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Input Features’ Impact on Fuzzy Decision Processes

Rosaria Silipo Member, IEEEand Michael R. BertholdViember, IEEE

Abstract—Many real-world applications have very high di- Other examples of big size databases are also available in the
mensionality and require very complex decision borders. In this automatic speech recognition research field. The OGI Corpus
case, the number of fuzzy rules can proliferate, and the easy [3] used in this study, for example, consists of responses to

interpretability of fuzzy models can progressively disappear. An t K ial teleph i b K
important part of the model interpretation lies on the evaluation P'OMPIS Spoken over commercial telephone [ines Dy Speaxers

of the effectiveness of the input features on the decision process. InOf English, Farsi (Persian), French, German, Hindi, Japanese,
this paper, we present a method that quantifies the discriminative Korean, Mandarin Chinese, Spanish, Tamil, and Viethamese. It
power of the input features in a fuzzy model. The separability contains a total of 1927 calls: an average of 175 calls per lan-
among all the rules of the fuzzy model produces a measure of the ¢ ;396 Current systems for automatic speech recognition de-
information available in the system. Such measure of information = - - .

is calculated to characterize the system before and after each rive between 150_2_50 Input feature; from the 0r|.g|nal signal
input feature is used for classification. The resulting information and systems are being developed with an even higher number

gain quantifies the discriminative power of that input feature. of input features [4].

The comparison among the information gains of the different — pegnite the efforts in this direction, the collection of more
input features can yield better insights into the selected fuzzy . . ' - .
classification strategy, even for very high-dimensional cases, and signals from different sources or the extraction of more input
can lead to a possible reduction of the input space dimension. features does not always grant a better performance of further
Several artificial and real-world data analysis scenarios are analysis procedures. If the newly introduced variables do not
reported as examples in order to illustrate the characteristics and carry additional information, the system’s performance cannot
potentialities of the proposed method. improve. Moreover, the analysis procedure itself becomes more
Index Terms—DBiscriminitive power, feature importance, fuzzy complicated, and insights about the system’s underlying struc-

models, information gain. ture become more difficult to achieve.

The interpretability of the decision process represents a key
|. INTRODUCTION topic in modern data analysis scenarios and corresponds to the
transparency of the model built to implement a given task. For
example, if, in a given context, a data analysis technique does

N THE last several years, it has become increasinghot show as good performance as other methods but offers a

common to collect and store large amounts of data fromore informative representation of the underlying phenomenon
different sources, as described in [1, Ch. 1]. As a consequengfd/or a clearer interpretation of the decision process, such a
databases with higher dimension and bigger size have beeghnique may represent a better decision support tool for the
obtained. In this paper, we deal with two typical research are@ger than a technique that offers numerically superior perfor-
where big high-dimensional databases have been developggnce but is harder to interpret.

the analysis of medical signals and the automatic speechn jmportant part of the interpretation of a decision process

recognition problem. _ _ _ lies in the assessment of the influence of its input features on
The recording of electrocardiographic (ECG) signals, fqfe final decision, that is, on the assessment of how much the

example, moved to 24-hr and 12-lead just a few years ago. ifiylemented model relies on a given input feature to perform

the same time, the number of features extracted from each Eftz jesired task.

record increased as well [2]. These days, the current tendencq(/Iu

. . : ch work has been done in the area of discovering feature
in medical databases is to collect heterogeneous data from . .
importance, mainly under the umbrella of feature selection. The

many physiological sources and for long time periods. A ver ost commonly used methods stem from the area of proba-
typical example for this new kind of data is the Apnea-ECG. " nonly . ; ' P
Database, which is downloadable from the PhysioNet We|I|st|c decision trees, particularly ID3 [5] and its continuous

. k : . : eéxtension C4.5 [6]. Following the theory of entropy maximiza-
site (http:/www.physionet.org/). This database consists f%n in probabilistic decision trees, some merit measures have

7.0 records. Each record is typically 8. hr_Iong_ and COntalrﬁ)seen defined on the basis of a statistical model of the system [1,
simultaneously recorded ECG and respiration signals.

Ch. 3], [7]- The estimation of the involved probabilities, how-
ever, requires a precise definition of the input parameters and
Manuscript received December 21, 1999; revised July 11, 2000. This paget|ear identification of the output classes. In many real-world
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Recently, many data analysis techniques make use of the etligyjinformation in the original fuzzy model. The resulting infor-
interpretability and low computational expenses of fuzzy logioation gain quantifies the information extracted from the model
such as fuzzy rules induction, fuzzy decision trees, etc. [1, Gifter using this input feature for the analysis and characterizes
8]. The concept of fuzzy sets was introduced in [8] with the puits discriminative power inside the model. The input dimension
pose of a more efficient, although less detailed, descriptionwfth highest information gain defines the most discriminative
real-world events, by allowing an appropriate amount of uncenput feature, according to the analyzed fuzzy model. Unlike
tainty into the data description. A number of simple and contihke greedy behavior of the probabilistic decision tree algorithms,
putationally inexpensive methods are now available to automatiis method investigates the cuts on each input feature—not one
cally construct a model from a set of training examples [9]-[114fter the other but all together in parallel—which enables it to
For example, a fuzzy extension to ID3, which requires predfnd also nonbinary splits.
fined granulation on all input features, was proposed in [12].  Theoretically, both positive and negative information gains

If the particular problem does not require very complex decare possible. In the first case, the input feature has a positive im-
sion borders among the output classes, fuzzy models produgeaat on the decision process. In the second case, the input feature
reasonable amount of fuzzy rules that offer sufficiently reliableorsens the system’s performance. In practice, if a sufficient
performances and, for a low-dimensional input space, are rafhount of data is available, the classification method should
atively easy to interpret. Many real-world applications preselgarn to neglect the unreliable input features. Thus, only positive
very high-dimensional input spaces and require very complekzero information gains can be obtained. Because of machine
decision borders. Because of that, the number of fuzzy rulesecision errors and of the imperfections of the learning proce-
can proliferate, and the easy interpretability of fuzzy models caare, some negative close-to-zero information gains might arise.
progressively disappear. In this case, the introduction of an @&ecause of their low absolute values, in the following analysis,
tomatic description of some of the characteristics of the fuzzye will ignore negative information gains and report them to

model would improve its interpretability to the user. zero.
Due to the low computational expenses derived from the use
B. Input Features’ Impact on Fuzzy Models of fuzzy models, the proposed information gain generates a

One important characteristic that describes the implemeng@ithple and efficient algorithm to measure the contribution of
fuzzy model consists of the impact of the input features d¥ch input feature to the discrimination among output classes
the final decision process. The goal of this work is to defini@ the considered fuzzy model. This allows better insights into
a strategy to automatically quantify the influence of the inpdife fuzzy classification strategy, especially for very high-di-
features on the fuzzy model. Such influence could be measurgg@nsional input spaces and, consequently, a possible reduction
by estimating and comparing the information contained in tif the input dimension.
fuzzy model before and after using that input feature for the The structure of the paper is the following. After describing
analysis. In information theory, the information associated withe need of interpretable decision processes in Section I-A, we
a given event is measured by means of its entropy. Dealing withistrate the goal of the paper and the general idea of the method
fuzzy models, the concept of fuzzy entropy [9]-[14] could b Section I-B. In Section I, we define how to measure the in-
used for the same purpose. formation contained in the fuzzy model. Then, in Section I, we

Based on fuzzy set theory, fuzzy entropy has been defingge this measure of information to characterize the system be-
to measure the degree of fuzziness/uncertainty of the mo#ile and after a given input feature is used for classification. The
in fitting the desired input/output mapping with respect to theesulting information gain is described in Section IlI-B. In Sec-
training examples [9]-[11], [13], [14]. Such a measure of infotion IV, some artificial data are analyzed to show the potentiality
mation can be computationally expensive and time consumiigthe proposed method. Finally, in Section V, three real-world
if very large data sets are used. Moreover, it would characterieplications are investigated. The first one (Section V-A) uses
the input features in terms of the faithfulness of the model to tiee IRIS database, which represents a common platform for the
training examples and would fail to give a description of thegvaluation of machine learning algorithms. The second appli-
discriminative power in separating the output classes. cation deals with the automatic detection of prosodic stress in

The method proposed in this paper investigates only tepoken American English (Section V-B) and tries to rank the
fuzzy model, which is, in general, a mere summary of th®ostcommonly used input features in terms ofimpact onthe de-
training examples. Indeed, if the training set contains a sufflision process. The last real-world application (Section V-C) in-
cient number of examples—that is, if the resulting fuzzy modwgstigates whether removing ECG measures with low informa-
is sufficiently general and accurate—an analgsigsterioriof ~ tion gains improves the performance of a fuzzy system trained
the fuzzy model’s characteristics will reflect information abou discriminate among different kinds of arrhythmic beats. Sec-
the input space. In addition, by concentrating only on the fuz#@n VI concludes the paper.
model, the corresponding analysis will be computationally
easier and faster.

Thus, the information available in the fuzzy model is derived
solely on the basis of its fuzzy rules. The original fuzzy model is Fuzzy models represent a particular version of rule sets,
splitinto a certain number of fuzzy submodels, according to thiehere some uncertainty ofuzzinessis allowed, so that
linguistic values of the given input feature, and the average ia- given input patternz, which is composed of features
formation contained in these fuzzy submodels is compared with, - - -, z;, - --, x,, belongs up to a given degremé¢mber-

Il. Fuzzy INFORMATION MEASURES
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Fig. 1. (a) Example of a two-class fuzzy model on a 2-D input space. (b) and (c) Submodels generated by cutting the original fuzzy model in (a) along input
feature (b)zz and ().

ship degregto a certain output clags; (1 <4 < m) [8]. Thus, Considering normalized membership functions, a higher
the set of rules implementing this kind of input/output mappingverage membership degree to cl&gs V(C;) indicates a
consists of a set of membership functions, (¥) € [0, 1] more uniformly distributed class over the input space. An
that associate input pattefhto output class”; by means of output class represented by a membership function that takes
membership degreec, (Z). value +1 everywhere on the input domain has average mem-
Given a number of output classe€’; and am-dimensional bership degree-1. A membership function with average value
input space, numerous algorithms exist, which derive a set®{C;) = 0 indicates an output class that is never related with
Np fuzzy rules{Ry}, k =1, ---, Ng, mapping the:-dimen- any pattern of the input domaib. This average membership
sional input into thern-dimensional output space. In particulardegreeV (C;) [see (1)] represents a first rough description of
we used the fuzzy clustering algorithm proposed in [18]. Thtke impact of membership functiqix, () on the final decision
algorithm adapts existing fuzzy rules to new input patterns apdocess without taking into account the training examples from
introduces new rules when necessary. The algorithm is guaramich ¢, (Z) originates.
teed to converge, and an upper bound on the number of the gern order to quantify the information contained in the whole
erated rules can also be introduced [18]. In Fig. 1(a), an exampk of fuzzy rule§ R, }, all average membership degrees from
is reported with a 2-D input spade;, x=2}, two output classes the different membership functions should be considered at
C1, andC-> and with trapezoids as membership functions. the same time. The goal of this section is to associate different
configurations of average membership degrees to fuzzy models
with different informative contents. In particular, some math-
ematical operator could be applied (C;) to distinguish
Membership function.c, () quantifies the degree of mem-between fuzzy models with only membership functions of one
bership of input patterii to output clas€’;. The quantityy’ (C;) ~ class (no information) from fuzzy models with membership
in (1) represents thaverage degree shembershipf input pat- functions of a high number of output classes (high information).
terns to output clas<>; over the whole domai® ¢ R™. In information theory, a number of functions, such as the en-
tropy or the Gini function, have been established in the past to
play this role in a probabilistic context [7], [15]. However, they
cannot be applied straightforward to the average membership
degreeV (C;) because of the requirement that the object vari-
/ pe, (8) d able sums up ta-1 across then output classe€’;. Unlike for
DCR»

(1) probability, this is not necessarily true for the average member-
JE ship degree¥ (C;), due to the nonnormalized nature of fuzzy
DCRn v sets.

A. AverageMembership Degree
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A solution to this problem consists of using tredative av- / max, {chi (f)} dz
eragemembership degrdsee (2)]v(C;) to output clas€’; in- _ JDcR»
stead of the average membership degr¢€;) [16]: / di
v(C, DCR»
S V() =Y |vEeh- > veinel)|. @)
j=1 q=1 h=q+1
The variablev(C;), with ¢ = 1, ---, m, now sums up to  If the usual trapezoids are adopted as membership functions,
+1 across the output classes, and the traditional informatithe average membership degree to each fuzzy sufisdte-
functions can be applied. comes particularly simple to calculate [17], as shown in (8),

In general, anumbep; > 1 of membership functions is nec-whereh? is the trapezoid height, ar{d?, 33, a, a?;q) are the co-
essary to represent each output clas€ach one of these mem-ordinate vectors of its vertices in thedimensional input space.
bership functions is related to an output regith and, there-
fore, will be indicated aﬁgi (Z). Thus, the average membership V(CT) = V(@ l_;;] —q Jq))

degree to clas€’; corresponds to the average membership de- ‘

gree to the union of the corresponding output regiofis ° °

The average membership degree to the union aad the inter- % H(daq'i - aaq'i) - H(czi - bzi) ht
section of fuzzy sets derives straightforward from the usual — =t =t (8)
min/max-definitions of intersection and union of fuzzy sets / AT
[17]. In particular, the average membership degree to the union DCR®

of two fuzzy set€C7 andC;? can be derived as the sum of the
average membership degrees to the two fuzzy sets alone, taking )
into account their intersection only once [see (3) and (4)]. B. Fuzzy Information Measures

As we have already described in the previous subsection, we

/ pernes (£) d could take the quantity(C;) as the basic unit to quantify the
V(Crn o) = 1RCRT information available in a fuzzy model. The quantitC; ) rep-
/ dz resents the average membership degree of the input patterns to
DCR™ output clasg’; relatively to all the other output classes and is
/ min,, , {N& (&), 1, (f)} di calqulated asin (2) aqcordin_g to the fuzzy rules uggd.to model
_ JDCRe ) the input/output mapping. With respect to a probabilistic model,
/ dz the use of the relative average membership degfék) takes
DCR™ into account the possible occurrence of multiple classes for any
L input patternz, and its calculation is generally easier than the
/ L Herues (@) di estimation of a probability function.
V(Ciucy) ==P<ER As in the traditional information theory, the goal is to produce
/ dx an information measure [1, Ch. 3], that is
berr 1) at its maximum if all the output classes are equally pos-
/ max,, s { g (L), pg, (L)} dz sible in average on the input spabec R", i.e.,u(C;) =
= 2 DCRY (1/m)fori =1, ---, m, m being the number of output
/ dz classes;
) Dcr™ 2) at its minimum if only one output clags; exists, i. €. in
=V(C) +V(C7) = V(G N Cy). ) casev(C;) # 0 andv(C;) = 0 for j # 4;

If the two membership functiong?. () and sz, (%) do not 3) a symmetric function of its arguments because the domi-
overlap, thatisy # min,. . {uZ. () Cil (@)} = 87‘ the expres- nance of one class over the others in terms of relative av-
sions i?; (3) and (4'1) begb%gci P RO T P erage membership degree must produce the same amount
of information, independently of which the favorite class
narnc) =g G order toprod fthe global informafie)
e - - n order to produce a measure of the global informafi
V(G UG =V(C) + V(G ©) of the fuzzy model with output spacgé = {C1, ---, C,,}, the
This result can be extended to a numtgrof membership traditional functions employed in information theory—as the
functions by expressing the average membership degreeSf§roPy function/y;(C') [see (9)] and the Gini functiof(C)
their union as the sum of their average membership degréeg€ (10)] [1, Ch. 3], [7]—can be applied to the relative average
and taking care of including their intersection only once. ~ membership degreeg(;) of the output classes as

m

Qi
V(C) =V <L_J C?) I(C) == v(Cy) logy(v(Ci)) ©)

i=1
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m

_ W2 and by the area ofic, () in region C;, where aC; label is
Ie(C) =1~ ;(U(CZ)) (10) imposed, as expressed in
and the following conditions still hold.

1) If, in the considered fuzzy model, all output classes have
similar relative average degree of membership, then the

r-[ e () + L e)d @D

information function is at its maximum. The optimal classification threshold refers to the minimum
2) If only one class exists, then the uncertainty is at its mifegree of falseness’j of the whole classification process,
imum and so is the information function. that is, to the minimum intersection volumesg, N C, and

3) The dominance of one class over the other<() > K¢, N Ci. After minimizing (11), the optimal threshole is
v(C;), j # i) produces the same amount of informatiorfound at the intersection point of the two membership functions
independent of which one is the favorite class. Thatis, thé: ke, (@) = pc, (¢7).

defined information functions of variablgC;) [see (9) If trapezoids are adopted as membership functions of the
and (10)] are symmetric. fuzzy model, the optimal threshold between two contiguous

In both cases, the entropy and Gini functidii’) represent trapezoids of different output classes is assumed to be located

the information intrinsically available in the fuzzy model. The 1) atthe intersection of their sides if the trapezoids overlap
classification process aims to extract such information for the  ©Only on the sides; _ _
user's needs. Not all the input features, however, are effective2) in the middle point of the overlapping flat regions< 1,
the same way in extracting and representing this information. ~ Which are also calledore) if the trapezoids overlap in the
The goal of this paper is to make explicit the dimension of the  flat regions;
input space that is the most effective in recovering the intrinsic 3) in the middle point between the two trapezoids if they do
information(C) contained in the fuzzy model. not overlap anywhere.
The definition of a set of thresholds based on the risk
minimization approach is typical of the statistical classification
lll. Fuzzy FEATURE MERIT MEASURES strategies. In a fuzzy context, input may belong to both
) ) ~output classe€; and Cs. To be fully in line with the fuzzy
A fuzzy merit measure of an input featurg should describe ¢ |assification strategy, a different threshold system should be
the information gain associated with the usewpfin a given geyeloped that takes into account the attribution of patiern
fuzzy analysis. In particular, such information gain can bg mytiple classes. However, such a system would be more
expressed as the relative difference between the intringigmplex and computationally expensive than the one based
information available in the system beforé<€)—and o, the risk minimization approach. In addition, in this paper,
after—I(C|x;)—usinginput featurer; for the fuzzy analysis e jdentify the effectiveness of a given input feature with the
[7]. In the following, we define what the use of corresponds geparapility of the output classes along its dimension, which
to and how to measure the information left in the systefg \ye|| represented by the risk minimization-based threshold
after input featurez; has been exploited for the analysisystem. Thus, we retained the set of thresholds defined in this

(Sections IlI-A and 11I-B, respectively). section for the quantification of the input features’ impact
because it is a sufficiently accurate and leads to an algorithm
A. Key Points on Input Dimensiary with lower computational load. These thresholds are used

only to quantify the separability of the output classes along a
given input dimension in the definition of the fuzzy feature
merit measure. We adopted the traditional fuzzy classification
strategy that allows each input pattern to belong to more output
classes at the same time to test the fuzzy models.

Let us suppose that input spate c R™ is related to the
output classes by means of a numbg¢ of membership func-
tions ugi (Z) with ¢ = 1, ---, @, membership functions for
each output clas€;, ¢ = 1, - -+, m output classes, anip =
>, Q; fuzzy rules.

The use of input feature; for classification purposes cor-
responds to the definition of an appropriate set of thresholBs
alongz; that allows the best separation of the input data into The discrimination of the output classes along input feature
the output classes. From a risk minimization point of view, the; leads to the definition of a set of optimal cuts that separate
optimal classification thresholds on a given input dimensipn the I; < Ng contiguous trapezoids on this input dimension,
are located at the intersection points of contiguous membershipdiscussed in the section above. After introducing the upper
functions of different output classes. and lower boundary af;’s range in this set of optimal cuts, a

Let us restrict our analysis to a 1-D problem. In Fig. 2, anumber of linguistic value&;, (k =1, ---, F}) can be defined
example with two output classes on a 1-D spads reported. for input featurez; as the intervals between two consecutive
Let us choose a discrimination threshefdto separate clags, cuts.
from classCs. Everyz < z* is labeled a€’; and every: > «* Let us concentrate on ong’s linguistic valueL;. per time.
asCs. Let us call the two labeling regionfél andCs. The global To consider:; = L; corresponds to the isolation of one stripe
degree of falsenesg of the adopted labeling system is giverof the input space where; falls into linguistic valueLy. In
by the area ofic, (Z) in regionC», where a; label is imposed this stripez; = Ly, new membership functiong’. (z; = Ly)

Information Gain
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are derived as intersections of the original membership func-

tions 1«¢ (Z) with the stripe derived fromr; = L. Based on
these new membership functiop$. (x; = Ly), the informa-
tion contained in this stripe can be measuféd|z; = Ly ), as

expressed in (12) and (13) according to the information func-

tions in (9) and (10), respectively.

=3 w(Cilz; = Ly) logy(v(Cil; = Lx))  (12)
=1
I6(Clzj = L) =1 =Y _(v(Cilz; = Ly))? (13)
=1
with
v(Cilz; = Ly) = n}/(cim =L (14)

ZV(C}L|‘TJ = Lk)

h=1

I(Clz; = Ly) measures the information still available in the
stripe extracted from the original fuzzy model under the cond

Cy ,

C,
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Fig. 2.

x*

TABLE |
AVERAGE MEMBERSHIP DEGREES AND THE
INFORMATION MEASURES FOR THE2-D EXAMPLE IN FIG. 1

X

Fuzzy representation of a 1-D input space with two output classes.

C Ca Iy(C) | Ia(C)
VC) =130 | V(C) =126 | (g0 | 040
‘U(Cl) =0.51 ‘U(Cz) =0.49

TABLE I
I(C|z;) AND g(C|x;) FOR THEEXAMPLE IN FIG. 1

Z1=S

$1=L

Z2=Y

$2=0

tion thatz; falls inside linguistic valueL,. The average mea- V(Cilz1) =0.53

sure of the information contained in all stripges = L; for

V(Cs|zy) = 12.6

k=1,---, F;[see (15)] represents the measure of the infol (¢, |z;) = 0.04

mation still available in average in the fuzzy model after inpt

v(Cz|a:1) = 0.96

V(Cy|z1) = 13.0
V(Cafzy) = 0.53
v(Cy|z,) = 0.96
v(Calz,) = 0.04

V(Ci|zz) = 13.0
V{(Ca|z2) = 0.00
v(Cylzy) = 1.0
v(Cy|z2) = 0.00

V(Ci|z2) = 0.00
V(Ca|z2) = 12.6
v(Cy|z2) = 0.00
v(Ca|z2) = 1.0

featurex, has been exploited for the fuzzy analysi€’|=;). I#(Clz:) = 0.24
7T =Y.

I6(Clzy) = 0.07
gx#(C|z,) =0.76
96(C|z1) = 0.84

I1(Clz2) = 0.00
I5(Clzs) = 0.00
gr(Clzg) = 1.0
96(C|z2) = 1.0

F;
I(Clej) = = 31Oy = L), (15)
J k=1

The relative difference, as expressed in (16), between the
measure of the information originally available in average in
the fuzzy modell (C) and the measure of the information stilinformation./; (C) and(C) that is intrinsically available in
available after the use of input featurg, 1(C|z;) produces the the modelis measured by means of (9) and (10).
corresponding information gain. The discrimination of the two output classes can now be per-
formed along input dimensiary or along input dimensiom.
From Fig. 1, we can easily see that a cut between the two mem-
bership functions on dimensiar, [see Fig. 1(b)] produces a
better separation than a cut on dimensigfisee Fig. 1(c)]. That
is, the analysis on dimensian should offer a higher gain in in-
formation than the analysis on dimensien

1(0) = I(Cl;).

i) = 1
The less effective the input featutg is in the original set

of fuzzy rules, the closer the remaining informatidfC|z )

is to the original information (C') of the mode, resulting in & 14 yerify this hypothesis, the average information still avail-
lower information gairny(Cl;) [see (16)]. The input features apje in the systend(C|a1) andI(Cla-) is measured, respec-
producmg the highest information gains are the most effectlylgew, after dimensionz; andz, have been used for the clas-
in the adopted model to separate the training data and, therefQfgeation. These information measures are reported in Table Il

the most informative for the proposed fuzzy analysis. . together with the corresponding information gai€|z, ) and
Every input parameter; produces an information gain gy,

g(Clz;) expressing its effectiveness in performing the requir€d £, hoth choices of (), the entropy, or the Gini function,

analysis on the basis of the given fuzzy model. The proposgg, information gain obtained from cutting along is smaller

information gain can then be adopted as a fuzzy feature mgfit, the one obtained by cutting along, that is,g(Clz1) <

neasure. g(C|z2) (see Table II), as it was to be expected. This indicates
that the analysis on variable, extracts more of the informa-
tion available in the fuzzy model than the analysis carried out

In Fig. 1, an example is shown with a 2-D input space, twon input featurer;. We could reach the same conclusion using
output classes, and trapezoids as membership functions./{|z1) > I(C|z2). However, a measure of merit based on the
Table I, the absolute and relative average membership degrgai function produces clearer results than the direct use of the
of the two classes are reported, and based on these valuesirtftemation parametef(C|z,).

C. Example
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IV. ARTIFICIAL DATA EXAMPLES b)

In this section, we analyze some artificial examples to show % 'o?o{%?éﬁé@{% a2
how the information gain defined in Section I1I-B characterizes 4 @xwﬁﬁ%
the effectiveness of the input features for the required fuzzy E55 6.
input/output mapping. For all the examples reported in this ;i% X0y C2
study, we used the fuzzy clustering algorithm proposed in [18] @;{g ViF,
to build the set of fuzzy rules approximating the classification S %i&;
task at hand and trapezoids as membership functions. ﬁfe&g

2
A. Fixed Output Classes TR o
cUER

The first example refers to a three-dimensional (3-D) problem
with four output classes. The projection of such input space on 0 2 4" é é 1'0 12

a 2-D plane is shown in Fig. 3. Random values are generated for x1

the third dimension of all patterns. Fig. 3 shows that a correct

classification of all input data cannot be obtained on the basig. 3. Two-dimensional projection of a 3-D input space with four output
of only one input feature. Both input features andz» seem classes. The third dimension consists of random values for all output classes.
to be necessary for this purpose. A fuzzy model is implemented

using these data points as training set. The corresponding infor- TABLE Il
mation measures and gains are reported in Table Il for every  INFORMATION MEASURES—I(C), I(C), Tu(Clxy), AND
input dimension. I(C|x, )—AND INFORMATION GAINS—¢z (Clz, ) AND g (C|z, )—FROM

. . . . THE Fuzzy MODEL CONSTRUCTED ON THEINPUT SPACE DESCRIBED INFIG. 3
Let us concentrate on the information gain values in Table 1.

The third dimensionAs) contributes to the overall classification Ix(0) 1.87
task with an information gain equal to 0.0, as was to be expected, 16(C) ol
because of its random values in all four output classes. However,
none of the input features has an information gain close to 1.0,
which means that a complete separability of the output classes
is not achievable on any input dimension alone. Input features
1 andzo present similar values of information gain, showing
that they share the responsibility of a correct classification of
the input space. Input feature, however, has a lower infor-
mation gain, due to the fact that only one class can be perfectly - ]
separated from the others alang whereas three output classed the §eparabll|ty of the output cla}sses are reflected into corre-
can be separated alomg. Thus, the input features with highesSPonding changes of the information gain.
information gain, both with entropy and Gini function, corre- L€t us start with a configuration in a 2-D input space, where
spond to those input dimensions potentially producing the m@¥{0 output classes are completely separable along one input
effective cuts among the output classes. dmenspn a_nd completely overlapping along the other, as de-
In order to test the strength of the fuzzy information gain p&£€riPed in Fig. 5. In the next snapshots, one of the two output
rameter in quantifying the discriminative power of the input fed/2sses€1) is progressively shifted along one of the input di-

tures, the input space depicted in Fig. 3 was slightly changed‘i}?nSions- The information .gain is mpnitored through. time,_ to
Fig. 4 so that clas€’; overlaps with clas€s, even on ther, observe how well the evolution of the input space configuration

axis. Therefore, the discriminability of the output classes shodgidescribed. , , o , ,
decrease mainly am, and slightly onz; with respect to the ex- The llnformatlon gains referrmg to the mmgl conf|_gurat|on
ample in Fig. 3. of the input space (see Fig. 5) are rgported in the f_lrst row of
The new information gain values are reported in Table @bl V. As was to be expected, an information gain close to
z1’s information gain decreases only slightly and is still thé-0 describes an almost perfect separability of the two output
highest. Indeeds; still offers the smallest possibility of confu- €1asses along., whereas a 0.0 information gain describes the
sion among the different output classes in the input space. T#NPlete overlapping of the two output classes along
decreasing of»’s information gain is also consistent with the At this point, the patterns belonging to claSs are progres-

changes to class,. x5 produces a 0.0 information gain becaus@lVely shifted toward class; along ther, -axis with astepdz,,
of its random values like in the previous example. whereas their» coordinate stays constant. The corresponding

information gains are reported in the following rows in the upper
part of Table V.

The information gain of input feature, stays very high

In the previous subsection, we have shown that the propoged (C|x;1) = 0.85 — 0.87 andgg(Clz1) = 0.91 — 0.93) as
information gain is able to quantify the discriminative power dbng as the two output classes do not overlap. The two output
the input features in fuzzy models representing artificially pra&lasses begin to overlap fakz; = +1.5, and after that, a
duced data. In this section, we want to assess whether changegressive reduction af;'s information gain is observed. The

dimension || = 23 3

Iy(Clzy) (| 0.90 | 1.20 | 1.87
Ig(Clzy) 1 0.41 | 0.51 | 0.71
gu(Cl=z,) || 0.52 | 0.36 | 0.00
96(Clzy) || 0.42 | 0.28 | 0.00

B. Moving Output Classes
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TABLE V
EVOLUTION OF THE INFORMATION GAINS BASED ON THE ENTROPY,
gr(Clx,), AND ON THE GINI FUNCTION, g5 (C|x, ), FOR BOTHINPUT
FEATURES STARTING WITH THE CONFIGURATION IN FIG. 5 AND SHIFTING
CLASS C'; TOWARDS CLASS C'; ALONG &y WITH A STEP Az

: Az, | Az | gu(Clzy) | 96(Clzy)

4 T T2 1 )

- - 0.93 0.00 | 0.97 0.00

+05( - (085 0.00]091 0.00
+10| - | 0.87 0.00}0.93 0.00
+15 - 0.44 0.00 { 0.55 0.00
0 0 2 4 6 8 10 12 +2.0 - 0.22 0.00 | 0.29 0.00
x1 +2.5 - 0.08 0.00 | 0.10 0.00
. L . . - . +3.0 - 0.02 0.00 | 0.03 0.00

Fig.4. Variation of the input space with four output classes in Fig. 3. The input
space is 3-D, and its third dimensiep consists of random values for all output +35| - 0.00 0.0 | 0.00 0.00
classes. +40| - |0.03 000|004 0.00
+4.5 - 0.08 0.00 | 0.10 0.00
TAB'—'(EC')V ©). In(Cla) +50| - |0.20 000|026 0.00

INFORMATION MEASURES—I (), I:(C), Ix(C|z,), AND
I5(C|a,)—AND INFORMATION GAINS—g (C'|z, ) AND g (C|x, )—FROM +55| - | 047 000058 0.00
THE FUzzY MODEL CONSTRUCTED ON THEINPUT SPACE DESCRIBED INFIG. 4 +60| - |[091 000|096 0.00
7 185 +6.5 - 0.84 0.00 | 091 0.00
#(0) ' +70| - |094 000|097 0.00
Is(C) 0.70

- -1.5 (093 099 097 1.00
- =10 (092 042|096 0.52
- -0.5 (092 007|096 0.10
- 0.0 {093 0.00 | 097 0.00
- +0.5 | 092 007|096 0.10
- +1.0 | 0.93 042|096 0.52
- +1.5|092 099|096 1.00

dimension || = T2 T3
H(C|z,) || 0.90 | 1.30 | 1.85
G(Clzy) | 0.42 | 0.55 | 0.70
gu(Clzy) | 0.51 | 0.30 | 0.00
g¢(Clz,) || 0.40 | 0.22 | 0.00

a) - | +20(092 100|096 1.00
45 t . . . . . .
For even bigger shiftaz,, the information gain of input fea-
4l turex; is supposed to increasingly approach the unitary value.
However, atAz; = 4+6.5, a small decrease in the information
35t gain is observed, even though the two output classes are more
separated than fakz; = +6.0. In this case, the adopted fuzzy
3l learning algorithm builds less steep trapezoids than for closer
output classes because of the nonexistence of conflict points
25} | [18]. When the output classes move farther away, the informa-
tion gains increase again. Since the distribution of the input pat-
2 ' L - L . : ' - terns alonge, has not changed, the information gain:gnalso
c 1 2 3 4 5 6 7 8 9 does not change from the first row of Table V.

The same experiment is now performed shifting class

Fig. 5. Two-dimensional input space with two output classes progressiv@yong input dimensiom:;. A progressive delayzs is applied
overlapping on one input dimension. to thez, coordinate of the training patterns belonging to output

classCy, wherease; is kept constant. The progressive shifting
minimum value ¢y (C|z1) = go(Clz1) = 0.0) is reached for of classC; starts, this time, with the configuration described in
Az = +3.5, where the two output classes overlap completelyig. 5 andAz, = —1.5, that is, with clasg”; located below
on z; as well. Continuing to shift’; class’ patterns towards classC» and perfectly separable from that ep as well. The
bigger values of input dimensiony, classC; begins to part corresponding information gains are reported in the first row of
from clasgC>. Consequently, the separability opbetween the the bottom part of Table \t; shows the same information gain
two output classes increases, as does the information gain, uadilin the initial configuration of the first part of the experiment
values close to 1.0 are re-established, that i\at = +6.0 (Fig. 5).z, also shows a very high information gain, due to the
when the two output classes do not overlap anymore. complete separability now of the two output classes along
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Progressively increasingzs and moving upwards thé’; TABLE VI

class’ patterns, the corresponding new information gains are caf¥FORMATION GAINS g1 (C|z, ) AND ge(C'l, ) OF THEINPUT FEATURES
IN THE IRIS DATABASE. 2y = SEPAL LENGTH; x5 = SEPAL WIDTH;

culated and reported in the following rows in the bottom part of v = PETAL LENGTH, 74 = PETAL WIDTH
Table V. Evenin this case, the progressive overlapping of the two

classes along- corresponds to a progressive decreasing of the I(0) 1z  x3 T4
information gain for input feature, until the two output classes I#(C) = 144 | gn(Clz,) | 010 0.06 0.82 0.81
completely overlapdz, = 0.0) and the minimum information 16(C) = 061 | go(Clzy) | 0.10 006 0.84 0.79

gains g (Clx2) = 0.0 andgs(C|z2) = 0.0) are observed. If
classC; keeps moving upwards, the two output classes begin
to separate again, angb’s information gain goes up until a The fuzzy clustering algorithm [18] is trained by using the
value close to 1.0 is reached when the two output classes dowbple database as training set. The corresponding information
overlap anymore&z, = +1.5). The described example showsgains for each input feature are calculated and reported in
clearly the evolution of the information gain with the progrestable VI. The third and the fourth input parameteg @ndx,)
sive overlapping of the two output classes on input dimensié¥hibit very high information gains, whereas andz, show
1 andzs. almost zero values. These information gain values describe that
These results show that the proposed fuzzy feature merit méize resulting set of fuzzy rules concentrates on input features
sure is able to detect the dimension with maximum informatiors and =4 for the discrimination of the three output classes,
content for different configuration of the output classes in thghich is in agreement with that which is described in [19].
training set. An information gain close to 1.0 is shown on thode [20], a statistical correlation measure of the output classes
input dimensions where an almost complete discrimination b&ith the input features is also reported. Parametgrand z4
tween the output classes is possible. The more the considehgde a very high correlation with the output classes, whereas
output classes overlap on the given input dimension, the clogerandz: are associated with a much lower correlation value.
to 0.0 the information gain drops. The fuzziness of the systeRhis confirms the hypothesis of a more informative character
does not allow an information gain of 1.0 when the two outp® 3 andz, derived from the fuzzy feature merit measures in
classes are not overlapping anymore but are still very closeT@able VI.
each other. In fact, the representative membership function card he proposed fuzzy feature merit measures describe the in-
extend beyond the physical boundaries of the output classes tugative character of the input parameters for the considered
to their fuzzy nature. Indeed, the membership function slope ##zzy model, which in this case agrees with the informative
lows an information gain of 1.0 only when the two output class&®aracter of the input features for the considered set of data. A
are very far from each other. This is due to the inductive bias s#ifficient number of examples produces a sufficiently faithful
the used learning technique [18]. model of the data set, and hence, a description of the model
properties reflects a description of the training set characteris-

V. REAL-WORLD APPLICATIONS tics.

The results in the previous section show the effectivenesskf Stress Detection in Spoken American English

the proposed fuzzy feature merit measure in characterizing thes oo dic stress is an integral component of spoken language,
discriminability of the output classes on different input dime sarticularly for languages such as English that so heavily de-
sions for artificially created data. In this section, real-world dat§ang on this parameter for lexical, syntactic, and semantic dis-

are investigated. ambiguation. Even though it is by now quite generally accepted
[21]-[23] that prosodic stress depends mainly on amplitude, du-
A. IRIS Database ration, and pitch of the vocalic nuclei of syllables in spoken

The first experiment is performed on the IRIS database. THiénerican English, the role played by each one of these basic
database is relatively small, and the results cannot be easily gearameters is still controversial.
eralized. On the other hand, it is a commonly used databaseln this section, the fuzzy information gain described in Sec-
which enables a comparison with other similar techniques. tion IlI-B is applied to the problem of automatic detection of
The IRIS database contains data for three classes of iris plapft@sodic stress in spoken American English to ascertain the role
(iris setosa, iris virginica, and iris versicolor). The first clasBertaining to each one of these basic parameters for reliable
is linearly separable, whereas the last two classes are not. $HESS recognition.
iris plants are characterized in terms of sepal length, (sepal The basic parameters, characterizing each vocalic nucleus,

width (z2), petal length £3), and petal width.). are quantified as follows.
In [19], where a detailed description of the plants’ parameters ¢ Duration: Inside a speech file, thdurationof the kth vo-
is produced, the sepal length and sepal width-andz,—are calic nucleus is the numbép,, of signal samples between

reported to be very similar for all three output classes, i.e., they its onset and end.

do not allow a sufficient discrimination of the three iris classes. ¢« Amplitude: TheamplitudeA, is defined as the root mean
The first two parameters can thus be considered uninformative. square of theD,. signal samples contained in thth vo-
On the opposite, the petal featuress—and«;—characterize calic nucleus.

very well the first class of iris (iris setosa) with respect to the < Average Pitch: The averagepitch P refers to the av-
other two (iris viriginica and iris versicolor). erage value of the fundamental frequerfeyt) inside the
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kth vocalic nucleus. Fundamental frequencfgét) are TABLE VII

estimated on the basis of the autocorrelation function of =~ NUMBER OF FILES FROM THE OGI STORIES DATABASE LABELED
. . BY EACH TRANSCRIBER

quarter of octave spectral channels, as described in [24].

+ Pitch Range: The pitch rangeP;, refers to the range of voices | first transcriber | second transcriber | both
values of the fundamental frequengy(¢) inside thekth men r 38 5
vocalic nucleus.

. women 34 13 5
Diphthongs, such as “ay,” “oy,” and “er” present a longer du-
: i L . total 83 51 10
ration than plain vowels and, because of that, are divided in two
parts. For the same reason, artificially elongated vowels that are
longer than 250 ms and 400 ms are split into three and five TABLE VIl

parts, respectively. The maximum Value Of the eVidence Variable IN THE FIRST THREE COLUMNS: AGREEMENT OF TRANSCRIBER# 1
across all the splits is retained for the analysis. Every speakeYERsUs TRANSCRIBER# 2. IN THE LAST THREE COLUMNS: AGREEMENT

appears to use vocalic nuclei with different duration, amplitudgERggNTTEé::ingéifcSL‘;ETF;UOSNTESFSCCOR“;‘?AE(;*N#F}L'ETSH%’;GS;E“;ET o

aVerage pItCh, and p|tCh I’ange. In Order to norma”ze th|S Val’i- MINOR STRESSED /N UNSTRESSEDVOWELS

ance among speakers, those features are expressed in terms of

variance units from the mean value of their probabilistic distri- Transcr. # 1vs. # 2 | Transcr. # 2vs. # 1

butions inside each utterance [24]. % agreement % agreement
To provide a reference platform for the system’s perfor- S+ S N S+ S N

mance, two trained linguists separately hand labeled two 90 67 84 78 BT 93

different subsets of the American English component of
the OGI Stories Corpus [3] in terms of prosodic stress (see
Table VII). The OGI corpus contains 50-60-s files of sponta- The training and testing procedure is repeated using the Jack-
neous speech about any subject. Ten files—five men’s and fisgife method. Two thirds of the files that are used as a training
women’s voices—are common to both subsets. The stress g, and the one third used as a test set, are cyclically exchanged
notations refer to primary stressefli+), other minor stressed in such a way as to obtain three different pairs of training and test
(S—), and unstressed syllablea’). sets. The average system’s performance and input features in-
The agreement between the two transcribers on the comnformation gains are calculated across the three pairs training-test
files is shown in Table VIII and will be used as a baseline fagets and reported in Table IX for the first transcriber’s data and
the system’s performance. The first three columns of Table ViH Table X for the second transcriber’s data.
refer to the agreement percentage of transcriber# 1 versus trarin the first row of Tables IX and X, the system is trained to dis-
scriber# 2 and the second three columns to that of transcribérfuish between stresséfl) and unstressedV) vocalic nuclei
2 versus transcriber# 1. Since only a two-level stress automaiit the basis of the corresponding duration, amplitude, average
classification (stressed versus unstressed syllables) is imgligeh, and pitch range. The percentages refer to the stressed vo-
mented, the agreement percentages in Table VIII are calculagadic nuclei(.S) correctly recognized, to thé+ vocalic nuclei
accordingly. A stressed syllable labeleds (or S—) by one correctly recognized as stressed (unéler), to theS— vocalic
transcriber is considered in agreement if the other transcriberclei also correctly recognized as stressed (usdey, and to
labeled it also as eithef+ or S—. The two transcribers roughly the unstressed vocalic nuclei correctly recognized as unstressed
agree in recognizing primary stregS + : 90-78%) versus (underN). The following row refers to the classification sub-
unstressed syllabled: 84-93%). Much more disagreementproblem S+ versusN. The analysis of these two fuzzy clas-
exists in recognizing minor stressgs$ — : 67-57%). sification processes should help in understanding which input
From each subset of annotated files from the OGI databafesture is the most effective in characterizing each stress class.
two thirds of the files are used as a training set to implementA similar study is reported in [24], where the effectiveness of
a fuzzy model [18] that discriminates stresséd-(and S—) each basic parameter to a heuristic algorithm is evaluated on the
versus unstresséd ) vocalic nuclei. The resulting fuzzy modelbasis of the receiver operator characteristic (ROC) curve.
is tested on the remaining one third of files and analyzed in termsThe fuzzy models’ performances are slightly lower than the
of the discriminative power granted to each input feature (sagreement percentages between the two transcribers but are
Tables IX and X). comparable with the performance of other automatic algorithms
During the test phase, each membership function is weight@d]. The problem seems to be easier on the first transcriber’s
with the number of training patterns covered at the end of tidataset, where higher discrimination percentages of stressed
training procedure. This helps to solve conflicts among mert$+ and S—) versus unstressedV) syllables are obtained
bership functions, favoring the one representing the highg3able IX compared with Table X).
number of training patterns. For each test pattern, the correcfThe discrimination among different kinds of stres$+
answer of the system is defined as the membership degveesusS—) and between minor stresses and unstressed syl-
to the correct output class divided by the sum of all nonzetables §— versusN) are much more complicated problems.
membership degrees. The percentage of correctly classified tasgeneral, linguists can only reliably distinguish between
patterns for each output class is defined as the sum of corrkdly stressed §+) and unstressedN) syllables, whereas
answers with respect to the number of test patterns of tlle distinction among different levels of stresses can not be
output class. reliably performed. The fuzzy systems’ performances for this
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TABLE IX
INFORMATION GAINS OF THE INPUT FEATURES CHARACTERIZING STRESS IN SPOKEN AMERICAN ENGLISH
FOR THEFUZZY MODEL IMPLEMENTED ON THE FIRST TRANSCRIBER'STRAINING SETS

classification Information gains % correct
task duration amplitude average pitch pitch range | S+ and S- S+ S- N
S (S+and S-) | gu 0.10 0.14 0.02 0.02 62 _
vs. N 9G 0.13 0.17 0.02 0.02
S+ vs. 9H 0.19 0.17 0.02 0.02 _ 54 - 88
N 9 0.22 0.21 0.03 0.02
TABLE X

INFORMATION GAINS OF THE INPUT FEATURES CHARACTERIZING STRESS IN SPOKEN AMERICAN ENGLISH
FOR THEFUZZY MODEL IMPLEMENTED ON THE SECOND TRANSCRIBER'STRAINING SETS

classification Information gains % correct
task duration amplitude average pitch pitch range | S+ andS- S+ S- N
S(S+and$) [ga | 017 0.14 0.04 0.13 56 60 40 80
vs. N 9G 0.20 0.18 0.05 0.16
S+ vs. gH 0.22 0.11 0.09 0.08 } 53 - 83
N g9G 0.27 0.14 0.12 0.11

task become very low, being close to the random choice, aadtomatic analysis of the electrocardiogram (ECG) and, inside
therefore, the corresponding performance and informatitimt, the detection of arrhythmic heart beats.
gains are omitted. In this section, we analyze an ECG classification problem that

In the stressed versus unstressed vocalic nuclei classificatigs a much higher input dimension than the previous two ex-
(S+ andS— versusV), duration and amplitude produce comperiments. Because of the redundancy in the input dimension,
parable information gains for both transcribers’ data sets. Tlsieme of the input features will present a zero or close to zero
means that both of them contribute circa with the same strengpformation gain. Such input features should be the ones with
to the final decision process. The average pitch has the lowesttite lowest impact on the decision process. The goal is to inves-
formation gain in both tables, which shows the low contributiotigate whether the removal of these input features influence the
of this input feature to the classification. Finally, the pitch ranggystem’s performance on the test set.
seems to play a more important role for the second transcribeBeing an almost periodic signal, the electrocardiogram
than for the first transcriber. This agrees with the results report@dCG) describes the electrical activity of the myocardium in
in [24]. Indeed, the heuristic algorithm used in [24] producedtime. Each time period consists of a basic waveshape, whose
very good performance when using the pitch range alone, baves are marked with the alphabet letters P, Q, R, S, T, and U.
very little improvement was obtained if combining pitch rangé big family of cardiac electrical misfunctions consists of the
and duration in the input vector due to an information overlagtrhythmic heart beats that derive from an anomalous (ectopic)
ping. Moving to theS+ versusN problem, the fuzzy algorithm origin of the depolarization wavefront in the myocardium. The
characterizes primary stres$-{) by means of only amplitude most common types have an anomalous origin in the atria
and duration for both transcriber’s data sets (second rows of Tepraventricular premature beats (SVPB)] or in the ventricula
bles IX and X). This analysis indicates the minor role of pitcfventricular premature beats (VPB)].
in characterizing stress, especially primary stress, in AmericanThe MIT-BIH ECG database [25] represents a standard for
English sentences, which agrees with what was reported in [2ffe evaluation of methods for the automatic classification of

The same experiment is performed after adding the proddd€G arrhythmic events because of the wide set of examples pro-
of duration, amplitude, and average pitch to the input vector. Wded. The MIT-BIH ECG database consists of 48 two-channel,
this case, the product is associated with the highest informati®®-min-long records, sampled at 360 samples/s and manually
gain for all the classification tasks. Even this is in agreemeabnotated by trained cardiologists. QRS complexes are detected,
with the results reported in [24], where the product of these thraed for each beat waveshape, a set of 12 measures [2] is ex-
acoustic features obtains the highest ROC curve and the deatted by using the first of the two channels in the ECG record
performance on the test set. (see Table XI).

A total of 39 records are used for this experiment, and a
three-class problem (normal versus VPB's versus SVPB'’s) is
considered. In order to produce more general results, the Jack-

A very suitable area for fuzzy—or, in general, qualitaknife procedure is applied. The selected 39 records are divided
tive—decision systems consists of medical applications. Oirethree groups, each containing one third of the original number
of the most investigated fields in medical reasoning is tha records. Three different fuzzy models are constructed and

C. ECG Arrhythmia Classification
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TABLE XI VPB’s and 72% SVPB's (see the sixth row of Table XII)—is
SET OF MEASURESCHARACTERIZING EACH ECG BEAT WAVESHAPE reached. Such a maximum in performance occurs in correspon-
RR/RRa orematarity degres dence of an input vector with only seven components.
- Performance, however, does not change much as long as the
QRSw QRS width (ms) main five components of the input vector are kept: the prematu-
pA Positive amplitude of the QRS (V) rity degree, the QRS width, the positive and negative amplitude
nA Negative amplitude of the QRS (V) of the QRS complex, and the PR interval. These ECG measures
PQRS Positive area of the QRS (uV * ms) were also the ones with a non-negligible information gain in the
nQRS Negative area of the QRS {4V * ms) original analysis (see the first row of Table XllI). The percent-
Tarea positive T wave area + negative T wave area (4V * ms) ages of correctly classified beats begin to decrease dramatically
IVR | Inverted Ventricular Repolarization = (pQRS + nQRS)/ Tarea  ONly when one of these ECG measures is removed from the input
ST ST segment level (4V) vector (see the ninth row of Table XII).
STsl slope of the ST segment (uV/ms) The second part of the table reports the situation—informa-
P P exist (yes 0.5, 0 -0.5) tion gain and system performance—of the system when using
PR PR interval (ms) the input features with highest information gain alone. None of

the five ECG measures with highest information gain in the orig-
inal analysis can achieve very good performance if used alone
s8¢ the 12th—16th rows of Table XII). This was to be expected

maining one as test set, respectively. The output classes in & ince all those features exhibit an information gain that is quite

training set are forced to be equally distributed by repetition dqi;ferr(()ar:t til‘r:e lgrt]?j)i(rlrr:aunrgiolr.lg.sTer:eemCso?oClkj)rerenngc:Ge(s)fs;l:Zzya:;JtliiiIgﬂ
the examples from the less-represented output classes. P Y P y

At f ‘ f les | d 118 0 recognize SVPBs. For example, the fuzzy classifier uses the
t first, a set of fuzzy rules is constructed [18] on eac sitive amplitude of the QRS complex in strict connection with

training set to discriminqte the three oqtput classes by using i?ilduration, as we can see from the system’s performance in the
12 ECG measures. The information gains of the ECG measufeS row versus the system’s performance in the tenth row of

and the percentages of correctly classified beats are calculafg le XII
for thg three fuzzy sygtems gnd reported in average in Table X”'The last three rows of Table XII contain the information gains
The hlghdegt]!nforn:_anon gains are marked b(ild' Slncle the tv&?.\d the system’s performance when the input vector consists of
proposed Information gains assume very Closeé values, a.sor“y the ECG measures with lowest information gain, namely,
Bt T wave area and ST segment amplitude. As it was to be

gain based on the entropy function is reported in Table XIl. expected, the system’s performance becomes quite poor, failing
The average performance of the three sets of fuzzy rules Whﬁ'?ecognizing SVPBs.

all12 ECG measures are used as input vector (see the firstrow of, 5 previous study [16] on only two files of the MIT-BIH

Table XII) are comparable with those reported in the literatugg,anase, the fuzzy system was retrained at each step after the
[2]. The information gains on the left part of the row show thalmoyq) of the input feature with lowest information gain. The
such performances are mainly due to the action of the premg,rmation gains of the new fuzzy model resulted in more dis-
turity degree (pd), the negative amplitude of the QRS comple¥ ted across clusters of input features but, in general, was con-
and the PR interval. The width and the positive amplitude aggkent with what was observed in the first experiment using all
area of the QRS complex contribute only up to a minor exten{, ecG measures. For example, after removing an ECG mea-
Could the set of 12 ECG measures then be representedsbye related with the QRS morphology, the retrained system
only the input parameters with highest information gain? If thgould increase the information gain of all the other ECG mea-
information gain of the removed input features is negligiblgyres related with QRS morphology.
such reduction of the input vector should not make a big dif- This investigation shows that reducing the dimension of the
ference in terms of system’s performance. In order to test thigta set does not worsen the fuzzy system'’s performance if such

hypothesis, the ECG measures with lowest information gaiireduction is performed on the basis of an appropriate fuzzy
are progressively removed from the input vector and the c@&ature merit measure.

responding system’s performance, and input features informa-
tion gains are recalculated and reported in the following rows of
Table XII.

At first, the T wave area (T) and the ST segment amplitude
(ST) are removed from the input vector, which are the ECG An a posteriorianalysis of fuzzy models is presented that
measures with lowest information gain. The correspondimgantifies the influence of the input features on the decision
system’s performance actually improves. Indeed, such ingarocess, that is, their discriminative power among the output
features were used by the system to classify outliers or edasses.
ceptions in the training sets. Continuing the removal of the Using properties of fuzzy logic, it is easy and computationally
ECG measures with lowest information gain in the first rownexpensive to define a measure of the information contained
of Table XIlI, the system performance keeps improving untih the fuzzy model. Such measure is used to quantify the in-
a maximum of 95% correctly classified normal beats—83%6rmation available in the fuzzy model both before and after a

tested, using two of these three groups as training set and the(

VI. CONCLUSIONS



SILIPO AND BERTHOLD: INPUT FEATURES’ IMPACT ON FUZZY DECISION PROCESSES 833

TABLE Xl
INFORMATION GAINS FOR TWELVE ECG MEASURES IN ATHREE-CLASS ARRHYTHMIA CLASSIFICATION PROBLEM

% correct
RR/RRa QRSw pAmp nAmp pQRS nQRS T IVR ST STsi P PR| N VPB SVPB
.13 .04 .06 .10 .03 .02 00 02 01 .02 02 .08|92 80 67
A2 .03 .06 12 .02 .03 - 01 01 00 .02 .08)94 80 68
.15 .03 .07 .15 .06 .04 - 02 - 02 01 .09(9 79 70
.15 .03 .06 14 .05 .04 - 02 - .02 - 099 79 74
.12 .03 .08 A2 .08 - - .01 - .02 - 00]|9 8 72
A1 .01 .06 .06 .05 - - - - .02 - 09|95 83 72
.08 .01 .07 .05 .06 - - - - - - 07|95 8 71
07 .02 11 .05 - - - - - - - 0|95 83 70
.05 - .09 .03 - - - - - - - Jd0 |8 70 37
.04 - - .03 - - - - - - - 09|91 67 53
.05 - - .04 - - - - - - - - 19 63 56
.06 - - - - - - - - - - - |96 54 00
- - - .05 - - - - - - - - 19 37 00
- - - - - - - - - - - 10| 7 39 00
- 18 - - - - - - - - - - 198 78 00
- - .03 - - - - - - - - - |93 30 00
- - - - - - .01 - .01 - - - |8 39 00
- - - - - - .02 - - - - - |9 29 00
- - - - - - - - .02 - - - |94 36 00

given input feature is used for classification. The relative dif- [2] W. Zong and D. Jiang, “Automated ECG rhythm analysis using fuzzy
ference of these two information measures defines the informa-_ reasoning,” irProc. Comput. Cardio}.1998, pp. 69-72.

. . . . . . [3] Center for Spoken Language Understanding, Dept. Comput. Sci. Eng.,
tion gain associated with the use of this Input feature, which Oregon Graduate Inst., Corvallis, “Stories corpus,” Release 1.0, 1995.

provides a quantification of the discriminability among output [4] D. Ellis and N. Morgan, “Size matters: An empirical study of neural
classes along the analyzed input feature. This is related to the network training for large vocabulary continuous speech recognition,”

, e . . in Proc. ICASSP1999.
system’s classification performance only if the fuzzy model is 5; ; R Quinlan, “Induction of decision treesytach. Learn, pp. 81106,

constructed on a sufficiently general set of training examples. 1986.
Artificial and real-world examples illustrated the method's [6] ——.C4.5:Programs for Machine Learning San Mateo, CA: Morgan

tentiality. | ticul | d | th ti Kaufmann, 1993.
potentality. In particular, as real-world examples, thé Most IN- 71 ¢_apte, S. J. Hong, J. R. M. Hosking, J. Lepre, E. P. D. Pednault, and B.

formative electrocardiographic measures are detected for an ar- K. Rosen, “Decomposition of heterogeneous classification problems,”
rhythmia classification problem, and the role of duration, ampli- __ Intell. Data Anal. J, vol. 2, no. 2, 1998.

. . . .. . . 8] L.A.Zadeh, “Afuzzy-algorithmic approach to the definition of complex
tude, and pitch of syllabic vocalic nuclei in American English or imprecise conceptsht. J. Man-Mach. Studvol. 8, pp. 249291,

spoken sentences is investigated for prosodic stress detection.  1976.
The proposed algorithm represents a computationally inexd91 G.J.Klir and B. YuanFuzzy Sets and Fuzzy Logic: Theory and Appli-

. . . . . . cations Englewood Cliffs, NJ: Prentice-Hall, 1995.
pensive tool to reduce high-dimensional input spaces, to getinig) B. M. Ayyub and M. M. Gupta, Uncertainty Analysis in Engi-

sights about the implemented decision process, to look for pos-  neering and Sciences: Fuzzy Logic, Statistics and Neural Network
sible errors in the decisional structure, and to compare the use  Approach Boston, MA: Kluwer, 1997.

. . . . [11] H. Bandemer and S. GottwalBuzzy Sets, Fuzzy Logic, Fuzzy Methods
of the input features by fuzzy classifiers with different perfor- with Applications New York: Wiley, 1995.

mances. [12] C.Z.Janikow, “Fuzzy decision trees: Issues and methdHEE Trans.
Syst. Man Cybern. Brol. Feb., pp. 1-14, 1998.

[13] A. De Luca and S. Termini, “A definition of nonprobabilistic entropy
in the setting of fuzzy sets theoryiiiform. Contr, vol. 20, no. 4, pp.

. 301-312, 1972.
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