426

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Designing Fuzzy Inference Systems from Data:
An Interpretability-Oriented Review

Serge Guillaume

Abstract—Fuzzy inference systems (FIS) are widely used for
process simulation or control. They can be designed either from
expert knowledge or from data. For complex systems, FIS based
on expert knowledge only may suffer from a loss of accuracy. This
is the main incentive for using fuzzy rules inferred from data. De-
signing a FIS from data can be decomposed into two main phases:
automatic rule generation and system optimization. Rule genera-

to managing the progressiveness in the underlying process phe-
nomena. Fuzzy logic allows gradual rules to be introduced into
expert knowledge based simulators. It also points out the limi-
tations of human knowledge, particularly the difficulties in for-
malizing interactions in complex processes. This kind of FIS of-
fers a high semantic level and a good generalization capability.

tion leads to a basic system with a given space partitioning and Unfortunately, the complexity of large systems may lead to an

the corresponding set of rules. System optimization can be done at

various levels. Variable selection can be an overall selection or it

can be managed rule by rule. Rule base optimization aims to select

the most useful rules and to optimize rule conclusions. Space par-
titioning can be improved by adding or removing fuzzy sets and
by tuning membership function parameters. Structure optimiza-
tion is of a major importance: selecting variables, reducing the
rule base and optimizing the number of fuzzy sets. Over the years,
many methods have become available for designing FIS from data.
Their efficiency is usually characterized by a numerical perfor-
mance index. However, for human-computer cooperation another
criterion is needed: the rule interpretability. An implicit assump-
tion states that fuzzy rules are by nature easy to be interpreted.
This could be wrong when dealing with complex multivariable sys-
tems or when the generated partitioning is meaningless for experts.
This paper analyzes the main methods for automatic rule gener-
ation and structure optimization. They are grouped into several
families and compared according to the rule interpretability cri-
terion. For this purpose, three conditions for a set of rules to be
interpretable are defined.

Index Terms—Fuzzy inference systems, fuzzy partitioning, inter-
pretability, rule induction, system optimization.

. INTRODUCTION

UZZY inference systems (FIS) are one of the most f

mous applications of fuzzy logic and fuzzy sets theo

[1]. They can be helpful to achieve classification tasks, offlin
process simulation and diagnosis, online decision support to

and process control.

The strength of FIS relies on their twofold identity. On the on
hand, they are able to handle linguistic concepts. On the othd
hand, they are universal approximators able to perform non-
linear mappings between inputs and outputs. These two chdlX

acteristics have been used to design two kinds of FIS.

The first kind of FIS to appear focused on the ability of fuzz A
%}ructure optimization.

logic to model natural language [2]. These FIS contain fuz

rules built from expert knowledge and they are called fuzzy
expert systems or fuzzy controllers, depending on their fin

a_

insufficient accuracy in the simulation results. Expert knowl-
edge only based FIS may show poor performances.

Another class of simulation tools is based on automatic
learning from data. This study is restricted to supervised
learning and observed outputs are part of the training data.
Thus, a numerical performance index can be defined which is
usually based on the mean square error. Neural networks have
become very popular. Their main advantage is the numerical
accuracy while a major drawback is théliack boxbehavior.
Indeed, they provide a numerical model, whose coefficients
have no meaning for experts. Sugeno [3] was one of the first
to propose self-learning FIS and to open the way to a second
kind of FIS; those designed from data. Even if the fuzzy rules,
which are automatically generated from data, are expressed
in the same form as expert rules, there is generally a loss of
semantic. Since Sugeno’s early work, a lot of researchers have
been involved in designing fuzzy systems from databases.
This paper aims to introduce the main methods for designing
fuzzy inference systems from data. All these methods can
be considered as rule generation techniques. Rule generation
can be decomposed into two main steps: 1) rule induction
and 2) rule-base optimization. Originally, automatic induction

ethods were applied to simple systems with a few variables.

these conditions, there is no need for optimizing the rule
8 se. The situation is different for large systems. The number
of induced rules becomes enormous and the rule description
ig complex because of the number of variables. Obviously, the
}es will be easier to interpret if they are defined by the most
luential variables and the system behavior will be easier to
derstand as the number of rules is getting smaller. Variable

n

selection and rule reduction are, thus, two important steps
of the rule generation process. They are ususally referred as

Apart from structure optimization, a FIS has many parame-
tars that can also be optimized, i.e., membership functions pa-

use. Prior to FIS, expert knowledge was already used to buiymeters and rule conclusion adjustment. This is called param-

expert systems for simulation purposes. These expert systeeﬁg

optimization. A thorough study has been done by various

were based on classical boolean logic and were not well suif@4nors [4], [5], their respective advantages and drawbacks are
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well known.

In this review, rule induction and rule-base optimization
methods will be compared and analyzed according to the
most important criterion for human-computer cooperation:
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their interpretability. Many authors seem to consider that The X; input variable partitioning is called a strong parti-
interpretability is automatically given by the fuzzy formalismtioning, if Vo € X;, >, p4:(x) = 1.
but when dealing with large systems itis not true. The rule-baseThe mean square error (MSE) is computed as follows:
legibility is an important condition to take full advantage
of fuzzy inference systems. That means providing a good 1
framework for cooperation between two kinds of information: MSE = _ani — il
expert knowledge and hidden knowledge in data. Mot
Section Il gives the notation used in this paper, which consists )
of two main parts dealing with rule induction and structure optik Peing the inferred output for example
mization. Rule induction techniques are gathered in three main
families, each of them analyzed in one separate section. Sec- PART I—RULE INDUCTION

tion Il introduces the shared partitioning induction methods. ) . ) . )
Section IV is devoted to clustering. Hybrid methods are pre- There are two kinds of rule induction methods. The first kind

sented in Section V. In Section VI, the different approaches afg€S @ 9rid partitioning of the multidimensional space. The par-
compared and summarized. The optimization part is divid&§oning can be generated from data or given by experts. It de-
into two sections. Section VII deals with variable selection aff'eS & number of fuzzy sets for each variable, which are inter-
Section VIII discusses rule-base optimization methods. FinaIR):eted as linguistic labels and shared by all the rules. A training

the paper is concluded in Section IX, which recalls the main feBrocedure optimizes the grid structure, as well as the rule con-
tures from an interpretability point of view. sequences, according to data samples. These methods are intro-

duced in Section 1.
The second kind is the clustering introduced in Section IV.
[l. NOTATION The training pairs are gathered into homogeneous groups and a
I[]lé|e is associated to each group. The fuzzy sets are not shared
by the rules, but each of them is tailored for one particular rule.
Section V presents another family called hybrid methods.

They are based on soft computing techniques. Their group is
more heterogenous than the others, the results are highly de-
pendent on implementation and encoding.

Let us give some basic definitions. The training set contai
n data pairs. Each pair is made opalimensionainput-vector
x and ag-dimensionabutput-vectory. The number of rules in
the FIS rule base is.

Mamdani’s rulei within this system is written as follows:

: i : i : i
Ifxis Al and x2 i Ay ... and x;, is A, l1l. THE FuzzY SETS SHARED BY ALL THE RULES

Th is Ct .. .and y, is C! . L L
CRYLIS LA - ARG Y 18 by A common way to generate a grid partitioning consists in di-

l)/ljding each input variable domain into a given number of inter-
vals whose limits do not necessarily have any physical meaning
and do not take into account a data density repartition function.
We will introduce several approaches.

whereA;l ande are fuzzy sets that define an input and outp
space partitioning.
In Sugeno’s model, the conclusion of the rulfor output

is computed as a linear function of the inpuis= 0’ + b’ ) o .
: P i . P p;?l? go Tt The first, and most intuitive approach implements all pos-
+boxo + - + b 1, also written asy’ = fi(x). . L . .
J P . J o ._sible combinations of the given fuzzy sets as rules. This way
A fuzzy rule is called an incomplete rule if its premise , . )
{ doing shows some drawbacks, which are handled by addi-

is defined by a subset of the available variables only. L . -
y Y Eonal methods. Due to an insufficient work-space coverage,

us consider a two input, one output system. The rul ome rules may never be fired. However, a diffusion procedure
If x is A} Then y is Co, is an incomplete one because it doe? yneve . ' P
can be used to initialize the unfired rules.

not use ther; input variable. Expert rules are mainly incom- The choice of the number of f sets in each dimension
plete rules, they contain only the most influential variables. ! u uzzy ! ; !

Formally, an incomplete rule uses implicibd andor logical cgrries significant consequences: it can be dynamically chosen
connectors. If ther; input variable space is partitioned intoWlthln the second approach. L . .
three fuzzy sets, the incomplete rule given above can be writtenwh.en the number of combmaﬂqns Increases, 't. IS necessary
as to limit the number of rules: the third approach initializes one
rule per data pair.
At last, the decision trees are introduced at the end of this

If (x; is A] or x; is A? or x; is A?) section. They generate incomplete rules but require a predeter-
and x; is AL Then y is Cs. mined fuzzy partitioning.

For a given rulei, its firestrength, also called weight andA- All the Rules Implemented
writtenw;, is computed as a conjunction operation between thejshibuchiet al. [6] consider a multiple input, single output
premise elementso; = yi 4 (z1) A Hal (z2) A A Has (zp),  system. They assume the input and output spaces to be?[0, 1]
wherey. y: (;) is the membership degree of to the fuzzy set and [0, 1]. For theth input variabler;, its domain interval is
A§ andA is theandoperator. Minimum and product are the mosgvenly divided intoK; fuzzy sets labeled ad}, A?,--- ,Af"*

commonand operators. as shown in Fig. 1 for the; variable withK; = 5. Any kind of
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Fig. 1. Automatic partitioning with 5 triangular membership functions.
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each rule has at most two neighbors in each input space dimen-
sion and, thus|&;| < 2P. The diffusion is done according to
the following serieg;(™

ifieS

- ) bis
g () {0, otherwise

Dy =1 qup g™ () + 1 inf ¢4,
g () Qjegiig () 3,0l g (7)

The series converges whengoes toward infinity and the
diffusion procedure is stable.

membership function can be used, the most common being the

triangle-shaped one

|a:—a§(7'
pij{z) = max{1— oK ,0
K J—1 L ) k1
i TR -1 J=1 K b K 1

B. Number of Fuzzy Sets Dynamically Chosen

The former method requires ti& to be set. For a given input
variable the choice of(; carries significant consequences. If
K, is too small, the system won't be able to model a nonlinear
behavior, it won’t be accurate enough. Conversely it is difficult
to increasdy; too much, due to the following reasons: 1)t
is too large, the corresponding fuzzy sets tend to be too specific,
resulting in a loss of generality and 2) the number of rules is the

All the rules corresponding to the possible combinations @foduct of all thek; coefficients.
the inputs are implemented. The total number of rules fpr a To avoid fixing theK; values, some authors propose to derive

input system isK; x Ky X -+ X K.

them from the data.

Nozakiet al. [7] propose a simple heuristic to calculate the 1) Partition Refinement:Bortolet [8] uses a partition refine-
rule conclusions, which are real numbers. For futee conclu- ment. At each step of the algorithm, a fuzzy set is added on the

sion is writtenb; and computed as

> wi(§) xu(5)
b = 1=

> wilj)
j=1

y(j) being thej pair observed output and;(;) thei rule fire-
strength for thej pair.
The j pair inferred output is then

)

Depending on both the choice of th& values and the input
space covering, some rules may never be fired by training
amples. Glorennec [5] proposes a diffusion procedure in or

to initialize the corresponding conclusions.

input that is responsible for the greatest part of the error.

Initially, each input is divided into two triangle-shaped fuzzy
sets. They are centered on the minimum and the maximum
values of the considered input domain.

At each step, all the rules corresponding to the possible com-
binations are implemented. Thth rule conclusion is first es-
timated using the least square regression. Let us npt¢he
number of linearly independent pairs whose weight for fuge
greater than a given threshold, typically setto 0.5

Yerain(J) = a0 + > _ a; % z;(5). )
i=1

Thea; coefficients are those that minimize the difference be-
tweeny;i.in and the observed output for the, pairs. The rule
conclusion is obtained by replacing thevalues in (2) by the
centers of the corresponding fuzzy sets.

The system for the corresponding fuzzy partitioning is, thus,
completely defined. It is now possible to process all of the
pairs. A new fuzzy set is added to prepare the next step of the
algorithm. This is done by identifying the region of the input

bace, then the input variable, and finally the center of the new

sz set. Aregion of the input space is bounded by the vertices
of two consecutive membership functions on each input vari-

Let.S be the set of rules whose conclusions have already begyj,

initialized; let us define théVs, neighborhoodV; being the
neighborhood of rulé

ifie S
otherwise

v {0

An error index is associated to each region. It is computed as
the product of the mean error for the pairs belonging to the re-
gion (n, for regionz) by the ratio of the input domain covered by
the considered region. An error index associated to each input
variable within the considered region is computed in the same
way. As an example, Fig. 2 shows the region defined by four

N is basically defined by the sets of rules whose premises diff€ft,, ;1 1, the regression cannot be achieved and less precise methods
from rule by only one fuzzy set. According to this definition,are proposed.
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Fig. 2. Partition refinement.

fuzzy sets @42, A3, A%, A3) in a two-input system and the for-  This definition can be extended to a membership function.

mulae corresponding to the error indices. The index is then called the sum of controversies associated with
The selected region and input are the ones for which the @m-given membership function and written as

dices are the greatest. The new center coordinate on the selected

input, j, is computed as SCMRXJ) = > CI(r)
rER
R is the set of rules whose antecedent in #evariable refers
Z e |yn = Gl to the jth membership function.
AV = :— To make the index values comparable it is normalized by the
Z lye — k- product of the number of fuzzy sets for the remaining variables
~ . J
Ci(xs) = ).
The limits of the new triangular membership function are the o,
centers of the fuzzy sets between which the new fuzzy set has m=1
been inserted. So, the input partitioning is still a strong parti- mE
tioning. N 1S the number of membership functions of théh variable.

Finally, the rule conclusions corresponding to the modified A new membership function is added for variables whose
part of the input space are updated. The system is ready for demtroversy index variance is high. The authors use a strong tri-
next iteration. angular partitioning, so that only the centers have to be stored.

The algorithm stops when the error reaches a minimum dhe new center location is computed as
when it becomes smaller than a given threshold. The method

Ny

does not con'tain. any prot'ection against intrqduping into the ch SCMRX7)
model the noise included in data: the only criterion to add a . =1

new fuzzy set is the error and it does not take into account the Cy =

current system. Z SCMRX7)

In [9], the refinement is based upon a controversy index. This
index, defined at the rule level, indicates the difference between

the rule conclusion and the observed output for the datapomtsContrary to Bortolet's method, the criterion is not evaluated

IN.an input space region, but at the rule level.
1t£hat activate the corresponding rule. It is computed as foIIowsZ) Using a Genetic Algorithmishibuchi et al. [10] deal
or rules . A
with classification problems. They want to generate fuzzy rules
n 12 that divide the input space int6' disjoint decision areas;,
Cl(i)= ([(yk — Ri)wi(k)]Q) being the number of classes to discriminate.
1 Different fuzzy partitions are automatically generated with
different values ofs’;, the number of fuzzy sets for thth vari-
R; ith rule conclusion; able. The coarser partitioning corresponds to small valués of
Y kth example observed output; The genetic algorithm is used to select the best suited level for
w;(k) ithrule firestrength for théth data point. each of the input space regions according to the data. All rules
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corresponding to a given partitioning are considered as possifdéso called attributes) of the selected variable. The process is
and the objective function of the genetic algorithm takes into apeated until all leaves are pure, i.e., they contain elements be-
count both the performance of the system and the rule base siarging to the same given class.

Through the evolution process the selected systems are thosEhe selected variable at a given step, is the one that maximizes

which maximize the information gain. The tree can be regarded as a source of a
F(S) = W,Cs — W, R message. The information needed to gen_erate this message isthe
sum for all the nodes, of the node entropies. The rule associated
Rs rules in the system; i i )
W., W,. corresponding weights. If x;, is Ail and x;, is A12 ... Then y is G,

Aﬁll corresponds to the first node of the path starting from the
root and leading to the node meaning that the first selected
In the method introduced by Wang and Mendel [11], theariable isi; and the subtree leading to notlstarts from the
number of rules is limited by the number of training pairs. lf; attribute of this variableC;, is the most represented class in
does not depend on the fuzzy partition resolution level, i.e., thedeb. An illustration is shown in Fig. 3.
number of fuzzy sets for each input variable. They propose theThe premise of the rule corresponding to nédgdefined by
following five step procedure: the set(, of the coupless, 5), thejth attribute of theth input
1) Each variable of the input space is automatically dividedariable, along the branch from the root to néde
into a user defined number of triangular membership The entropy for nodé is defined as
fuzzy sets. o b b
2) One fuzzy rule is generated for each data pairjtiheair Hy = - Zp’“ *log(py)
one is written *

C. Only One Rule per Data Pair

ph is thek class density withih node, that means the propor-
tion ratio of elements belonging to classThe cardinalities are
The fuzzy setsﬁlj. are those for which the degree of matctiuzzy and computed as the sum of the rule firestrengths for all
of xj is maximum for each input variabjefrom pairz. the elements in the node
The fuzzy seC; is the one for which the degree of match Dt
of the obsgrved outpug, is maximum. . N L= _’Z with |D*| = Z H p1i.5()
3) A degree is assigned to each rule. For a given rule it is |D*| 2eD? \(i./)eQ

equal to the rule firestrength for the considered pair. If () is the membership degree of paiinputi value to the

somea priori information is available, the confidence’'*7\" . b degre paimnputs :
L ' . i fuzzy set of input. |D? | is defined in the same way but with

level of each pair will be used too, the degree being tt{ﬁ}e subset of € D’ which belongs to clask

product of the firestrength by the confidence level. In case Let H be the node entropy aﬂdgthe numbér of fuzzy sets of

of identical premises for two rules, only the one with th(tahe considered input variable. The new entropy is the weighted

higher degree is kept. sum of the subnode entropies
4) Experts rules are allowed. Ttand rules induced from P
v

data may be combined withr rules given by experts. The

ifx; is Aj and x2 is Ay .. .and xp, is A then y is C".

_ by H by _ by b
membership degree for the missing variables is set to one, b= Z qv*H, with ¢ =|D"[/|D°|.
the neutral element for the product operatiomn.andand v=l
type rules are equally managed. The information gained by selecting the considered input
5) The output is computed through the centroid defuzzificyariable isG = H — E.
tion. To cope with expert uncertainty, the algorithm is adapted to
This procedure allows the rule base to be adaptive: new rugal with belief functions within the evidence theory formalism
competing with existing ones. proposed by Dempster and Shafer [14].
The main advantage of fuzzy decision trees is that they gen-
D. Decision Trees erate incomplete rules constrained to a given partitioning. In-

complete rules were introduced in Section II. They offer a com-

The decision trees were proposed by Quinlan [12]. Their a§act description of a given context by using only the locally most

plication is restricted to classification approaches. The ObJeCtISé%nificant variables. The rules generated by decision trees will

is to design paths leading to pure leaves with each leaf cor| : . L A
. , e informative for experts provided that the initial partitioning
sponding to an incomplete rule. The tree represents a subspace

of all the possible rules. was carefully defined.
Ichihashiet al.[13] propose a neuro-fuzzy implementation of
Quinlan’s interactive dichotomizer (ID3) algorithm. Unlike the
other methods mentioned in Section lll, the input space parti-Fuzzy clustering algorithms form a well- identified family of
tioning must be user defined prior to running the algorithm. rule induction techniques. They are used to organize and catego-
The tree induction is an iterative process. At each step a neee data. The result is a partition of the data into homogeneous
node is added. A node corresponds to an input variable and ggreups. The space partitioning is derived from the data parti-
erates a number of subnodes equal to the number of fuzzy t&ising and a rule is associated to each cluster. Unlike within

IV. Fuzzy CLUSTERING
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0 |Ti

] ] 1
] 1 ]
Node 2 rule : If z; is A2 Then y is C,
Node 5 rule : If z; is A} and x; is A? Then y is Cs

Fig. 3. An illustration of a fuzzy decision tree.

the previous section, the fuzzy sets are not shared by the set oFhe function optimization is done by an alternating optimiza-
rules. For a given dimension, each of them is tailored for oi®n procedure. First, the;; coefficients are randomly initial-
rule only. The resulting fuzzy sets are usually difficult to interized. Then, at each step, the two following operations are suc-

pret. cessively carried out.
. 1) Compute the fuzzy centets, assuming the.;; degrees
A. Fuzzy C-Means Clustering are constant numbers, using the following equation:

The first method, called Fuzzg-means, was introduced by

Dunnin 1973 [15]. Bezdek demonstrated its properties and pro- n
posed the first cluster validity criteria [16], [17]. Each of the Z U Tk
data pairs belongs to each of thgroups with a membership co- v = k=rll ] ©)
efficient,; being the membership degree of paio cluster:. m
Let D, be the distance between paiand clustet, basically Z ik
defined as the Euclidean norm and more generally as P=L
Di = ||zx — villi = (w1 — v;)A(zp — w)T 2) Compute the membershipg;,, assuming the; centers
are constant vectors, using
x;, being thek.;, data pair used for the clustering, being a
positive definite symmetric matrix, ang being the prototype 1
of clusters. Uik = — 2/m—1" (4)
Let U be theu;; coefficient matrix and’ the center coordi- Z <%>
nate matrix. The algorithm yield$ andV” which minimize the =1 Dy,

following loss function
These operations are reiterated until convergence when the

n c
Jrom = Z Z uli D center coordinates are stable with respect to a given tolerance.
k=1 i=1 The FCM algorithm is suitable for clusters with comparable

size and shape (spherical when using the identity matrix) or
when the clusters are well separated. The cluster prototypes are
- data points chosen as the cluster centers.
Z“Zk =1 Vk=1,---yn 1) Variations of the Original Algorithm:A lot of improve-
=t ments or generalizations of the basic algorithm have been pro-
m > 1, is the fuzzy exponent. posed.

under the probabilistic constraint:
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Krishnapuram [18], [19] introduced the possibilistic C-mearise generated from a single cluster. Indeed, projection of the mul-
by releasing the probabilistic constraint and by adding a punididimensional cluster onto one input dimension may yield more
ment term in the loss function in order to penalize low membethan one fuzzy set. This feature could reflect a real property as

ship degrees. The PCM loss function is written as there exist different premises leading to the same conclusion.

When using only the input part of the data pairs, a conflict
management procedure is needed: some pairs with different
Jrom = Z Z uiillon = vill® +m(1 = uif) outpu?values rgay belong to the same grouppbecause their input

=Lt parts are similar.

Z |z — v |2 The FCM algorithm and its derivatives requires some param-

eters such as the number of clusters and the value of the fuzzy
i = : exponent.

m
k=1

In the Gustafson—-Kessel algorithm [20], tHematrix is de-
fined according to the data. The covariance matrix, for group

B. Cluster Validity

Since Bezdek's early work, many teams have been involved
in finding the optimal number of groups, also called the
cluster validity problem. Two main techniques are available:

1S run the FCM algorithm with an increased number of clusters
n (¢ =2,...,n—1)and characterize each partition using indexes
Z“n i = vi) ! (@x — i) or, run one time only an algorithm which determines by itself
c; = k=1 . the best suited number of groups.
Zum 1) Indices to Characterize Fuzzy Partition¥ie and Beni
ik [28] define the best partition as the one that minimizes the ratio
of compactness;(c) to separatiorf(c). These measures ares
And the distance between pairand groupi becomes defined as follows
Df; = (w1, — vi)[de(C) /" C; H(ar — vi) ™. ZZu Ulew — villA
=1 k=1
The fuzzyC-regression model (FCRM) [21]-[23] produces S(c) = I};i? l[v; — 5]

hyperplane-shaped clusters, instead of hypersphere-shaped ones
for FCM and the prototypes are hyperplanes instead of data-

points. The prototype of thith group is Sugeno [26] suggests choosing the number of groups which

minimizes the following criterion

s =XTP X=[1 =z ... za)" n_ e
. . . . m 2 =112
P=ldy o ... ai]l. V(e) = > ()™ (lax = wills = llos = 71%)
k=1 1i=1
~The premise membership functions are generalized Gagspeing the centroid of the data set. The first term iswiitiin
sians expressed as group variance, the second one is bHegweergroup variance.
) Emamiet al. [27] use a similar formula, the centroid is
A(z) = ¢~ (@Pr/p2) replaced by its fuzzy extension. The difference between
Enami’s and Sugeno’s criteria gets larger as the fuzzy exponent
p1 andp, are tuned by a gradient method. increases.

2) Which Data for Fuzzy Clustering-uzzy clustering can  Burroughet al.[29] use a coefficient partitiod” and a clas-

be done using input-output data, input data only, or output dafification entropyH, to characterize each partition. They are
only. Depending on this choice the induced rules may or magfined as
not be completely defined.

S_ome a_luthors [_24], [25] want to take ad_vantage of all the F= 1 ZZ w2, 1 <F <1
available information and apply the clustering to the product i c
space X x Y. Therefore, the corresponding rule is completely 1
defined: the premise corresponds to the input part, and the con- H==- Z Z — ik * In(ug)
clusion to the output part. Input plus output based clustering " =1i=1
could be confusing. Some items could belong to the same cluster 1-F < H < In(c).

while being neither close in the input space nor in the output
space. Their closeness in the cluster is due to distances comLheir values depend on the number of clusters. In order to

pensating each other in the input-output space. makeF' and H independent, they can be scaled as
Sugeno and Emami [26], [27] run the clustering in the output 1

space. The rule premises are then defined by projecting clusters F— p H-—(1-F)

onto the input space. This operation is not trivial and the result is Fy = 1 and H, = m

usually affected by some noise. It can happen that several rules 1- P
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For good partitiond’; values are expected to be large Whi|€X 1 o8 Oc@)o L
H, values are expected to be small. The user has to find a co ? o) Q o 8
s Va 0% o R BPE®
promise. Op W ° o Oo@o J
2) Subtractive Clusteringthe algorithm proposed by Chiu 0.5 Oogo %OO Q 8 0.5
[24] is an improvement of the one called “mountain method o) .@8
developed by Yager [30]. % 05 08%
Each data point is considered as a potential cluster center, gLo © 8% oC 0
measure of the potential is associated to each point accordi 0 0.5 X, 0 0.5 1
to its neighborhood, itself being defined by a radiys,For the
point, it is written as @ } ()
P, = Z e~ Hei=mIP L with > 0. /
i=1 0.5
The point with the highest potentidf;* writtenz7, is selected
to become the first cluster center. Once the center is selected,
the potential of each pair is decreased according to its distance 00 0.5 1
to 7. The new potential for pair becomes ©

Al —a® 1|2 /22 . Fig. 4. The subtractive clustering. (a) Data pairs and clustersy (bjariable
P, =P — Pl*e_ lles =7 I /”’, with 7, ~ 1.57,. membership functions. (Y. variable membership functions.

The process is repeated. To avoid introducing the noisy Part-hen and Wang [31] propose an iterative method to tune the

of the Qata into the model, two thresholds are defirsadgnd fuzzy exponent. The membership function associated to cluster
s— typically set to 0.5 and 0.15, and a new center candiggte .

at stepk with its associated potenti&l;, is managed as follows:

MFi(s) = —
if PF > P *s+, x; is accepted as a new cluster center; 14+ (%)
if P < Py «s—,zj isrejected as a new cluster center and the 7
algorithm stops; v;,04,b; center, width, and crossover slope of the function:;
else , i o square root of the trace of thegroup covariance
let din be the shortest distance betwegnand all previ- matrix:

ously found cluster centers;
if (dwin/7e) + (Py/Pf) > 1z} is accepted as a new
cluster center;
(that means if it is far enough from the closest cluster)
elsexj is rejected, its potential is set to 0 and the algorithng
goes on.

chosen according te; and cluster center locations
to make sure membership functions overlap enough
to avoid inference breaking.

The objective is to find a value af, such as there exists for
ach dimension of the work space; at least one cluster for which
the inner deviation for theth dimensiong, is greater than the
training set deviation for the given dimensien,. The value of

This algorithm is quite sensitive to the different parameters, initially set to 1.5, is increased by 0.1 at each step of the
such as the neighborhood radius and the potential threshollgorithm. This costly method needs to run the FCM algorithm
Unfortunately, there is no theoretical guidance for choosirand to compute the covariance matrices for each increment. An
them. alternative way would be to check the sensitivity of the final

Fig. 4 shows the results of the subtractive clustering on a 16tbdel to the fuzzy exponent.
random pair set. The five centers found by the algorithm are Another method, proposed by Li and Mukaidono [32], does
highlighted in Fig. 4(a). They correspond to five rules whoseot use any fuzzy exponent. The loss function to minimize is
premises are defined by Gaussian membership functions shamritten
in Figs. 4(b) and 4(c). These functions are computed by pro-
jecting the points belonging to each cluster onto each dimen- " S

sion. J=>" D

k=1 1i=1

C. Tuning the Fuzzy Exponent zc:uzk —1 Vk=1,....n
The value of the fuzzy exponent controls the amount of fuzzi- i=1

nessinthe clustering process. The larger itis, the fuzzier the par-

tition. Whenm tends toward infinity, all cluster centers tend toThis last method called Gaussian-clustering method, maximizes

ward the centroid of the data. Many authors recommend a fixdte entropy with respect to each input pajtunder the two fol-

value ofm, usually 1.5 or 2. lowing constraints: (2) minimization of the loss function for pair
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k, and (b) normalization of membership degrees. The problé8hone hidden layer. The number of nodes in the hidden layer

becomes corresponds to the number of rules and it is upper bounded by
. the number of pairs.
maximize {_Kzuik log(uik)} K >0 Hidden Igyer units are locally tuned radial reg:eptive figlds.
= Learning aims to setup the network so that a hidden unit rec-
c ognizes one and only one kind of pattern. The hidden layer is
subject to (a) Z“ZkD’%Z =5 fully connected to the input layeand uniti performs the fol-
i=1 lowing operation:R;(z) = ¢ (#—¢)*)/7% ¢, ando; being the
 being a small positive number center and the standard deviation of the Gaussian membership
< function? respectively.
and (b) Y wi =1. (5)  The outputlayer is fully connected to the hidden layer. Within
=1 the configuration where rule conclusion are scalars, the defuzzi-

Their algorithm is similar to the FCM one, the cluster protolication is easy. For each output, the corresponding unit com-
typesu; are updated using (3), while (4) to update theis re- putes the weighted sum of the connections and the weight is the

placed by (6) which is the solution of the optimization pr0b|eﬁ‘,§restrength of the rule for the current pair. When the rule con-

) clusions are polynomial; = b, +bix1 +bhza+- - -+bix,, the
weights between input and hidden layers are not constant. The
e~ (Di:/20%) weights correspond to thig, - - -, b, coefficients, and a fixed
Wik = = — ) input, set to 1, is artificially added with& weight.
> e P/ Learning consists of determining the minimum number of
j=1 units in the hidden layer, i.e., the number of rules, the corre-

sponding vectors; ando;, and their weights.
@ First, the number of rules is set to 0. Then, at each step all the
' pairs of the training set are processed in turn. For eachipair
at stepk, wherery(j) is the jth hypersphere radius anrds a
tolerance value
This set of methods integrates many different tools, the
most famous and widely used being the genetic algorithms and .
the neural networks. Neural networks brought their learnidgl¥: — gix| > ¢ then
algorithms and numerical accuracy to FIS without paying much i there exists nodg such agz; — C.j)Q/"g? < rx(4), then
attention to the semantic. Genetic algorithms are more likely Modify ¢; ando; using the gradient method
to find a global optimum and may optimize both the structure /S€ create new node whose center;is
and the parameters of the corresponding FIS. These tools pr6{@€ rain the hidden nodes using the gradient method.
useful when there is no available expert knowledge and for

applications for which semantic is not a prime concern. Once all the pairs have been processed, the hypersphere radii
are decreased before the next step.
The algorithm terminates when the squared sum of errors is
Neuro-fuzzy models [33], including adaptive neuro fuzzy intess than a given tolerance or after a predefined number of itera-
ference systems (ANFIS) [34], [4] are fuzzy inference systerigns have been done. Note that this algorithm may be sensitive
implemented as neural nets. Each layer in the network cortg-the data processing order.
sponds to a part of the FIS: input fuzzification, rule inference This technique is close to the subtractive algorithm intro-
and firestrength computation, and output defuzzification. Thficed in Section IV-B.2 and, thus, could be classified as a clus-
main advantage of this kind of representation is that the FIS paring one.
rameters are encoded as weights in the neural network and, thugecent work attempts to use neural networks in a different
can be optimized via powerful well known neural net learningiay, with interpretability in mind. In [38], [39] the authors build
methods (Hebbian rule, back-propagation, etc.). a network for classification purposes. Each input is partitioned
In this paper, we first focus on a particular type called radigdto three fuzzy sets; each fuzzy set being in turn modified by
basis functions (RBF) networks. The main idea of RBF relies ®Rree hedges_ The network has two output nodes per class or
a local tuning of the process units, each of them correspondigghvex subclass. The first node is used to classify items which
to a local model. The architecture was first proposed by Moog|ong to the output class (positive items), and the second one to
and Darken [35], since then a lot of work has been done to bridg& ognize negative items for the same class. The interpretability
the gap between neural nets and FIS. Jang showed that Riffort consists in generating a single rule for each output node.
are equivalent to FIS under few restrictive conditions [36], the
most important being that the rule conclusion are scalars. MoréThat means each unit of the hidden layer is connected to each unit of the

recently Cho and Wang [37] suggested improvements to d'é‘&;f: 'afr'd C radial basis funct be used _ o
W|th pOlynomial or fUZZy ConCIUSionS. an e)l;l;/mlglle of radial basis function can be used, the Gaussian one is given as
An RBF is a three layer network: 1) the input layer of size srpg initial value ofs is computed using the standard deviation of the data

equal to the input vector size 2) the output layer of siz¢ and  set.

207 is called the temperature,being related te: by constraint

V. HYBRID METHODS

A. Neuro-Fuzzy Modeling
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TABLE |
MAIN METHODS FORFUZZY RULE INDUCTION FROM DATA

Family Method? Drawbacks Answers

All the possible rules (1II-A) Curse of dimensionality Partition refinement (7II-B.1)
Shared partitions | One rule per pair (III-C) Completeness not guaranteed

Decision trees (III-D) Pre-requisite partitioning
Clustering : FCM (IV-A) Number of clusters? Subtractive clustering (IV-B.2)

Neuro-fuzzy including RBF (V-A4) | Depending on implementation,
Hybrid Methods | Genetic Algorithms (V-B) on encoding.

¢ The number in parenthesis is the section number which describes the approach.

[

This is achieved by a backtracking procedure that selects the g a

maximal weighted path from the input layer to the output node.

B. Genetic Algorithms

Since they were proposed by Goldberg [40], genetic algo-
rithms (GA) have been widely used to learn input output rela-
tions and to design fuzzy controllers [41]-[4#s an illustra-
tion, let us examine the model introduced by Russo [47] which
aims to combine the respective advantages of fuzzy logic, neural

Fuzzy sets shared by rules &}0&» o
S
eyt

i

Space cover

networks and genetic algorithms. & Clustering

Its evolutionary algorithm considers a population of neural &
Qo

networks. Training consists of adjusting the different weights,
unit removal is allowed. Once defined, the network is encoded
as a chromosome and evolves within the population using se-

Work space size

lection, crossover and mutation operations.

Its evolutionary algorithm considers a population of neur&lg. 5. Choosing a rule induction method according to data characteristics.
networks. Training consists of adjusting the different weights,
unit removal is allowed. Once defined, the network is encoded g fitness function of the genetic algorithm is not restricted

as a chromosome and evolves within the population using §§-accuracy performance. It also rewards compact systems,

lection, crossover and mutation operations. which use a minimum number of input variables and favors
The network, corresponding torarule FIS, is made of 4 incomplete rules.

layers:

1)

2)

3)

4)

Input layer. it has at mosp neuronsp being the input VI. CONCLUSION

vector size.
Fuzzification layer the number of neurons is at most The three rule induction technique families are quite different

rp. There is one fuzzy set for each active input and fénd may correspond to specific needs. Table | summarizes the

each rule. Its Gaussian membership depends and MOSt important conclusions. . .
~, the center and the inverse of the standard deviation19- 5 shows the applicability of the first two families of
respectively. These values are encoded as weights aﬁr&ethods. Each one is better on one or the other of the plane areas

learnt through a back-propagation algorithm. An impmdefined by the training set characteristics, work space size, and

tant choice is done in this layer: the fuzzy sets are tailor&§Verage.
for each rule. The complexity is decreased compared with The methods that use shared fuzzy sets for the rule base are

fuzzy sets shared by all rules, but the induced partitionirfgPPropriate within a small size work space with a good cov-
is less suitable for human cooperation. erage. Otherwise, in case of a weak coverage the rule base com-

Inference layerthe rule firestrength is computed usinqjleteness is not guaranteed and, when dealing with large sys-
the min operator. All weights are set to one. ems, the number of combinations to manage is huge.

Output layer rule conclusion are scalars. The defuzzifi- ClUstering is well adapted for large work spaces with a small
cation is either done using the weighted mean of rule cofount of training examples. However, the induced rule legi-

tributions [see (1)] or using their weighted sum. bility gets worse as the work space size gets larger.
The hybrid methods, including neuro-fuzzy modeling tech-

5 Although GA ae very popular other stochastic techniques can be used swtques and genetic algorithm based ones, are not easy to lo-

as simulated annealing[46]

6The use ofy instead ofo allows the optimization of the learning time (by
replacing the division operation by a multiplication), and may avoid singulariti

cate on the figure. They cannot be viewed as a homogeneous
group; all of them are not on the same side. Their performance

in the neighborhood of = 0. highly depends on their implementation and particularly on the
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problem encoding. Thus, their global evaluation remains diffis* (respectivelyy?) is the observed output for paiiof group
cult. The main reason for using such techniques is their universh(respectivelyB), andy:*? (respectivelyy®) is the inferred
approximator property. They allow to optimize all the FIS pasutput, for pairi of group A (respectively,B) after training
rameters including the membership function parameters. If onlging groupB (respectively,A) sample.
guided by numerical accuracy the tuning algorithms may gen-The variables are selected using an ascending procedure. At
erate an unreadable partitioning. In these conditions, there is ttat first stepp models made of a single variable are considered.
much to be expected in terms of interpretability. Even if the pafhe first selected variable is that for which the corresponding
titioning is carefully respected, other difficulties occur due to th@odel minimizes the regularity criterion. At the second step,
great number of tunable parameters. A new research trend apnsl models of two variables, the already selected one and each
to produce areadable set of rules with hybrid methods, by tryinefithe remaining candidate ones, have to be assessed. The proce-
to extract the most significant rules. dure ends when the criterion increases. The maximum number

Once rule induction is done, whatever the technique used, tifenodels is boundeg{p+1)/2. Evenif this number is large, it
different parts of the FIS should be optimized to improve this still less than the number of all possible combinati@fis; 1.
interpretability.

B. Geometric Criteria

PART Il —SYSTEM OPTIMIZATION Once the clustering is done, Emaatial. [27] obtained the

Historically research teams have been interested in differdgzy sets by projecting the groups onto each input. If a mem-
levels of FIS optimization falling into two main categories: 1pership function is equal to one on a wide range for a given rule,
parameter and 2) structure optimization. then the corresponding variable is neutral, one being the neutral

Methods for the parameter optimization, membership funelement forand operators. An index of input nonsignificance
tion fine tuning and rule conclusion optimization, are widelyor a given rule is defined as the ratio to the entire range of the
used. Their respective advantages and drawbacks are wmetrval in which its membership function is one. Note that this
known [4], [5]. index is local to a rule. However, the authors use a global com-

In this paper, we will focus on structure optimization, inpubination of the local indices, their product, to make the variable
variable selection, and rule base reduction. Defining the F&2lection for the whole set of rules.
using the most useful variables only would benefit to inter- Another static and geometric method was proposed by Lin
pretablllty and Stablllty Rem0V|ng extra variables leads to ahd Cunr"ngham [50] Its Comp|ex|ty is linear with respect to

more compact set of rules and improves the rule interpretabiliffe number of inputs and the number of training pairs. Each pair
Moreover, rule base and parameter optimization are easigh each inputj is fuzzified as follows:

to achieve once extra variables have been removed. These
extra variables are also likely to bring more noise than useful ) pmax _ pmin
information. pjr(z) = e~ (@w—e/b) b~ #

As the available databases are getting larger and larger, FIS
will be helpful for the increased needs of knowledge discovery A fuzzy rule is associated to each training pair. For each input
if automatic procedures for variable selection and rule base Kethe output of each training pdiis computed as
duction are included in their design.

VII. V ARIABLE SELECTION Zﬂjk(%’l) " Yk
Variable selection can be achieved in a global or in a local Gt =
way. In the first case, the variable is removed and none of the Z“J’k(xﬂ)

rules can use it. In the second case, the selection is done at the
rule level leading to incomplete rules.

Some of the previously introduced rule induction methods areThe set ofc;; values is the fuzzy curve of inpyt Signifi-
dealing with variable selection. In a decision tree the path frogant input variables are supposed to have a wider range for their
the root to each leaf node only involves the few variables neftizzy curves,(c;naX — c‘;““)
essary for defining the associated rule. The genetic algorithmThe process of the fuzzy curve building is shown in Fig. 6.
objective function used by Russo [47] aims to minimize the The fuzzy curve looks like a kernel estimator projected onto
number of variables. Neural networks may be helpful too: tlene dimension. These estimators have been thoroughly studied

output sensitivity to the input variables can be used to rank thg mathematicians and none of their results is related to the sig-

input variables [48], [49]. nificance of such isolated projections. Moreover, dealing with
) o isolated variables relies on the assumption that they are inde-
A. Regularity Criterion pendent. This assumption is not usually satisfied in real world

Sugeno, [26], proposed to make the selection using a cropseblems, local contexts being defined by a subset of some in-
validation procedure. The training set is randomly split into twiracting variables.

groups,A and B, and the criterion to be minimize is
C. Individual Discrimination Power

ka kp
RC = 1L Z(y Z The originality of the method proposed by Hong and Chen
2|k P P = [51] is to make the selection before defining the space parti-
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This approach also makes the assumption of variable inde-

++

D. Entropy Variation Index

This approach, proposed by Pal [49], is similar to the previous
one; it also deals with classification problems and it implicitly
assumes variable independence.

The entropy is a measure of fuzziness. For a given fuzzy set

+7 LT L »
10 +, . 10 /}%/\ A pendence, so that their individual contributions are additive.
4

@ () A, it may be expressed as
8
1 n
H(4) = o ; pa(z:)log(pa(z;))
4 — (1 = pa(w;)) log(1l — pa(w;))
20 P 7 p H(A) reaches a maximum whe# is most fuzzy, i.e., when

pa(z;) =0.5Vi, and a minimum whep 4 (x;) = 0 or 1V«.
The author uses a@type function membership for modeling

Fig. 6. Fuzzy curve process. 11, defined as follows on the intervil, ], b being the crossover

point for which the function value is 0.5,= (a + ¢)/2

tioning. However, it is restricted to classification problems. It is

a five step procedure. 0, z; <a
2

1) Letg; be the number of unique values for inputA,;, 9 [xz — “} 7 a<z<b
i — . c—a
J (1""’QZ)' ) . . /JA(.IZ‘;CL,Z),C): 2

2) Letn,; be the number of instances whaseput value is T —¢

. . 1-2 , b <e

A;ij. Letng;;, the number of instances belonging to class c—a
k whose value i4;;, ni;x < ny;. The discrimination 1, T, ZcC.

fi

Ji

power is based on the number of instances for which an

input value corresponds to only one class. This number,| et ;. be the values of input variable for the pairs be-

t;, is computed as longing to clasg. Let H,; be theH value of the fuzzy set de-
fined by the following parameters:

ti = Znuk {9 =1, a3k, nijr = nij}
J

c=b+ maX(K"T'qj)av - ("T'qj)maXL |(xqj)flvv - (xqj)minD
a=2b—c¢

{ b= (xqj)av

3) Compute the discrimination power index of each input

variable,i. The following two formulae are proposed: ) ) ) .
av, min, and max being, respectively, the average, the minimum,

and the maximum value af;.

The highestvalues df,; are reached when a great number of
pairs have a membership degree close to 0.5; that means, when
the pairs are grouped in the neighborhood of the average. In

SHPR

, 1 & nijh e nijk othgrwordsﬁqj varigs in the reverse order of the within group
=1l-= _E Z ¢ 08p | — - variance of input variable for class;.
g=lk=1 Z Nijk Z Nijk If two classes are mergegl,andk, and once the parameters
k=1 k=1 a, b and ¢ have been computed according to the new group,

the corresponding entrops,, ;», will be smaller as the average
The second formula corresponds to an entropy definitiovalues of the two classes,; andz. are further from each

¢ being the number of classes. other. In other wordsH,,; varies in the reverse order of the
4) Sort the variables in descending order of discriminatid?etween group variance of input variailéor the classeg and
power. k.

5) Select the relevant input variables: the variables are se-Thus, the most discriminant variable for the two classes, is
lected in the order mentioned above till the error becom#3e one that minimizes the variable evaluation index
less than a threshold (0.1 given as an example). The error
variable, err, is initialized to 1 and updated asr = Hyjp
e VEl, = —4*
err* (1 — f;) when inputi is selected. H,; + Hy,
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TABLE I
VARIABLE SELECTION METHODS

Method? Technique H® | Advantage or drawback
Regularity criterion (VII-A) Cross validation Incremental method- Time consuming
Genetic Algorithm (V-B) Selection for all the rules or Poor information

Rule by rule selection

Geometric criteria (VII-B)
Fuzzy set kernel width Rule level measurement . Combination of local indices at the rule base level

Fuzzy curve Kernel estimator . Criterion interpretation?

Restricted to classification problems:

Decision trees (III-D) Incomplete rules
Individual discrimination power (VII-C) | All the classes . Selection done before partitioning
Entropy variation (VII-D) For pairs of classes . Rule base selection

¢ The number in parenthesis is the section number which describes the approach.
b Variable independence implicit hypothesis.

In order to deal with more than two classes, the followintywo or more bases are to be merged; for example, an expert
generalization is proposed: knowledge based rule base and some rules induced from data.
Two kinds of techniques are available. The first one consists

c of merging compatible elements: clusters, fuzzy sets, or vari-
Z Hoyj ables. The second family of methods is based upon statistic input
k=1 domain transformation.
OVEl, = 2%
> Hy A. Merging
j=1

Generate a high number of rules using a clustering method
The overall variable evaluation index yields an average:naakes the resulting partition less sensitive to the initial condi-
variable which separates one class from all the others will ntiidns. Babuska and his co-workers [52], [53], [25], [54] propose
be assigned a high value. Its value does not depend on the caadiimprovement of the compatible cluster merging procedure
nality of the classes, which can be considered sometimes adiest introduced by Krishnapuram and Freg [55]. The cluster
advantage, sometimes as a drawback, depending on the conshdpe is defined by the eigenvectors (ellipsoid direction) and
The characteristics of the available variable selectidhe corresponding eigenvalues (axis length). The clustering is

methods are summarized in Table II. done using the Gustafson—Kessel algorithm: the distance func-
tion uses the covariance matrix.
VIIl. RULE BASE OPTIMIZATION For a given clustet, the hyperplane is defined by the fol-

Three properties are usually required for the rule base: congwing equation(z _.Ui) - $ia = 0, whereg;, is the smallest

) . - eigenvalue of cluster.

nuity, consistency and completeness. The continuity guarante . o . .

that small variations of the input do not induce big variations he two merging criteria are for clusterand,.

for the output. Consistency means that if two or more rules are1) Their hyperplanes are almost parallgl;, - ;.| > k1, k1

simultaneously fired their conclusions are coherent. Complete-  close to one.

ness means that for any possible input vector, at least one rule i2) Their centers are closge; — ¢;|| < k2, k2 close to 0.

fired, there is no inference breaking. When the interpretability Two matrices are computed]1 and C2. cl;; (respectively

is of major importance, it is also necessary to eliminate redus®;,) is the degree of similarity of clustérand j according to

dancy. the first (respectively, the second) criterion. These values are
Some of the previously introduced rule induction methodszzified into a two-dimensional (2-D) space so that the ideal

deal with the rule-base size. The objective function of the geandidate coordinates become (1, 1) leading to new matfites

netic algorithm is partly defined by the number of rules. ThandC2. The two criteria may partially compensate each other.

RBF and the subtractive algorithm tend to minimize the numb@&wo clusters whose hyperplanes are not so parallel but whose

of generated rules by starting from a small size rule base andéenters are very close can be merged, conversely. To take this

crementally adding rules when needed. fact into account the criteria are combined into a single matrix
The converse method is also possible: generate a high numb&ng the geometric meap;; = /¢ly; - ¢2;;. These compati-

of rules, at most one for each training pair, and then reduce thiéty degrees are then thresholded with a given value (0.7 as an

rule base. The rule base reduction methods are also useful whrample). Finally, the remaining candidates are merged if they
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do not contain in their common neighborhood any incompatibtimns may be difficult. Foulloy [58], [59] designed in this way

cluster. This condition is formalized as symbolic sensors for color evaluation.
min max dj > max dj B. Statistic-Based Methods
ceM ci,c;EM oL
ok EM ] These methods also initialize a great number of rules, one rule

_ ) . . per pair and select the most influential ones using statistic based
d;; being the distance between clusieand j in the premise methods. These methods are powerful and mathematically well
space; the clustering being done in the product space. established. However, some of them perform an input domain

Cluster merging is strictly equivalent to rule merging as gansform which yields a loss of semantic.

rule is associated to a cluster. In another method, also proposeg) Orthogonal Least Squares (OLS) Methodge OLS
by the researchers of Delft university [56], the elements to gy [60], [61] makes the selection using a linear regression.
merged are the fuzzy sets, the rule-base reduction being a CoRgeyse linear methods for nonlinear optimization the problem
quence. The authors highlight three kinds of unwanted similgf;,st be rewrittem. A FIS can be seen as a two-layer system.
ities between fuzzy sets produced by automatic rule inductiqfi'rst, the input variables are mapped through a nonlinear
1) similarity between two fuzzy sets for a given input variablg;iection into a new space and second, the output is computed
2) similarity of a fuzzy set to the universal s€t(uu () =1 35 3 linear combination of this new space components. For
vz € X); and 3) similarity of a fuzzy set to a singleton set.  \wang and Mendel [62], a FIS is a linear combination of fuzzy

The paper proposes automatic methods to manage the glis functions (FBF), each of them performing a nonlinear
two types but not for the last one. The corresponding rules M@apping of the input vector.

rgrely be f.ired, but this situation may also correspond to excep-rirst, a rule per data pair ( Sec. 1lIl-C) is generated. The rule
tion handling, thus, the removal of close to singleton fuzzy Seﬁnembership function for dimensighis a Gaussian function

has to be confirmed _by_ ex_perts. centered arounﬂ}j
An example of a similarity measure between two fuzzy sets,
AandB,is NS
: —(1/2) ((wrw;)/o;-) i ;
|AN B uA;-_(a:j) = aje , with 0 <aj <1

S =10 | o
The inferred output for a given inputis

where| - | stands for the fuzzy cardinality amdandu operators

represent the intersection and union, respectively. r

The algorithm consists of merging the two most similar fuzzy Z d H pai (x;)
sets into a new one and then updating the rule base. This opera- i=1 J=1
tion is repeated until there exist compatible fuzzy sets, those for fz) = ” P
which the similarity measure is greater than a given threshold. H toai ()
Finally, sets that are close to being universal sets are removed, =1 \,=1

the closeness being defined by another threshold.

When the fuzzy sets are trapezoidal, a», a3, a4 being the  The FBF,f;(x), is the relative contribution of rulefor thex
parameters for fuzzy set, the resulting fuzzy sef’ is defined example inferred output

from AU B by
p
¢1 = min(aq, by) HUA;'. (z5)
j=1
c2 = Agaz + (1 — A2)b2 Ji(z) = — : .
c3 = Azaz + (1 — )\3)1)3 Z NA; (xj)
¢y = max(ayq, by) i=1 \j=1
Az, Az € [0, 1], both set at 0.5 in the example. Thus, the fuzzy system can be written gs= ", fi(x)8;,

The result of the process depends on the thresholds Wanere; € R are the scalar parameters to optimize yo&=
merging fuzzy sets and for removing universal sets. Thed + E; y being the observed output vector, afidhe error.
interpretability improves as the thresholds get lower. Each regressoy,, is ar-dimensionabector, the general term

It is sometimes possible to combine input variables and, thy$; being the firestrength of rulefor pair j.
to reduce significantly the rule-base size. Before combining theThe OLS learning algorithm transforms tlfievectors into a
variables, the user has to check if the new variable is still measet of orthogonal ones using the Gram—-Schmidt procedure. The
ingful. Within a control framework, Lacrose [57] combined the”” matrix is decomposed into an orthogonal ma#ixand an
error and all its derivatives into a single variable. upper triangular matri¥d. The space spanned by the set of or-

The use of multidimensional membership function also leatfsogonal vectors is the same that spanned byfthectors, so
to a small number of rules. The input space partitioning is dotlee problem can be written ag:= Wg + E. The orthogonal
by a Delaunay meshing, i.e., triangulation for a 2-D space. Theast square solution & = wly/wiw;, 1 < i < r. The
definition of meaningful multidimensional membership funcguantitiesg andé satisfy the triangular systeml@ = g. The
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TABLE Il
RULE BASE OPTIMIZATION METHODS

Family Major approaches® Technique Advantage or drawback

Clustering (IV) Choice of the number of rules
Incremental procedures | RBF (V-A) Rule addition Introduction of noise

Partition refinement (III-B.1) into the model.

Clusters merging Heuristic Less sensitive to initial conditions
Merging (VIII-A) Fuzzy sets merging Similarity measures Formally defined fuzzy arithmetic

Mathematical merging Variable recombination Keep aware of semantic

Symbolic merging Multidimensional fuzzy sets Difficult to design

OLS (VIII-B.1) Regression after a non linear projection | Mathematically established (robust)
Statistic based methods | SVD (VIII-B.2) Work space size reduction Legibility?

PCA (VIII-B.2) Inadvisable

¢ The number in parenthesis is the section number which describes the approach.

w; vectors being orthogonal, their individual contributions are Some recent work shows interest in this technique [64], [65].
additive (no covariance). At each step the algorithm selects thiee model of Yeret al. [64] is of the formY = Xb. X is
vectorw;, which maximizes the explained variance of the ohnitialized from data pairs like in the former section. The rule

served outpuy, i.e., the following criterion i conclusion is computed ag(z) = b2 + bizy + -+ - + bz,
Thus, thejth line of matrix X containsn blocks, one for each
g?wlw; rule. Each block is made gf + 1 values corresponding to the

[errls = Ty jth pair coordinates weighted by the firestrengtit;) of each

rule ¢ for the jth pair. The values of the ruleblock are
The algorithm stops when the output has been reconstructed

well enough. This occurs at step such as wi(j) wi(f)e(d) wilfr2(d) o wil)r(d)-
The final space size;, » < rank(X) is determined after
v checking the singular values. Then thWematrix is partitioned
1— 7], , . . _
D lerrli < ere as:v = | V11 V2l herer, is ar x » matrix. LetVT —

i=1 Vo1 Va2
being a threshold value. (V{4 V3i]. Applying theQR algorithn? to V, Q being ar x r
ogonal matrix and?;; an upper triangular matrix, yields
Once the rules have been selected, Hohensohn gndMer?Jg? ermutation matrigl: QT IT — (R, Ry The firstr
[63] propose to rerun the algorithm with the only objective t1€ P on : = Lty fuaf. THE TS
optimize rule conclusions, without doing any selection. The§P!umns ofil indicate the corresponding fuzzy partitions.
note that after the first pass the selected vecigrstill contain 1€ PCAis used by Kiret al.[23] to build new uncorrelated
information related to removed rules. components from the input variables. The rules are initialized
2) Multivariate Data Analysis Based Method#ultivariate by a clustering procedure and the traqsformation is_done within
data analysis provides tools for working space reduction, tR&Ch cluster. For each rule, the covariance matrix is computed,
most popular being the principal component analysis (PCABT‘,dthe rule is defined in the eigenvector space, each eigenvector

These methods are all based on a rectangular matrix propet@jd @ linear combination of theinput variables. _
named singular value decomposition (SVD). hile the merging techniques preserve the semantic, the
The decomposition is written as input domain transform based methods produce rules that

cannot be read by an expert, so they are not suited to human

I cooperation. The characteristics of the rule base reduction

X = Z Vv, or X =UsvT methods are summarized in Table III.
=1

IX. CONCLUSION
! < min(n,p) rank of matrixX;
A singular values ofX sorted in a descending
order;
Uu; n-dimensionaleigenvectors within the row
space;
v; p-dimensional eigenvectors within the
column space.
All of them are orthonormal. "This method is similar to the Gram—Schmidt procedure.

Many techniques to design FIS from data are available, they
all take advantage of the property of FIS to be universal ap-
proximators. In order to compare FIS with other modeling tech-
niques, their performance is usually measured by a numerical
index, the mean square error. But the blind improvement of the
performance may conflict with the originality of fuzzy logic: its
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TABLE [V
RULE BASE NEEDSACCORDING TOFIS APPLICATIONS
Constraint | Application Semantic | Consistency | Continuity | Completeness
Control + +++ +++ +++
In line Classification + ++ + 44+
Decision support | ++ +++ +++ ++
Off line Diagnosis +++ ++-+ ++ +
Simulation +++ ++-+ +++ +
TABLE V

INTERPRETABILITY OF FUzzY RULE GENERATION METHODS

Family? Interpretability

Rule induction

Shared partitions High: Fuzzy sets can be interpreted as linguistic labels
(1II-A,I1I-B.1,1I1-C)

Decision trees (1II-D) High: Each generated rule only uses a subset of input variables
Clustering (1V) Low: By construction the fuzzy sets are different for each rule,

which makes rule comparison and interpretation difficult

Hybrid Methods (V) Low to average: Low in case of membership function parameter tuning,

average when rule generation is done with fixed partitioning

Rule base optimization

Merging (VIII-A) Average to high: Depending on the elements to be merged

Statistic based methods (VIII-B) | Poor: Due to the transformed input space

¢ The number in parenthesis is the section number which describes the approach.

interpretability. What are the necessary conditions for a setféify. 5, most of these methods become redhibitory for large sys-
induced rules to be interpretable? First, the fuzzy partition musins. Indeed the curse of dimensionality prevents the use of
be readable, in the sense that the fuzzy sets can be interpretethods which generate all the possible rules. The techniques
as linguistic labels. These labels must be meaningful for expetitat generate one rule per pair either suffer from an insufficient
of the problem under study, so as to allow the rules to be cospace coverage or have a great number of data points at their dis-
pared to each other, and to lead to knowledge discovery. Secpadal, which also leads to a curse of dimensionality. The only
the set of rules must be as small as possible. The reductiomuéthod from that family that at once escapes from that incon-
a set of rules results in a loss of numerical performance on thenience and has a good interpretability level is the fuzzy deci-
training dataset, but a more compact set has a better generakitan tree. Recall, that it needs a prior fuzzy partitioning, which
tion capability while being easier to read. For large systemssaa bearable constraint when one searches for an interpretable
third condition is required: the rules should be incomplete rulesystem.
If the rule premisses involve the whole set of variables, thereClustering approaches are very effective in large systems with
is a loss of interpretability without a corresponding increase aflow-space coverage. However, as the induced fuzzy sets are
performance, when the rule context can be defined by a subdifierent for each rule, this forbids rule comparison and consid-
of the available variables only. The systematic presence of ethbly reduces the interpretability.
variables in all rules can be considered as a drawback of mosfThe third family of methods is characterized by a variable
automatic rule induction methods, due to the techniques theimterpretability level due to its heterogeneity. Historically, these
selves. It is not an intrinsic characteristic of the problem. methods were not designed with an interpretability concern. Re-
The interpretability needs depend on the final use of the FI&nt work noticeably improved that side.

Table IV summarizes the main potential applications and theThe second condition to be met for a good interpretability
corresponding rule base needs. is the reduction of the rule base. The first step is, of course, the
Table V compares the main families of rule induction and rubeariable selection. Other optimization methods can follow; their
base optimization methods in terms of interpretability. Genanterpretability level is summarized in Table V. Statistic based
ally speaking, the methods where all the rules share the samethods yield a set of rules difficult to be interpreted as the par-
partitioning yield a higher degree of interpretability as they fulitioning is defined onto the transformed input domain. Merging
fill the first condition stated above. Nevertheless, as shown techniques are more suitable for interpretability purposes. How-
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ever, the interpretability depends on the elements to be mergedg]
it is higher for fuzzy set merging than for cluster merging.

The only approach that deals with the third interpretability[ZO]
condition is the fuzzy decision tree. Most of the available vari-
able selection methods operate in a global way. Unselected vaii]
ables are completely removed and cannot be used by any ru
Only fuzzy decision trees are able to generate incomplete rules
but in the restricted context of classification. (23]

Recent work [66] showed that the selection and simplification
can also be done within a rule neighborhood that includes gy
small group of rules, using reasoning based methods in order
to produce reusable knowledge. [25]

The set of procedures able to generate and merge incomple[g%]
rules, data induced as well as expert rules, is still an open way
of research. [27]

ACKNOWLEDGMENT 28]

The author would like to send special thanks to Brigitte[zgl
Charnomordic for her powerful and faithful accompaniment

throughout this work.
[30]

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,Inform. Contro| vol. 8, pp. 338-353, 1965.

[2] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,’Int. J. Man-Mach. Studvol. 7, pp. 1-13,
1975.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cations to modeling and controllEEE Tran. Syst., Man, Cybernol.
SMC 15, pp. 116-132, 1985.

J.-S. R. Jang, C.-T. Sun, and E. MizutaNguro-Fuzzy and Soft Com-
puting Englewood Cliffs, NJ: Prentice Hall, 1997. [34]
P.-Y. GlorennecAlgorithmes d’apprentissage pour systémes d'inférence
floue Paris, France: Hermes, 1999. [
H. Ishibuchi, K. Nozaki, H. Tanaka, Y. Hosaka, and M. Matsuda, “Em-
pirical study on learning in fuzzy systems by rice test analy$isZzy
Sets Systvol. 64, pp. 129-144, 1994.

K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful
heuristic method for generating fuzzy rules from numerical data,”[37]
Fuzzy Sets Systol. 86, pp. 251-270, 1997.

P. Bortolet, “Modelization et commande multivariable floues: Applica-

tion a la commande d’un moteur thermique,” Ph.D. dissertation, Inst[38]
Nat. Sci. Appl., Toulouse, LAAS-CNRS, Dec. 1998.

I. Rojas, H. Pomares, J. Ortega, and A. Prieto, “Self-organized fuzzy
system generation from training examplelgEE Trans. Fuzzy Syst.  [39]
vol. 8, pp. 23-26, Feb. 2000.

H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if-then rules for classification problems using genetic algorithit=EE
Trans. Fuzzy Systvol. 3, pp. 260-270, Aug. 1995.

L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from [41]
examples,”IEEE Trans. Syst., Man, Cybermvol. 22, pp. 1414-1427,
Nov./Dec. 1992.

J. R. Quinlan, “Induction of decision treedyfach. Learn, vol. 1, pp.
81-106, Aug. 1986.

H. Ichihashi, T. Shirai, K. Nagasaka, and T. Miyoshi, “Neuro-fuzzy id3:
A method of inducing fuzzy decision trees with linear programming for [43]
maximizing entropy and an algebraic method for incremental learning,”
Fuzzy Sets Systol. 81, pp. 157-167, 1996.

G. Shafer, A Mathematical Theory of EvidencePrinceton, NJ:
Princeton Univ. Press, 1976.

J. C. Dunn, “A fuzzy relative of the isodata process and its use in de-
tecting compact well-separated cluster, Cybern, vol. 3, no. 3, pp.  [45]
32-57, 1973.

J. C. BezdekPattern Recognition with Fuzzy Objective Functions Al- [46]
gorithms New York: Plenum , 1981.

T. A. Runkler and J. C. Bezdek, “Alternating cluster estimation: A new [47]
tool for clustering and function approxiamtionlEEE Trans. Fuzzy

Syst, vol. 7, pp. 377-393, Aug. 1999. [48]
R. Krishnapuram and J. M. Keller, “A possibilistic approach to clus-
tering,” IEEE Trans. Fuzzy Syswol. 1, pp. 98-110, May 1993.

(31]

(32]

(3] 33]

[4]
(5]

(6] (36]

[7]
(8l
[0l
[10] a0,

[11]

[12] [42]

(13]

[14] [44]

[15]

[16]

(17]

(18]

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

R. Krishnapuram and J. Kim, “A note on the Gustafson—Kessel and
adaptive fuzzy clustering algorithmdEEE Trans. Fuzzy Systol. 7,

pp. 453-461, Aug. 1999.

D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covari-
ance matrix,” inProc. IEEE CDG San Diego, CA, 1979, pp. 761-766.
R. Hathaway and J. Bezdek, “Switching regression model and fuzzy
clustering,”IEEE Trans. Fuzzy Systol. 1, pp. 195-204, Aug. 1993.

E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy mod-
eling,” IEEE Trans. Fuzzy Systol. 5, pp. 328-337, Aug. 1997.

E. Kim, M. Park, S. Kim, and M. Park, “A transformed input-domain ap-
proach to fuzzy modeling/EEE Trans. Fuzzy Sysvol. 6, pp. 596—-604,
Nov. 1998.

S. L. Chiu, “Fuzzy model identification based on cluster estimatidn,”
Intell. Fuzzy Systvol. 2, pp. 267-278, 1994.

R. Babuska and H. B. Verbruggen, “An overview of fuzzy modeling for
control,” Control Eng. Practicevol. 4, no. 11, pp. 1593-1606, 1996.

M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-
tive modeling,”IEEE Trans. Fuzzy Systol. 1, pp. 7-31, Aug. 1993.

M. R. Emami, |. B. Turksen, and A. A. Goldenberg, “Development of
a systematic methodology of fuzzy logic modelintEEE Trans. Fuzzy
Syst, vol. 6, pp. 346-361, Aug. 1998.

X. Xie and G. Beni, “A validity measure for fuzzy clusteringEEE
Trans. Pattern Anal. Machine Intelivol. 13, pp. 841-847, Aug., 1991.

P. A. Burrough, P. F. M. van Gaans, and R. A. MacMillan, “High-res-
olution landform classification using fuzzy k-meanBlizzy Sets Syst.
vol. 113, no. 1, pp. 37-52, July 2000.

R. R. Yager and D. P. Filev, “Generation of fuzzy rules by mountain
clustering,”J. Intell. Fuzzy Systvol. 2, pp. 209-219, 1994.

M.-S. Chen and S.-W. Wang, “Fuzzy clustering analysis for optimizing
fuzzy membership functionsFuzzy Sets Systol. 103, pp. 239-254,
1999.

R.-P. Li and M. Mukaidono, “Gaussian clustering method based on
maximum-fuzzy-entropy interpretationfuzzy Sets Systol. 102, pp.
253-258, 1999.

P.-Y. Glorennec, “Un reseau "neuro-flou” evolutif,” Meuro-Nimes,
Fourth Int. Conf. Neural Networks ApplicatNanterre, France, Nov.
1991, EC2.

J.-S. R. Jang, “Anfis: Adaptive-network-based fuzzy inference sys-
tems,”IEEE Trans. Syst., Man, Cyberwol. 23, pp. 665-685, 1993.

] J. Moody and C. Darken, “Fast learning in networks of locally-tuned

process units,Neural Comput.vol. 1, pp. 281-294, 1989.

J.-S. R. Jang and C.-T. Sun, “Functional equivalence between radial
basis function network and fuzzy inference system&EE Trans.
Neural Net, vol. 4, pp. 156-159, 1993.

K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy
systems and their applications to system identification and prediction,”
Fuzzy Sets Systol. 83, pp. 325-339, 1996.

S. Mitra, R. K. De, and S. K. Pal, “Knowledge-based fuzzy mlp for clas-
sification and rule generation|EEE Trans. Neural Networksol. 8, pp.
1338-1350, 1997.

S. Mitra and Y. Hayashi, “Neuro-fuzzy rule generation: Survey in soft
computing framework,"IEEE Trans. Neural Networksvol. 11, pp.
748-768, 2000.

D. E. GoldbergGenetic Algorithm in Search, Optimization and Machine
Learning Reading, MA: Addison-Wesley, 1989.

C. L. Karr, “Design of a cart-pole balancing fuzzy logic controller using
a genetic algorithm,” irConf. Applicat. Artificial Intell Bellingham,
WA, 1991.

C.-K. Chiang, H.-Y. Chung, and J.-J. Lin, “A self-learning fuzzy logic
controller using genetic algorithms with reinforcement§EE Trans.
Fuzzy Systvol. 5, no. 3, pp. 460-467, Aug. 1997.

D. Leitch and P. Probert, “New techniques for genetic development
of fuzzy controllers,”|EEE Trans. Syst., Man, Cybern, @l. 28, pp.
112-123, Aug. 1998.

A. Gonzales and R. Perez, “Slave: A genetic learning System Based on
an lterative Approach,lEEE Trans. Fuzzy Syswol. 7, pp. 176-191,
Apr. 1999.

C.-C.Wong and S.-M. Her, “A self-generating method for fuzzy systems
design,”Fuzzy Sets Systol. 103, pp. 13-25, 1999.

F. Guély, R. La, and P. Siarry, “Fuzzy rule base learning through simu-
lated annealing,Fuzzy Sets Systol. 105, pp. 353—-363, 1999.

M. Russo, “Fugenesys—A fuzzy genetic neural system for fuzzy mod-
eling,” IEEE Trans. Fuzzy Systol. 6, pp. 373-388, Aug. 1998.

D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using a
multilayer perceptron,J. Neural Network Compuytvol. 1, pp. 40-48,
1990.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

[49] N. R. Pal, “Soft computing for feature analysiglzzy Sets Systol.
103, pp. 201-221, 1999.

(58]

[50] Y. Lin and G. A. Cunningham, “A fuzzy approach to input variable [59]
identification,” inProc. IEEE Conf. Fuzzy SysOrlando, FL, 1994, pp.
2031-2036. [60]

[51] T.-P.Hong and J.-B. Chen, “Finding relevant attributes and membership
functions,”Fuzzy Sets Systiol. 103, pp. 389-404, 1999.

[52] U. Kaymak and R. Babuska, “Compatible cluster merging for fuzzy [61]
modeling,” in Proc. Fourth IEEE Int. Conf. Fuzzy Sys¥okohama,
Japan, Mar. 1995, pp. 897-904.

[53] R. Babuska and H. B. Verbruggen, “A new identification method for [62]
linguistic fuzzy models,” inProc. Fourth IEEE Int. Conf. Fuzzy Syst.
Yokohama, Japan, Mar. 1995, pp. 905-912.

[54] R. Babuska, J. A. Roubos, and H. B. Verbruggen, “Identification of [63]
mimo systems by input-outputs its fuzzy models,Finez-IEEE 98An-
chorage, AK, May 1998, pp. 657—-662.

[55] R. Krishnapuram and C.-P. Freg, “Fitting an unknown number of lines[64]
and planes to image data through compatible cluster mergRagt&rn
Recognit, vol. 25, no. 4, pp. 385-400, 1992.

[56] M. Setnes, R. Babuska, U. Kaymak, and H. R. van Nauta Lemke, “Sim{65]
ilarity measures in fuzzy rule base simplification?EE Trans., Syst.,

Man, Cybern,.vol. 28, pp. 376-386, 1998.
[57] V. Lacrose, “Réduction de la complexité des contréleurs flous: Appli- [66]

cation a la commande multivariable,” Ph.D. dissertation, Inst. Nat. Sci.

Appl., Toulouse, LAAS-CNRS, Nov. 1997.

443

E. Benoit and L. Foulloy, “Exemple de capteur symbolique flou en re-
connaissance des couleurRGE vol. 3, pp. 22-27, Mar. 1993.

L. Foulloy, S. Galichet, and E. Benoit, “Fuzzy control with fuzzy state
sensors,” irEUFIT’'94, Aachen, Germany, Sept. 1994, pp. 1156-1160.
S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their application to nonlinear system identificatidnf’ J. Contro|

vol. 50, pp. 1873-1896, 1989.

S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function network$ZEE Trans.
Neural Networksvol. 2, pp. 302—309, Mar. 1991.

L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal ap-
proximation, and orthogonal least squares learnitieFE Trans. Neural
Networks vol. 3, pp. 807-814, 1992.

J. Hohensohn and J. M. Mendel, “Two pass orthogonal least-squares
algorithm to train and reduce fuzzy logic systems,Piroc. IEE Conf.
Fuzzy SystOrlando, FL, 1994, pp. 696—700.

J. Yen, L. Wang, and C. W. Gillepsie, “Improving the interpretability
of tsk fuzzy models by combining global learning and local learning,”
IEEE Trans. Fuzzy Systol. 6, pp. 530-537, Nov. 1998.

Y. Yam, P. Baranyi, and C.-T. Yang, “Reduction of fuzzy rule base via
singular value decomposition/EEE Trans. Fuzzy Systvol. 7, pp.
120-132, Apr. 1999.

S. Guillaume and B. Charnomordic, “Knowledge discovery for control
purposes in food industry databasds,izzy Sets Systo be published.



