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Abstract—This paper presents fuzzy modeling as a multi-objective de-
cision making problem considering accuracy, interpretability and auton-
omy as goals. The proposed approach assumes that these goals can be
handled via corresponding single-objective e-constrained decision mak-
ing problems whose solution is produced by a hierarchical evolutionary
process. The fitting, generalization, and interpretation characteristics of
the resulting fuzzy models are discussed using a classification problem.

1. INTRODUCTION

Rule-based models are considered a linguistic representa-
tion of the mental model of a certain system by means of ex-
perience [1]. Fuzzy rule-based systems and models use fuzzy
set theory to express expert knowledge in various domains [2).
In many applications, humans may be unable to extract knowl-
edge out of massive amounts of numerical data, specially when
the knowledge required is not easily available. This leads to the
development of computer techniques to extract and represent
knowledge in a fuzzy rule-based system. Data-driven fuzzy
modeling, or fuzzy modeling (FM) for short, has attracted in-
terest of many researches [3-7].

In FM, a fundamental aspect is the trade-off between two
important criteria: accuracy and interpretability. The issue of
accuracy is critical when models are used, for example, in con-
trol systems where the predicted value is fed back. Small er-
rors will be propagated and reflected as ervors in the long term
behavior [1]. This kind of situation requires accurate fuzzy
models, and precise fuzzy modeling is the only goal.

Although important, accuracy is not the only critical aspect
in FM. In the last years, model interpretability has gained spe-
cial attention {1, 5,7-9]. When the focus is interpretability,
linguistic fuzzy modeling generates systems for which the lan-
guage is easily interpretable by human beings. Despite this
useful appeal, there is no well-established definition of inter-
pretability for fuzzy models [S]. Here, interpretability is iden-
tified by four characteristics: visibility, simplicity, consistency,
and compactness.

Besides accuracy and interpretability, another important as-
pect in FM is design autonomy. Here autonomy means the de-
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gree of involvement of the system designer with the modeling
procedure adopted. More precisely, the fewer the parameters
defined a priori by the designer, the higher the degree of design
autonomy.

Recently, numerous works and applications combining
fuzzy set theory and evolutionary computation have appeared,
and there is an increasing concern about the integration of
these two areas. In particular, a great number of works explore
the use of genetic algorithms (GAs) to design fuzzy systems.
These hybrid approaches are named Genetic Fuzzy Systems
(GFS) [10]. A GFS is basically a fuzzy system augmented by
a learning process based on GAs {11]. GFS brought consider-
able attention of researchers from many areas [3, 10, 12, 13].

Genetic algorithms enrich optimization tools for fuzzy sys-
tems, particularly when the most significant design decisions
can be encoded into a genetic-type representation - a chromo-
some. However, when complex design decisions must be made
it would certainly be more appropriate to optimize a larger set
of parameters encoded at different levels, producing a hierar-
chical genetic fuzzy system (HGFS) [12].

Hierarchical evolutionary rule-based fuzzy modeling will be
addressed here, focusing on accuracy, interpretability and de-
sign autonomy issues. The solution assumes that these multiple
goals can be treated by translating the multi-objective prob-
lem into single-objective e-constrained problems [14]. This
evolutionary approach uses the same strategy to evolve fuzzy
systems as the one suggested by Delgado et al. [12], based
on HGFS. In this case, the evolutionary parameters are ad-
justed not only to improve the models performance (accuracy),
but also to guarantee the interpretability of the resulting fuzzy
models. The hierarchical approach induces a minimum de-
signer intervention by means of automatic tuning of many criti-
cal parameters of Mamdani or Takagi-Sugeno (TS) fuzzy mod-
els. In this paper, we emphasize TS models only, because the
parameters of resulting fuzzy model can be easily identified
using the input-output data. Moreover, TS models generally
represents the behavior of complex nonlinear systems with a
small number of rules, although they do not have a clear se-
mantics due to the functional nature of the consequent.
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{I. TAKAGI-SUGENO FuzzYy MODELS

Takagi-Sugeno (TS) fuzzy models [15] are powerful infer-
ence systems with a reduced'number of fuzzy rules. TS models
have the consequent of the rules characterized by parametric
functional relationships involving the input variables.

Assume a TS fuzzy model composed of m fuzzy rules
R;,j =1,---,m, of the form:

Rj: If X, is A --- and X, is A7 then Y is g; (w;,x)
where x = [z ---2,]7 is the input vector (T means trans-
pose), and the ()-dimensional vector w; contains the param-
eters of function g;(.). The most common type of functions
used is either constant (¢ = 1) or linear (Q = n + 1). In
this paper, nonlinear TS functions (@ = ﬂnz—"lz +2n + 2) are
considered as shown below:

g]-(w]-,x) =wjo + wjiT1 + -+ WinZn + Wji(ny1) 121+
Foot Wien)TiTa + Wi2n41)T2T2 + -+ Wian2)T2Tnt (1)
44 wj(ﬂi;_‘l-mn)m"z" + wj( n(n—-1) +2n+1)x1 T9...Tp .

The accuracy of the fuzzy model can be improved if numeri-
cally efficient estimation algorithms are used to define the con-
sequent parameters. Rule antecedent parameters and rule-base
structure are the ones to be found by the evolutionary algo-
rithm (see Section IV). After these parameters are found, the
elements of vector w; € R, where w; = [wjo - - - wjg-1]7,
j = 1,...,m, are computed using least squares optimization.
Either local or global optimization techniques can be used.
The advantages and disadvantages of these techniques are dis-
cussed in [3,16]. Delgado et al. [16] compared local and global
approaches to estimate the consequent parameters in a closed
form. The use of more complex consequent functions intro-
duces a large number (Q) of parameters. If ) is higher than
necessary, then the parameters of the rules consequent are au-
tomatically pruned to avoid redundancy. An efficient pruning
procedure is detailed in Delgado ez al. [17]. This is the pruning
procedure adopted here.

I11. MULTI-OBJECTIVE DECISION MAKING AND GENETIC
Fuzzy SYSTEMS

Fuzzy modeling requires the consideration of multiple cri-
teria in the design process. Recently, multiple goals in fuzzy
system design has gained more interest as discussed in [3, 5,
13,18-20].

Generally speaking, a multi-objective optimization problem
can be formulated as:

min h(x),
st. xe

where h(x) = [h1(x), ha(x), - , h(x)]” is the vector of ob-
jectives, h;(.) : @ - R,i = 1,---,r, and Q C R" is the
subset of feasible solutions for which h is defined. In multi-
objective optimization, the set of efficient solutions, also called
non-dominated or Pareto-optimal, is composed of all those ele-
ments of the input space for which the corresponding vector of
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objectives cannot be improved in any of its components with-
out degradation in another component.

Multi-objective optimization problems can be solved by dif-
ferent techniques [14]. Some techniques adopt the transfor-
mation of the original problem into a set of single-objective
problems. The two most common ways to obtain the non-
dominated solutions for the original problem are: 1) weighted
method; 2) e-constrained method. The former assumes an as-
sociation to aggregate all objectives settled as a (often linear)
combination of all criteria to define a single function to be op-
timized. The later comprises the solution of single-objective
problems subject to the set of e-constraints associated with the
other objectives, except the one taken as reference.

In FM, more complex multi-objective decision making prob-
lems emerge. For these problems, the objectives are het-
erogeneous in the sense that they are not a function of the
same set of variables. But the multi-objective decision the-
ory is still a source of inspiration for many approaches. Ge-
netic algorithms [21] appear as useful alternatives to carry out
search for feasible solutions and Pareto-optimal solutions, re-
sulting in multi-objective genetic fuzzy systems. Based on
the weighted approaches, many methods adopt an aggrega-
tion formula (weighted sum) of the different criteria that are
translated into a fitness measure of a solution of the original
problem [3, 5, 13]. However, it is often hard to choose the
appropriate weights. Experiments show that small changes
in the weights may guide to completely different results. Al-
ternatively, Pareto-optimal solutions can be generated and the
decision-maker may choose the preferred solution [18-20].

In this paper, FM will be viewed as a multi-objective de-
cision making problem, for which accuracy, interpretability
and design autonomy are the goals, and feasible solutions are
achieved from e-constrained optimization problems. The aim
here is to minimize the error criterion to improve accuracy, but
subject to visibility, simplicity, compactness and consistency
constraints. Visibility is associated with two different char-
acteristics: the y-completeness and the a-overlapping. The
former, known as coverage property [1], fixes a minimum de-
gree () of overlapping in the universe partition, that guaran-
tees granulations without gaps [4,22]. The later, also called
distinguishability property [1], fixes a maximum degree () of
overlapping in the universe partition [12]. The simplicity of
each rule is evaluated by its length, measured by the number
of features or variables minus the number of irrelevant fea-
tures identified by don 't care conditions [13). Consistency and
compactness are associated with the rule base. Compactness is
measured by the total of fuzzy rules in the rule base. A con-
sistent rule-base presumes the absence of conflicting rules, i.c.,
rules with the similar antecedents, but with very different con-
sequent parameters.

Therefore, the corresponding e-constrained problem may be
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expressed as follows:

vg}ill(lé) MSE = Ezjzvzl (yp — 3)”
k-consistency = ¢ = 0-consistency
TotRules < € = MaxRules
s.t. TotMF < €3 MaxGranularity
a-overlapping < € = oamax
v-completeness > €5 = Yy

where v is the decision variable, and the vector ¢ =
{€1,€2,€3,€4,€5}, defined in £ = {e : Q(e) # D} is associated
with interpretability requirements: consistency (e; ), compact-
ness (e2), simplicity (e3), visibility (¢4 and €5).

The formulation above is a single objective e-constrained
version of the original multi-objective problem. If a solution
provided by genetic algorithms is a unique solution of the e-
constrained problem or if it solves all the e-constrained prob-
lems when we consider each constrain as a reference objec-
tive function, than this solution is Pareto-optimal. For genetic
operators, the violation of visibility conditions needs repair-
ing procedures to shift the membership functions. Repairing
algorithms represent a major advantage of evolutionary tech-
niques to adjust membership function parameters when con-
trasted with classical optimization techniques.

Next section details the hierarchical evolutionary process,
pointing out how the constraints are satisfied during evolution.

IV. THE HIERARCHICAL EVOLUTIONARY APPROACH

The hierarchical evolutionary process is structured in mod-
ules that consider the membership functions (or partition set)
at the first level, the population of individual rules at the sec-
ond level, the population of sets of rules at the third level and
the population of fuzzy systems at the fourth level [12]. This
FM approach may be applied to evolve Takagi-Sugeno fuzzy
models or Mamdani fuzzy models. The coding scheme makes
use of real and integer encoding (depending on the level) and
four populations (each one associated with one level) evolve
interactively.

A. Encoding Scheme

The chromosomes representing the partition set (level I) use
real values encoding. The chromosomes representing individ-
ual rules and rule-base individuals (level II and III, respec-
tively) use integer encoding. Fuzzy systems individuals (level
IV) use real values to encode t-norm parameters p; and integer
codes for the remaining alleles. The chromosomes at all levels
have hierarchical relationships, as summarized in Fig. 1.

A partition set individual (level I) contains all the member-
ship functions defined in the universe of the variables involved,
and is represented by a real code chromosome. The chromo-
some is formed by the concatenation of all the partition sets
associated with each variable. Each member of the population
of individual rules (level Il in Fig. 1) represents a fuzzy propo-
sition. This population accepts different combinations of mem-
bership functions as identified by their indexes (the order in the
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Universe X ;of 4"‘ Individual at Partition Set

2nd linguistic term

: 1]1.9]1.5]1.2 o.ﬂ_.

L 1 = trapezoidal ~—&

Fig. 1. Encoding and hierarchical relations among individuals at the different
levels (rules with two antecedent variables are assumed)

partition set). Null values indicate don't care conditions, and
the genetic operators prioritizes simpler individual rules (rules
with more don’t care conditions). The population of set of
rules (level I1I) has individuals formed by indexes that identify
the corresponding rules. The length of the chromosome, fixed
by the constraint €;, determines the maximum number of fuzzy
rules but smaller rule-bases are always aimed at first. Each in-
dividual at level IV represents a fuzzy system. At this level, the
code of each chromosome associates a specific set of rules (al-
lele at site 8) and a partition set (allele at site 9), with a subset
of operators used to define the inference mechanism (alleles at
site 1 to 7). When Takagi-Sugeno fuzzy models are chosen,
alleles at site 4 to 7 (which are associated with Mamdani fuzzy
models and identify the rule-semantic, rule aggregation oper-
ator and defuzzification method) are not considered. In this
case, only alleles at sites 2,3,8 and 9 are evolved. For example,
the i-th fuzzy system, depicted at level IV in Fig. 1, uses the
30-th set of fuzzy rules at level III and the 4-th partition set
individual at level I. Then , each individual rule that composes
its rule-base aggregates the antecedent part by the t-norm t;
given by:

atyb= ! , 2)

L+ /(552 + (55

with an associated parameter p; = 1.1 (see Klement et al. [23]
for details on t-norm taxonomy). And more, the /5-th individ-
ual rule of the i-th fuzzy system could be given by:

If (X; is “27”) t; (X3 is “17) then Y is g15(w1s, %), for TS
fuzzy models; and

If (X7 18 “2") £ (X3 is “1”) then Y is “5”, for Mamdani fuzzy
models.

In Fig. 1, for the i-th fuzzy system, the linguistic terms in-
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dexed by “2” and “1”, and eventually “5” for Mamdani models,
are defined in the 4-th chromosome at level 1. In the case of TS
fuzzy systems, functions g(.) of the input variables are used at
the consequent part of the rules, as shown in Equation (1) of
Section II.

B. Hierarchical Evolutionary Algorithm

The design process uses a GA strategy to produce improved
fuzzy model parameters along generations. The main steps of
the hierarchical evolutionary algorithm are summarized as fol-
lows:

1. Start with Generation = 1;
2. Initialize populations for each module;
3. If Takagi-Sugeno fuzzy modeling

(a) Compute the optimal parameter for the consequent of
each individual at level IV (see Section II);
4. Calculate the fitness (ft) of each individual at all population
levels as follows:

(a) Fuzzy System (level IV): ftpg(i) is based on the fuzzy system
performance;

(b) Rule-Base (level INI): ftgp ) = maz (ftps): - + ftFs() )
where b, - - - , d are the fuzzy systems of which the rule-base (k) is part.

(c) Indiv. Rule (level l): fty(;y = mean (ftRB(m)’ “ee ,ftRB(p)),
where m, - - - , p are the rule-bases of which the individual rule (5) is part.

(@) Part. Set (level I): ftpg(,) = maz (ftpsy  » Ftps) )
where z, - - - , z are the fuzzy systems of which the partition set (q) is part.
5. If the stop condition does not hold, do:

(a) From level IV to level I apply the evolutionary operations
(selection, crossover and mutation) to form a new population;

(b) Generation = Generation + 1;

(c) Return to step 3;

The initialization phase (step 1) comprises random and de-
terministic generation of population at each level. At the parti-
tion set (level I), real code chromosomes are generated to uni-
formly distribute the membership functions over the associated
universes. At level II, different fuzzy propositions encoded by
integer chromosomes are randomly generated. Don 't care con-
ditions represented by null values are introduced to attend the
simplicity criterion. At the third level, each integer chromo-
some, that represents a set of fuzzy rules, is randomly gener-
ated. Rule exclusions are possible to attend the compactness
criterion. At level 1V, alleles are randomly initialized (except
alleles at site associated with parameter p;). Alleles at sites 2
and 4 associated with antecedent aggregation and rule seman-
tic (this later is specific to Mamdani Models) are generated to
cover all the possible norm operators. Alleles at site 3 and 5
associated with t-norm parameters p; are initialized with the
value p; = 2.0. Alleles at site 8 and 9 are randomly generated
and define which rule-base and partition set will be used by the
current fuzzy system.

After all the population levels have been initialized, the next
step involves the optimization (only in the case of TS models)
of the consequent parameters of each fuzzy system at level I'V.

Fitness calculation (step 4) is performed after defining all
fuzzy system parameters. This process starts at level IV and
finishes at level I. At level 1V, the fitness is evaluated by decod-
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ing the chromosome representation, and then measuring the
fitness function that depends on the performance of each fuzzy
system, when applied to the problem under consideration.

At step 5, either the stop condition (maximum number of
generations or error criterion) is verified or the algorithm con-
tinues. The evolutionary operators work downward, that is, se-
lection, crossover and mutation are applied from the top level
(IV) to the bottom level (I).

C. Evolutionary Operators

Selection is the first evolutionary operator applied and uses
the tournament technique [21] to select 80% of the individ-
uals. The remaining 20% of the population is chosen by a
technique that favors diversity in the population. This diver-
sity criterion focus the choice of the “most diverse” chromo-
somes when compared with the one with the highest fitness.
The measure of diversity is either the Euclidean distance for
real-coded chromosomes or the Hamming distance for integer
codes. The selection process is combined with an elitist strat-
egy. The second evolutionary operator is the 1-point crossover.
The crossover point is randomly chosen. Mutation, the last op-
erator, is applied to real and integer encoding parameters.

At the partition level, two visibility conditions must be ful-
filled by the set of membership functions to achieve the in-
terpretability requirements: 1) the «y-completeness, and 2) the
maximum degree « of overlapping. These conditions state that,
given a value z of one of the inputs within the operation range,
we can always find a linguistic term A such that p4(z) > v,
and an unique linguistic term B such that ug(z) > «. This
assumption means a minimum () and maximum («) overlap-
ping degrees among the membership functions during evolu-
tion. Figure 2 shows examples of interpretability analysis in
the partition set.

u(z)

®)

Fig. 2. Interpretability analysis: (a) an interpretable partition set; (b) a non-
interpretable partition set

The genetic operators change the shape and location of
membership functions but the minimum and maximum over-
lapping degrees are always fulfilled. In the case of visibility
restriction violation, a repairing procedure is used to attend the
«y-completeness or a-overlapping criteria, shifting the mem-
bership functions when it is necessary.

At the second level, crossover and mutation are applied to
try different combinations of linguistic terms of each proposi-
tion. Mutation changes the current value by a new one chosen
from the set {0, 1, ..., L;}, where L; < €3 means the maximum
number of linguistic terms for the i-th variable. Null values
identify don’t care conditions.
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At the rule-base level, crossover and mutation change the
integer indexes associated with individual rules. At this level,
alleles (representing individual rules) with lower fitness have
higher probability of being changed by mutation. The new
values are chosen among the values of the set {0,1, ..., S11},
where S;r means the size of the population at level II. Null
values are possible (indicating a rule elimination). The length
of the chromosome is defined by the constraint €5. Null values
mean the exclusion of the corresponding rule in the rule-base.

At the fuzzy system level, crossover produces combination
of two parents. The mutation of integer alleles changes a value
by a new one chosen among all the possibilities.. For exam-
ple, the new value of alleles at site 2 (see Fig. 1) is chosen
from {1,---,9}, where the indexes represent the t-norms ac-
cepted for antecedent aggregation [2]; for alleles at site 8, the
new values are chosen from {0, 1, ..., Srrr}; and for alleles at
site 9 are chosen from {0, 1, ..., Sr}, where Si;; and Sy are
the population sizes at levels III and I, respectively. Uniform
mutation operator is applied to alleles at sites associated with
parameter p; because it achieved better results when compared
with non-uniform mutation. The possibility of adopting differ-
ent inference operators gives flexibility to the resulting fuzzy
system and improves the degree of design autonomy.

V. EXPERIMENTS AND RESULTS

The performance of the HGFS has been evaluated with the
Iris classification data set. Popularized by Fisher [24], this
three-class classification problem has 150 four-dimensional
vectors representing 50 samples of each species: [ris se-
tosa (Cly), Iris versicolor (Clz), and Iris virginica (Cl3). The
four dimensional pattern vector £, = (Z1p, T2p, T3p, Tap), P =
1,---,150, has been normalized within the range [0,1]. The
attributes are as follows: z;, is the sepal length, z,, is the
sepal width, z3,, is the petal length, and z4, is the petal width.

The training (Tr) and testing (Ts) sets have 75 patterns
each (25 patterns randomly chosen from each class). The pur-
pose is twofold: to evaluate the generalization capabilities in
a classification context, and to compare with the results pro-
vided by Castellano and Fanelli [25], because their approach
named Compact Min Fuzzy (CMinFuzzy) has outperformed
(in terms of trade-off between accuracy/compactness) many
other approaches that solved the Iris classification problem.

Here, HGFS with non-linear consequents optimized by the
global method is used to solve the multi-objective problem of
fuzzy modeling based on e-constrained method proposed in
Sect. III. To test the benefits of this methodology, the pro-
posed approach is compared with HGFS based on a weighted
method, following the one proposed in [8] which assumes that
the fitness of each fuzzy system is given by:

1

fitness = Werrar m;

- Wcomp m,

where We,ror and W,y are positive weights, m define the
total of fuzzy rules in the rule base, and RMSE,, measures the
root mean squared error for training data.

0-7803-7280-8/02/$10.00 ©2002 IEEE

HGEFS uses fixed population sizes in each module: 30 indi-
viduals in the population of fuzzy systems (level IV), 70 indi-
viduals in the population of set of fuzzy rules (level IIT) and 10
individuals in the population of partition set (level I). Since the
population of individual rules (level II) contains all possible
combinations of the linguistic terms, no evolution is necessary
at this level. The evolutionary operators (selection, crossover
and mutation) are those detailed in Sect. IV-C. Crossover
and mutation genetic operators are performed with probabil-
ity Pc = 0.2 and Pas = 0.08, respectively, for all the three
levels (I, II and IV) that evolve. All these evolutionary param-
eters have been chosen after many tests using different values.

For comparison purposes, in the e-constrained method the
constraint €3 is defined as 4 resulting in a maximum of 4 fuzzy
rules in each rule-base; the constraint e = 2 fixed a maxi-
mum of 2 linguistic terms for each variable. For the weighted
method, different weights have been tested, but the best results
were achieved with We,, = 10 and W,y = 0.1. The AN-
FIS system assumed the same partition for all variables, that
is, each with 2 Gaussian membership functions. This means a
total of 16 fuzzy rules.

If we denote by f the fuzzy system evolved by HGFS or ob-
tained by ANFIS, then the following assignment is devised to
relate a value of f(x,) with each class Cl;: Cl; — f(x,) =1;
Cly = f(xp) = 2; Cly = f(xp) = 3. Table I shows the
classification errors for the test set obtained by Castellano and
Fanelli [25], ANFIS, and HGFS, based on two optimization
methods: e-constrained method (e-constrMet) and weighted
method (WeigMet) .

TABLEI
IRIS DATA SIMULATION RESULTS

Approach Cycles Rules Misclassification
Training Test

ANFIS 100 16 0 6

CMinFuzzy [25] - 5 0 4

HGFS (WeigMet) 100 7 0 7

HGFS (e-constrMet) 100 4 0 3

As Table I shows, the fuzzy classifier provided by the pro-
posed approach (HGFS based on the e-constrained method)
outperforms the other approaches because it achieved the best
compromise between classification performance (classification
rate of 96% in the test set) and system complexity (a total of
4 fuzzy rules). The results emphasize the benefits of trans-
lating the multi-objective problem into a single-objective e-
constrained problem, for which the solution may be produced
by a hierarchical evolutionary process based on genetic algo-
rithms.

It is important to point out that some approaches presented
in the literature achieve 100% of correct classification in Iris
data when all the 150 available patterns were used in the train-
ing process. This means that the cardinalities of training set
Tr and test set T's are given by S, = 150 and St; = O,
respectively. When we consider all the available patterns in
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Fig. 3. The partition for variables z1, z2, z3, and z4

the training process, the HGFS was also able to correctly clas-
sify all the patterns. Although, since the aim here is to test
the generalization capability of the proposed approach, the at-
tention has been given to the simulations considering patterns
distributed among training and test sets.

At the end of the evolutionary process, for the fuzzy system
considering HGFS based on e-constrained method, the result-
ing rule-base produced is detailed bellow:

Ry : Ifzzislowand x4 islowtheny = 0.86 —0.3x1 4+ 0.1922 +0.31x3 +
0.09z4 — 0.14z2 — 0.2323 — 2.862% ;
Ry : Ifxy is low and z2 is low and z3 is high then y = 1.15 — 1.97z1 —
6.06z2 + 1.82z3 + 3.41z4 + 5.18z% ;

R3 : Ifxy is high and x3 is low and x4 is high theny = 9.7 — 0.17z1 +
1.97z3 + 2.65x3 — 33.7z4 + 0.3627 — 3.4422 — 0.82% + 3123 ;

Ry : Ifxy is high and 2 is high and x4 is low then y = 1.52 — 0.49x; +
0.2z + 3.83z3 + 0.32z4 + 0.291% — 0.421% — 2,421% - 0.2413 +
0.33z12273%4 -

The antecedent aggregation "and’ evolved is given by Equa-
tion (2), with p; = 1.66. The linguistic terms low and high are
shown in Fig. 3. As it can be noted, a good level of accuracy is
achieved and all constraints, needed to ensure the interpretabil-
ity criterion, are fulfilled: visibility, simplicity (don ’t care con-
ditions in all the fuzzy rules), compactness (only 4 fuzzy rules),
and consistency.

V1. CONCLUSIONS

In this paper, accuracy, interpretability and autonomy were
envisioned from the multi-objective decision making frame-
work and associated single-objective e-constrained problems.
Therefore, in addition to precision, interpretability of the rule-
based model is achieved through a set of constraints imposed
on the search process. Interpretability is based on visibil-
ity, simplicity, compactness and consistency goals. The use
of HGFS to solve the e-constrained problem improves per-
formance in terms of accuracy, satisfies interpretability con-
straints, and provides an automatic adjustment mechanism for
a number of critical parameters, which increases autonomy by
minimizing user intervention.

ACKNOWLEDGMENTS

Myriam Regattieri Delgado acknowledges CEFET/PR
and CAPES/PICDT, Fernando Von Zuben the CNPq grant

300910/96-7, and Fernando Gomide the CNPq grant
300729/86-3, for their support.
REFERENCES

[1] ). Espinosa and J. Vandewalle, “Constructing fuzzy models with linguis-
tic integrity from numerical data-AFRELI algorithm.” IEEE Transac-
tions on Fuzzy Systems, Vol. 8:5, pp. 591--600, 2000.

0-7803-7280-8/02/$10.00 ©2002 IEEE

2]
131

[4)

[5]

f6]
g

{83

9]

[10}

fi]

(12]

{131

{14]
(13)

(16}

(17

[18]

(19

[20

(21
[22]
{23]
[24]
[25]

1227

W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets: Analysis and
Design. Cambridge: MIT Press, 1998.

F. Hoffmann and O. Nelles, “Structure identification of TSK-fuzzy
systems using genetic programming,” in Proceedings of IPMU 2000,
Madrid, Spain, pp. 438445, July 2000.

J.-S. Jang, “ANFIS: Adaptive-network-based fuzzy inference systems,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23:3,
pp. 665-685, 1993,

Y. Jin, “Fuzzy modeling of high-dimensional systems: Complexity re-
duction and interpretability improvement,” IEEE Transactions on Fuzzy
Systems, Vol. 8:2, pp. 212-221, 2000.

C. L. Karr, “Genetic algorithms for fuzzy controllers,” A/ Expert,
Vol. 6:2, pp. 26-33, 1991.

K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful heuristic
method for generating fuzzy rules from numerical data,” Fuzzy Sets and
Systems, Vol. 86, pp. 251-270, 1997.

H. Ishibuchi, D. Takeuchi, and T. Nakashima, “Ga-based approaches to
linguistic modeling of nonlinear functions,” in Proceedings of 9thIFSA
World Congress and 20thNAFIPS International Conference, Vancouver,
CA, July 2001,

M. Setnes, R. Babuska, and H. B. Verbruggen, “Rule-based modeling:
Precision and transparency,” IEEE Transactions on Systems, Man, and
Cybernetics—Fart C., Vol. 28:1, pp. 165-169, 1998.

F. Herrera and L. Magdalena, “Introduction: Genetic fuzzy systems,”
International Journal of Intelligent Systems, Vol. 13, pp. 887890, 1998.
0. Cordon, F. Herrera, F. Gomide, F. Hoffmann, and L. Magdalena, “Ten
years of genetic fuzzy systems: Current framework and new trends,” in
Proceedings of 9thIFSA World Congress and 20thNAFIPS International
Conference, Vancouver, CA, pp. 1241-1246, July 2001.

M. R. Deigado, F. Von Zuben, and F. Gomide, “Hierarchical genetic
fuzzy systems,” Information Sciences - Special Issue on Recent Advances
in Genetic Fuzzy Systems, Vol. 136:1-4, pp. 29-52, 2001.

H. Ishibuchi and T. Nakashima, “Genetic-algorithm-based approach to
linguistic approximation of nonlinear functions with many input vari-
ables,” in Proceedings of FUZZ-IEEE’99, Seoul, Korea, pp. 779-784,
Aug. 1999.

V. Chankong and Y. Haimes, Multiobjective Decision Making - Theory
and Methodology. Elsevier, 1983.

T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from hu-
man operator’s control actions,” in Proceedings of the IFAC Symp. on
Fuzzy Information, Knowledge Representation and Decision Analysis,
Marseilles, France, pp. 55-60, 1983.

M. R. Delgado, F. Von Zuben, and F. Gomide, “Local and Global Esti-
mation of Takagi-Sugeno Consequent Parameters in Genetic Fuzzy Sys-
tems,” in Proceedings of 9thIFSA World Congress and 20thNAFIPS In-
ternational Conference, Vancouver, CA, pp. 1247-1252, July 2001.

M. R. Delgado, F. Von Zuben, and F. Gomide, “Optimal Parameterization
of Evolutionary Takagi-Sugeno Fuzzy Systems,” in Proceedings of 8th
Information Processing and Management of Uncertainty in Knowledge-
Based Systems Conference (IPMU), Madrid, Spain, pp. 650-657, July
2000.

O. Cordon, M. del Jesus, F. Herrera, and P. Villar, “A multiobjective ge-
netic algorithm for feature selection and granularity learning in fuzzy-
rule-based classification systems,” in Proceedings of 9thIFSA World
Congress and 20thNAFIPS International Conference, Vancouver, CA,
pp. 1253-1258, July 2001. .

L. Gacogne, “Research of Pareto set by genetic algorithm, application
to multicriteria optimization of fuzzy controller,” in Proceeding of 5th
European Congress on Intelligent Techniques and Soft Computing, EU-
FIT’97, Aachen, Germany, pp. 837-845, Sept. 1997.

A. Gémez-Skarmeta, F. Jiménez, and J. Ibdnez, “Pareto-optimality in
fuzzy modeling,” in In 6th European Congress on Intelligent Techniques
and Soft Computing, EUFIT 98, Aachen, Germany, pp. 694700, Sept.
1998.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, 1996.

A. Gonzales and R. Perez, “Completeness and consistency conditions for
learning fuzzy rules,” Fuzzy Sets and Systems, Vol. 96, pp. 37-51, 1998.
E. Kiement, R. Mesiar, and E. Pap, Triangular Norms. Kluwer Academic
Publishers, 2000.

R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” in Annual Eugenics, Vol. 7, pp. 179-188, 1936.

G. Castellano and A. M. Fanelli, “A staged approach for generation
and compression of fuzzy classification rules,” in Proceedings of FUZZ~
IEEE’2000, San Antonio, USA, pp. 42-47, May 2000.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


