interpretability
effort consists in generating a single rule for each output node.

2That means each unit of the hidden layer is connected to each unit of the
input layer.

3Any kind of radial basis function can be used, the Gaussian one is given as
an example.

4The initial value of� is computed using the standard deviation of the data
set.
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TABLE I
MAIN METHODS FORFUZZY RULE INDUCTION FROM DATA

The number in parenthesis is the section number which describes the approach.

This is achieved by a backtracking procedure that selects the
maximal weighted path from the input layer to the output node.

B. Genetic Algorithms

Since they were proposed by Goldberg [40], genetic algo-
rithms (GA) have been widely used to learn input output rela-
tions and to design fuzzy controllers [41]–[45].5 As an illustra-
tion, let us examine the model introduced by Russo [47] which
aims to combine the respective advantages of fuzzy logic, neural
networks and genetic algorithms.

Its evolutionary algorithm considers a population of neural
networks. Training consists of adjusting the different weights,
unit removal is allowed. Once defined, the network is encoded
as a chromosome and evolves within the population using se-
lection, crossover and mutation operations.

Its evolutionary algorithm considers a population of neural
networks. Training consists of adjusting the different weights,
unit removal is allowed. Once defined, the network is encoded
as a chromosome and evolves within the population using se-
lection, crossover and mutation operations.

The network, corresponding to a-rule FIS, is made of 4
layers:

1) Input layer: it has at most neurons, being the input
vector size.

2) Fuzzification layer: the number of neurons is at most
. There is one fuzzy set for each active input and for

each rule. Its Gaussian membership depends onand
, the center and the inverse of the standard deviation

respectively.6 These values are encoded as weights and
learnt through a back-propagation algorithm. An impor-
tant choice is done in this layer: the fuzzy sets are tailored
for each rule. The complexity is decreased compared with
fuzzy sets shared by all rules, but the induced partitioning
is less suitable for human cooperation.

3) Inference layer: the rule firestrength is computed using
themin operator. All weights are set to one.

4) Output layer: rule conclusion are scalars. The defuzzifi-
cation is either done using the weighted mean of rule con-
tributions [see (1)] or using their weighted sum.

5 Although GA ae very popular other stochastic techniques can be used such
as simulated annealing[46]

6The use of instead of� allows the optimization of the learning time (by
replacing the division operation by a multiplication), and may avoid singularities
in the neighborhood of� = 0.

Fig. 5. Choosing a rule induction method according to data characteristics.

The fitness function of the genetic algorithm is not restricted
to accuracy performance. It also rewards compact systems,
which use a minimum number of input variables and favors
incomplete rules.

VI. CONCLUSION

The three rule induction technique families are quite different
and may correspond to specific needs. Table I summarizes the
most important conclusions.

Fig. 5 shows the applicability of the first two families of
methods. Each one is better on one or the other of the plane areas
defined by the training set characteristics, work space size, and
coverage.

The methods that use shared fuzzy sets for the rule base are
appropriate within a small size work space with a good cov-
erage. Otherwise, in case of a weak coverage the rule base com-
pleteness is not guaranteed and, when dealing with large sys-
tems, the number of combinations to manage is huge.

Clustering is well adapted for large work spaces with a small
amount of training examples. However, the induced rule legi-
bility gets worse as the work space size gets larger.

The hybrid methods, including neuro-fuzzy modeling tech-
niques and genetic algorithm based ones, are not easy to lo-
cate on the figure. They cannot be viewed as a homogeneous
group; all of them are not on the same side. Their performance
highly depends on their implementation and particularly on the
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problem encoding. Thus, their global evaluation remains diffi-
cult. The main reason for using such techniques is their universal
approximator property. They allow to optimize all the FIS pa-
rameters including the membership function parameters. If only
guided by numerical accuracy the tuning algorithms may gen-
erate an unreadable partitioning. In these conditions, there is not
much to be expected in terms of interpretability. Even if the par-
titioning is carefully respected, other difficulties occur due to the
great number of tunable parameters. A new research trend aims
to produce a readable set of rules with hybrid methods, by trying
to extract the most significant rules.

Once rule induction is done, whatever the technique used, the
different parts of the FIS should be optimized to improve the
interpretability.

PART II—SYSTEM OPTIMIZATION

Historically research teams have been interested in different
levels of FIS optimization falling into two main categories: 1)
parameter and 2) structure optimization.

Methods for the parameter optimization, membership func-
tion fine tuning and rule conclusion optimization, are widely
used. Their respective advantages and drawbacks are well
known [4], [5].

In this paper, we will focus on structure optimization, input
variable selection, and rule base reduction. Defining the FIS
using the most useful variables only would benefit to inter-
pretability and stability. Removing extra variables leads to a
more compact set of rules and improves the rule interpretability.
Moreover, rule base and parameter optimization are easier
to achieve once extra variables have been removed. These
extra variables are also likely to bring more noise than useful
information.

As the available databases are getting larger and larger, FIS
will be helpful for the increased needs of knowledge discovery
if automatic procedures for variable selection and rule base re-
duction are included in their design.

VII. V ARIABLE SELECTION

Variable selection can be achieved in a global or in a local
way. In the first case, the variable is removed and none of the
rules can use it. In the second case, the selection is done at the
rule level leading to incomplete rules.

Some of the previously introduced rule induction methods are
dealing with variable selection. In a decision tree the path from
the root to each leaf node only involves the few variables nec-
essary for defining the associated rule. The genetic algorithm
objective function used by Russo [47] aims to minimize the
number of variables. Neural networks may be helpful too: the
output sensitivity to the input variables can be used to rank the
input variables [48], [49].

A. Regularity Criterion

Sugeno, [26], proposed to make the selection using a cross-
validation procedure. The training set is randomly split into two
groups, and , and the criterion to be minimize is

RC

(respectively, ) is the observed output for pairof group
(respectively, ), and (respectively, ) is the inferred

output, for pair of group (respectively, ) after training
using group (respectively, ) sample.

The variables are selected using an ascending procedure. At
the first step, models made of a single variable are considered.
The first selected variable is that for which the corresponding
model minimizes the regularity criterion. At the second step,

models of two variables, the already selected one and each
of the remaining candidate ones, have to be assessed. The proce-
dure ends when the criterion increases. The maximum number
of models is bounded, . Even if this number is large, it
is still less than the number of all possible combinations, .

B. Geometric Criteria

Once the clustering is done, Emamiet al. [27] obtained the
fuzzy sets by projecting the groups onto each input. If a mem-
bership function is equal to one on a wide range for a given rule,
then the corresponding variable is neutral, one being the neutral
element forand operators. An index of input nonsignificance
for a given rule is defined as the ratio to the entire range of the
interval in which its membership function is one. Note that this
index is local to a rule. However, the authors use a global com-
bination of the local indices, their product, to make the variable
selection for the whole set of rules.

Another static and geometric method was proposed by Lin
and Cunningham [50]. Its complexity is linear with respect to
the number of inputs and the number of training pairs. Each pair

in each input is fuzzified as follows:

A fuzzy rule is associated to each training pair. For each input
, the output of each training pairis computed as

The set of values is the fuzzy curve of input. Signifi-
cant input variables are supposed to have a wider range for their
fuzzy curves, .

The process of the fuzzy curve building is shown in Fig. 6.
The fuzzy curve looks like a kernel estimator projected onto

one dimension. These estimators have been thoroughly studied
by mathematicians and none of their results is related to the sig-
nificance of such isolated projections. Moreover, dealing with
isolated variables relies on the assumption that they are inde-
pendent. This assumption is not usually satisfied in real world
problems, local contexts being defined by a subset of some in-
teracting variables.

C. Individual Discrimination Power

The originality of the method proposed by Hong and Chen
[51] is to make the selection before defining the space parti-
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(a) (b)

(c)

Fig. 6. Fuzzy curve process.

tioning. However, it is restricted to classification problems. It is
a five step procedure.

1) Let be the number of unique values for input: ,
.

2) Let be the number of instances whoseinput value is
. Let , the number of instances belonging to class

whose value is , . The discrimination
power is based on the number of instances for which an
input value corresponds to only one class. This number,

, is computed as

3) Compute the discrimination power index of each input
variable, . The following two formulae are proposed:

The second formula corresponds to an entropy definition,
being the number of classes.

4) Sort the variables in descending order of discrimination
power.

5) Select the relevant input variables: the variables are se-
lected in the order mentioned above till the error becomes
less than a threshold (0.1 given as an example). The error
variable, , is initialized to 1 and updated as

when input is selected.

This approach also makes the assumption of variable inde-
pendence, so that their individual contributions are additive.

D. Entropy Variation Index

This approach, proposed by Pal [49], is similar to the previous
one; it also deals with classification problems and it implicitly
assumes variable independence.

The entropy is a measure of fuzziness. For a given fuzzy set
, it may be expressed as

reaches a maximum when is most fuzzy, i.e., when
= 0.5 , and a minimum when or 1 .

The author uses anS-type function membership for modeling
, defined as follows on the interval , being the crossover

point for which the function value is 0.5,

Let be the values of input variable for the pairs be-
longing to class . Let be the value of the fuzzy set de-
fined by the following parameters:

xqj xqj xqj av xqj

av, min, and max being, respectively, the average, the minimum,
and the maximum value of .

The highest values of are reached when a great number of
pairs have a membership degree close to 0.5; that means, when
the pairs are grouped in the neighborhood of the average. In
other words, varies in the reverse order of the within group
variance of input variable for class .

If two classes are merged,and , and once the parameters
, and have been computed according to the new group,

the corresponding entropy, , will be smaller as the average
values of the two classes, and are further from each
other. In other words, varies in the reverse order of the
between group variance of input variablefor the classes and

.
Thus, the most discriminant variable for the two classes, is

the one that minimizes the variable evaluation index

VEI
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TABLE II
VARIABLE SELECTION METHODS

The number in parenthesis is the section number which describes the approach.

Variable independence implicit hypothesis.

In order to deal with more than two classes, the following
generalization is proposed:

OVEI

The overall variable evaluation index yields an average: a
variable which separates one class from all the others will not
be assigned a high value. Its value does not depend on the cardi-
nality of the classes, which can be considered sometimes as an
advantage, sometimes as a drawback, depending on the context.

The characteristics of the available variable selection
methods are summarized in Table II.

VIII. R ULE BASE OPTIMIZATION

Three properties are usually required for the rule base: conti-
nuity, consistency and completeness. The continuity guarantees
that small variations of the input do not induce big variations
for the output. Consistency means that if two or more rules are
simultaneously fired their conclusions are coherent. Complete-
ness means that for any possible input vector, at least one rule is
fired, there is no inference breaking. When the interpretability
is of major importance, it is also necessary to eliminate redun-
dancy.

Some of the previously introduced rule induction methods
deal with the rule-base size. The objective function of the ge-
netic algorithm is partly defined by the number of rules. The
RBF and the subtractive algorithm tend to minimize the number
of generated rules by starting from a small size rule base and in-
crementally adding rules when needed.

The converse method is also possible: generate a high number
of rules, at most one for each training pair, and then reduce the
rule base. The rule base reduction methods are also useful when

two or more bases are to be merged; for example, an expert
knowledge based rule base and some rules induced from data.

Two kinds of techniques are available. The first one consists
of merging compatible elements: clusters, fuzzy sets, or vari-
ables. The second family of methods is based upon statistic input
domain transformation.

A. Merging

Generate a high number of rules using a clustering method
makes the resulting partition less sensitive to the initial condi-
tions. Babuska and his co-workers [52], [53], [25], [54] propose
an improvement of the compatible cluster merging procedure
first introduced by Krishnapuram and Freg [55]. The cluster
shape is defined by the eigenvectors (ellipsoid direction) and
the corresponding eigenvalues (axis length). The clustering is
done using the Gustafson–Kessel algorithm: the distance func-
tion uses the covariance matrix.

For a given cluster, the hyperplane is defined by the fol-
lowing equation , where is the smallest
eigenvalue of cluster.

The two merging criteria are for clustersand .

1) Their hyperplanes are almost parallel: ,
close to one.

2) Their centers are close: , close to 0.
Two matrices are computed, and . (respectively

) is the degree of similarity of clusterand according to
the first (respectively, the second) criterion. These values are
fuzzified into a two-dimensional (2-D) space so that the ideal
candidate coordinates become (1, 1) leading to new matrices
and . The two criteria may partially compensate each other.
Two clusters whose hyperplanes are not so parallel but whose
centers are very close can be merged, conversely. To take this
fact into account the criteria are combined into a single matrix
using the geometric mean: . These compati-
bility degrees are then thresholded with a given value (0.7 as an
example). Finally, the remaining candidates are merged if they
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do not contain in their common neighborhood any incompatible
cluster. This condition is formalized as

being the distance between clusterand in the premise
space; the clustering being done in the product space.

Cluster merging is strictly equivalent to rule merging as a
rule is associated to a cluster. In another method, also proposed
by the researchers of Delft university [56], the elements to be
merged are the fuzzy sets, the rule-base reduction being a conse-
quence. The authors highlight three kinds of unwanted similar-
ities between fuzzy sets produced by automatic rule induction:
1) similarity between two fuzzy sets for a given input variable;
2) similarity of a fuzzy set to the universal set ( = 1

); and 3) similarity of a fuzzy set to a singleton set.
The paper proposes automatic methods to manage the first

two types but not for the last one. The corresponding rules may
rarely be fired, but this situation may also correspond to excep-
tion handling, thus, the removal of close to singleton fuzzy sets
has to be confirmed by experts.

An example of a similarity measure between two fuzzy sets,
and , is

where stands for the fuzzy cardinality andand operators
represent the intersection and union, respectively.

The algorithm consists of merging the two most similar fuzzy
sets into a new one and then updating the rule base. This opera-
tion is repeated until there exist compatible fuzzy sets, those for
which the similarity measure is greater than a given threshold.
Finally, sets that are close to being universal sets are removed,
the closeness being defined by another threshold.

When the fuzzy sets are trapezoidal,, , , being the
parameters for fuzzy set, the resulting fuzzy set is defined
from by

, , both set at 0.5 in the example.
The result of the process depends on the thresholds for

merging fuzzy sets and for removing universal sets. The
interpretability improves as the thresholds get lower.

It is sometimes possible to combine input variables and, thus,
to reduce significantly the rule-base size. Before combining the
variables, the user has to check if the new variable is still mean-
ingful. Within a control framework, Lacrose [57] combined the
error and all its derivatives into a single variable.

The use of multidimensional membership function also leads
to a small number of rules. The input space partitioning is done
by a Delaunay meshing, i.e., triangulation for a 2-D space. The
definition of meaningful multidimensional membership func-

tions may be difficult. Foulloy [58], [59] designed in this way
symbolic sensors for color evaluation.

B. Statistic-Based Methods

These methods also initialize a great number of rules, one rule
per pair and select the most influential ones using statistic based
methods. These methods are powerful and mathematically well
established. However, some of them perform an input domain
transform which yields a loss of semantic.

1) Orthogonal Least Squares (OLS) Methods:The OLS
family [60], [61] makes the selection using a linear regression.
To use linear methods for nonlinear optimization the problem
must be rewrittem. A FIS can be seen as a two-layer system.
First, the input variables are mapped through a nonlinear
projection into a new space and second, the output is computed
as a linear combination of this new space components. For
Wang and Mendel [62], a FIS is a linear combination of fuzzy
basis functions (FBF), each of them performing a nonlinear
mapping of the input vector.

First, a rule per data pair ( Sec. III-C) is generated. The rule
membership function for dimensionis a Gaussian function

centered around

with

The inferred output for a given input is

The FBF, , is the relative contribution of rulefor the
example inferred output

Thus, the fuzzy system can be written as: ,
where are the scalar parameters to optimize, or

; being the observed output vector, andthe error.
Each regressor, , is a -dimensionalvector, the general term
being the firestrength of rulefor pair .

The OLS learning algorithm transforms thevectors into a
set of orthogonal ones using the Gram–Schmidt procedure. The

matrix is decomposed into an orthogonal matrixand an
upper triangular matrix . The space spanned by the set of or-
thogonal vectors is the same that spanned by thevectors, so
the problem can be written as: . The orthogonal
least square solution is , . The
quantities and satisfy the triangular system: . The
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TABLE III
RULE BASE OPTIMIZATION METHODS

The number in parenthesis is the section number which describes the approach.

vectors being orthogonal, their individual contributions are
additive (no covariance). At each step the algorithm selects the
vector , which maximizes the explained variance of the ob-
served output , i.e., the following criterion

The algorithm stops when the output has been reconstructed
well enough. This occurs at step such as

being a threshold value.
Once the rules have been selected, Hohensohn and Mendel

[63] propose to rerun the algorithm with the only objective to
optimize rule conclusions, without doing any selection. They
note that after the first pass the selected vectorsstill contain
information related to removed rules.

2) Multivariate Data Analysis Based Methods:Multivariate
data analysis provides tools for working space reduction, the
most popular being the principal component analysis (PCA).
These methods are all based on a rectangular matrix property
named singular value decomposition (SVD).

The decomposition is written as

or

rank of matrix ;
singular values of sorted in a descending
order;

-dimensionaleigenvectors within the row
space;
-dimensional eigenvectors within the

column space.
All of them are orthonormal.

Some recent work shows interest in this technique [64], [65].
The model of Yenet al. [64] is of the form . is
initialized from data pairs like in the former section. The rule

conclusion is computed as .
Thus, the th line of matrix contains blocks, one for each
rule. Each block is made of values corresponding to the
th pair coordinates weighted by the firestrength of each

rule for the th pair. The values of the ruleblock are

The final space size,, is determined after
checking the singular values. Then thematrix is partitioned

as: , where is a matrix. Let

. Applying the algorithm7 to , being a
orthogonal matrix and an upper triangular matrix, yields
the permutation matrix : . The first
columns of indicate the corresponding fuzzy partitions.

The PCA is used by Kimet al.[23] to build new uncorrelated
components from the input variables. The rules are initialized
by a clustering procedure and the transformation is done within
each cluster. For each rule, the covariance matrix is computed,
and the rule is defined in the eigenvector space, each eigenvector
being a linear combination of theinput variables.

While the merging techniques preserve the semantic, the
input domain transform based methods produce rules that
cannot be read by an expert, so they are not suited to human
cooperation. The characteristics of the rule base reduction
methods are summarized in Table III.

IX. CONCLUSION

Many techniques to design FIS from data are available, they
all take advantage of the property of FIS to be universal ap-
proximators. In order to compare FIS with other modeling tech-
niques, their performance is usually measured by a numerical
index, the mean square error. But the blind improvement of the
performance may conflict with the originality of fuzzy logic: its

7This method is similar to the Gram–Schmidt procedure.
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TABLE IV
RULE BASE NEEDSACCORDING TOFIS APPLICATIONS

TABLE V
INTERPRETABILITY OF FUZZY RULE GENERATION METHODS

The number in parenthesis is the section number which describes the approach.

interpretability. What are the necessary conditions for a set of
induced rules to be interpretable? First, the fuzzy partition must
be readable, in the sense that the fuzzy sets can be interpreted
as linguistic labels. These labels must be meaningful for experts
of the problem under study, so as to allow the rules to be com-
pared to each other, and to lead to knowledge discovery. Second
the set of rules must be as small as possible. The reduction of
a set of rules results in a loss of numerical performance on the
training dataset, but a more compact set has a better generaliza-
tion capability while being easier to read. For large systems a
third condition is required: the rules should be incomplete rules.
If the rule premisses involve the whole set of variables, there
is a loss of interpretability without a corresponding increase of
performance, when the rule context can be defined by a subset
of the available variables only. The systematic presence of all
variables in all rules can be considered as a drawback of most
automatic rule induction methods, due to the techniques them-
selves. It is not an intrinsic characteristic of the problem.

The interpretability needs depend on the final use of the FIS.
Table IV summarizes the main potential applications and the
corresponding rule base needs.

Table V compares the main families of rule induction and rule
base optimization methods in terms of interpretability. Gener-
ally speaking, the methods where all the rules share the same
partitioning yield a higher degree of interpretability as they ful-
fill the first condition stated above. Nevertheless, as shown in

Fig. 5, most of these methods become redhibitory for large sys-
tems. Indeed the curse of dimensionality prevents the use of
methods which generate all the possible rules. The techniques
that generate one rule per pair either suffer from an insufficient
space coverage or have a great number of data points at their dis-
posal, which also leads to a curse of dimensionality. The only
method from that family that at once escapes from that incon-
venience and has a good interpretability level is the fuzzy deci-
sion tree. Recall, that it needs a prior fuzzy partitioning, which
is a bearable constraint when one searches for an interpretable
system.

Clustering approaches are very effective in large systems with
a low-space coverage. However, as the induced fuzzy sets are
different for each rule, this forbids rule comparison and consid-
erably reduces the interpretability.

The third family of methods is characterized by a variable
interpretability level due to its heterogeneity. Historically, these
methods were not designed with an interpretability concern. Re-
cent work noticeably improved that side.

The second condition to be met for a good interpretability
is the reduction of the rule base. The first step is, of course, the
variable selection. Other optimization methods can follow; their
interpretability level is summarized in Table V. Statistic based
methods yield a set of rules difficult to be interpreted as the par-
titioning is defined onto the transformed input domain. Merging
techniques are more suitable for interpretability purposes. How-
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ever, the interpretability depends on the elements to be merged,
it is higher for fuzzy set merging than for cluster merging.

The only approach that deals with the third interpretability
condition is the fuzzy decision tree. Most of the available vari-
able selection methods operate in a global way. Unselected vari-
ables are completely removed and cannot be used by any rule.
Only fuzzy decision trees are able to generate incomplete rules
but in the restricted context of classification.

Recent work [66] showed that the selection and simplification
can also be done within a rule neighborhood that includes a
small group of rules, using reasoning based methods in order
to produce reusable knowledge.

The set of procedures able to generate and merge incomplete
rules, data induced as well as expert rules, is still an open way
of research.
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