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Abstract

The classical fuzzy classifier consists of rules each one describing one of the classes. In this paper a new fuzzy model

structure is proposed where each rule can represent more than one classes with different probabilities. The obtained

classifier can be considered as an extension of the quadratic Bayes classifier that utilizes mixture of models for esti-

mating the class conditional densities. A supervised clustering algorithm has been worked out for the identification of

this fuzzy model. The relevant input variables of the fuzzy classifier have been selected based on the analysis of the

clusters by Fisher�s interclass separability criteria. This new approach is applied to the well-known wine and Wisconsin

breast cancer classification problems.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Typical fuzzy classifiers consist of interpretable

if–then rules with fuzzy antecedents and class

labels in the consequent part. The antecedents

(if-parts) of the rules partition the input space into
a number of fuzzy regions by fuzzy sets, while

the consequents (then-parts) describe the output

of the classifier in these regions. Fuzzy logic im-

proves rule-based classifiers by allowing the use of
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overlapping class definitions and improves the

interpretability of the results by providing more

insight into the decision making process. Fuzzy

logic, however, is not a guarantee for interpret-

ability, as was also recognized in (Valente de

Oliveira, 1999; Setnes et al., 1998). Hence, real
effort must be made to keep the resulting rule-base

transparent.

The automatic determination of compact fuzzy

classifiers rules from data has been approached by

several different techniques: neuro-fuzzy methods

(Nauck and Kruse, 1999), genetic-algorithm (GA)-

based rule selection (Ishibuchi et al., 1999), and

fuzzy clustering in combination with GA-optimi-
zation (Roubos and Setnes, 2000). Generally, the

bottleneck of the data-driven identification of
erved.
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fuzzy systems is the structure identification that

requires non-linear optimization. Thus for high-

dimensional problems, the initialization the fuzzy

model becomes very significant. Common initial-

izations methods such as grid-type partitioning

(Ishibuchi et al., 1999) and rule generation on

extrema initialization, result in complex and non-

interpretable initial models and the rule-base

simplification and reduction steps become com-

putationally demanding. To avoid these problems,

fuzzy clustering algorithms (Setnes and Babu�sska,
1999) were put forward. However, the obtained

membership values have to be projected onto the

input variables and approximated by parameter-
ized membership functions that deteriorates the

performance of the classifier. This decomposition

error can be reduced by using eigenvector projec-

tion (Kim et al., 1998), but the obtained linearly

transformed input variables do not allow the in-

terpretation of the model. To avoid the projection

error and maintain the interpretability of the

model, the proposed approach is based on the
Gath–Geva (GG) clustering algorithm (Gath and

Geva, 1989) instead of the widely used Gustafson–

Kessel (GK) algorithm (Gustafson and Kessel,

1979), because the simplified version of GG clus-

tering allows the direct identification of fuzzy

models with exponential membership functions

(Hoppner et al., 1999).

Neither GG nor GK algorithm does not utilize
the class labels. Hence, they give suboptimal result

if the obtained clusters are directly used to for-

mulate a classical fuzzy classifier. Hence, there is

a need for fine-tuning of the model. This GA

or gradient-based fine-tuning, however, can result

in overfitting and thus poor generalization of the

identified model. Unfortunately, the severe com-

putational requirements of these approaches limit
their applicability as a rapid model-development

tool.

This paper focuses on the design of interpret-

able fuzzy rule-based classifiers from data with

low-human intervention and low-computational

complexity. Hence, a new modeling scheme is in-

troduced based only on fuzzy clustering. The

proposed algorithm uses the class label of each
point to identify the optimal set of clusters that
describe the data. The obtained clusters are then

used to build a fuzzy classifier.

The contribution of this approach is twofold.

• The classical fuzzy classifier consists of rules

each one describing one of the C classes. In this
paper a new fuzzy model structure is proposed

where the consequent part is defined as the

probabilities that a given rule represents the

c1; . . . ; cC classes. The novelty of this new model

is that one rule can represent more than one

classes with different probabilities.

• Classical fuzzy clustering algorithms are used to

estimate the distribution of the data. Hence,
they do not utilize the class label of each data

point available for the identification. Further-

more, the obtained clusters cannot be directly

used to build the classifier. In this paper a new

cluster prototype and the related clustering algo-

rithm have been introduced that allows the di-

rect supervised identification of fuzzy classifiers.

The proposed algorithm is similar to the multi-

prototype classifier technique (Biem et al., 2001;

Rahman and Fairhurst, 1997). In this approach,

each class is clustered independently from the

other classes, and is modeled by few components

(Gaussian in general). The main difference of this

approach is that each cluster represents different

classes, and the number of clusters used to ap-
proximate a given class have to be determined

manually, while the proposed approach does not

suffer from these problems.

Using too many input variables may result in

difficulties in the prediction and interpretability

capabilities of the classifier. Hence, the selection of

the relevant features is usually necessary. Gener-

ally, there is a very large set of possible features to
compose feature vectors of classifiers. As ideally

the training set size should increase exponentially

with the feature vector size, it is desired to choose a

minimal subset among it. Some generic tips to

choose a good feature set include the facts that

they should discriminate as much as possible the

pattern classes and they should not be correlated/

redundant. There are two basic feature-selection
approaches: The closed-loop algorithms are based
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on the classification results, while the open-loop

algorithms are based on a distance between clus-

ters. In the former, each possible feature subset is

used to train and to test a classifier, and the rec-

ognition rates are used as a decision criterion: the

higher the recognition rate, the better is the feature
subset. The main disadvantage of this approach is

that choosing a classifier is a critical problem on its

own, and that the final selected subset clearly de-

pends on the classifier. On the other hand, the

latter depends on defining a distance between the

clusters, and some possibilities are Mahalanobis,

Bhattacharyya and the class separation distance

(Campos and Bloch, 2001).
In this paper the Fisher-interclass separability

method is utilized, which is an open-loop feature

selection approach (Cios et al., 1998). Other pa-

pers focused on feature selection based on simi-

larity analysis of the fuzzy sets (Campos and

Bloch, 2001; Roubos and Setnes, 2000). Differ-

ences in these reduction methods are: (i) Feature

reduction based on the similarity analysis of fuzzy
sets results in a closed-loop feature selection be-

cause it depends on the actual model while the

applied open-loop feature selection can be used

beforehand as it is independent from the model.

(ii) In similarity analysis, a feature can be removed

from individual rules. In the interclass separability

method the feature is omitted in all the rules

(Roubos et al., 2001). In this paper the simple
Fisher interclass separability method have been

modified, but in the future advanced multiclass

data reduction algorithms like weighted pairwise

Fisher criteria (Loog et al., 2001) could be also

used.

The paper is organized as follows. In Section 2,

the structure of the new fuzzy classifier is pre-

sented. Section 3 describes the developed clus-
tering algorithm that allows for the direct

identification of fuzzy classifiers. For the selection

of the important features of the fuzzy system

a Fisher interclass separability criteria based

method will be presented in Section 4. The pro-

posed approach is studied for the Wisconsin

breast cancer and the wine classification examples

in Section 5. Finally, the conclusions are given in
Section 6.
2. Structure of the fuzzy rule-based classifier

2.1. Classical Bayes classifier

The identification of a classifier system means
the construction of a model that predicts the class

yk ¼ fc1; . . . ; cCg to which pattern xk ¼ ½x1;k; . . . ;
xn;k� should be assigned. The classic approach for

this problem with C classes is based on Bayes� rule.
The probability of making an error when classi-

fying an example x is minimized by Bayes� decision
rule of assigning it to the class with the largest a

posteriori probability:

x is assigned to ci () pðcijxÞP pðcjjxÞ 8j 6¼ i

ð1Þ
The a posteriori probability of each class given

a pattern x can be calculated based on the pðxjciÞ
class conditional distribution, which models the
density of the data belonging to the class ci, and
the P ðciÞ class prior, which represents the prob-

ability that an arbitrary example out of data be-

longs to class ci

pðcijxÞ ¼
pðxjciÞP ðciÞ

pðxÞ ¼ pðxjciÞP ðciÞPC
j¼1 pðxjcjÞP ðcjÞ

ð2Þ

As (1) can be rewritten using the numerator of

(2)

x is assigned to ci () pðxjciÞP ðciÞP pðxjcjÞP ðcjÞ
8j 6¼ i ð3Þ

we would have an optimal classifier if we would

perfectly estimate the class priors and the class

conditional densities.

In practice one needs to find approximate esti-

mates of these quantities on a finite set of training

data fxk; ykg, k ¼ 1; . . . ;N . Priors PðciÞ are often
estimated on the basis of the training set as the

proportion of samples of class ci or using prior

knowledge. The pðcijxÞ class conditional densities

can be modeled with non-parametric methods like

histograms, nearest-neighbors or parametric meth-

ods such as mixture models.

A special case of Bayes classifiers is the quad-

ratic classifier, where the pðxjciÞ distribution gen-
erated by the class ci is represented by a Gaussian

function
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pðxjciÞ ¼
1

j2pF ijn=2
exp

�

 1

2
ðx
 viÞTðF iÞ
1ðx
 viÞ

�
ð4Þ

where vi ¼ ½v1;i; . . . ; vn;i�T denotes the center of the

ith multivariate Gaussian and F i stands for a co-

variance matrix of the data of the class ci. In this

case, the (3) classification rule can be reformulated
based on a distance measure. The sample xk is

classified to the class that minimizes the D2
i;kðxkÞ

distance, where the distance measure is inversely

proportional to the probability of the data:

D2
i;kðxkÞ

¼ P ðciÞ
j2pF ijn=2

exp

� 

1

2
ðx
viÞTðF iÞ
1ðx
viÞ

�!
1

ð5Þ
2.2. Classical fuzzy classifier

The classical fuzzy rule-based classifier consists

of fuzzy rules each one describing one of the C
classes. The rule antecedent defines the operating

region of the rule in the n-dimensional feature

space and the rule consequent is a crisp (non-

fuzzy) class label from the fc1; . . . ; cCg label set:

ri : If x1 is Ai;1ðx1;kÞ and . . . xn is Ai;nðxn;kÞ
then ŷy ¼ ci; ½wi� ð6Þ

where Ai;1; . . . ;Ai;n are the antecedent fuzzy sets

and wi is a certainty factor that represents the

desired impact of the rule. The value of wi is

usually chosen by the designer of the fuzzy system
according to his or her belief in the accuracy of

the rule. When such knowledge is not available,

wi is fixed to value 1 for any i.
The and connective is modeled by the product

operator allowing for interaction between the

propositions in the antecedent. Hence, the degree

of activation of the ith rule is calculated as:

biðxkÞ ¼ wi

Yn
j¼1

Ai;jðxj;kÞ ð7Þ

The output of the classical fuzzy classifier is

determined by the winner takes all strategy, i.e. the
output is the class related to the consequent of the

rule that gets the highest degree of activation:

ŷyk ¼ ci� ; i� ¼ arg max
16 i6C

biðxkÞ ð8Þ

To represent the Ai;jðxj;kÞ fuzzy set, we use

Gaussian membership functions

Ai;jðxj;kÞ ¼ exp

 

 1

2

ðxj;k 
 vj;iÞ2

r2
j;i

!
ð9Þ

where vi;j represents the center and r2
j;i stands for

the variance of the Gaussian function. The use of

Gaussian membership function allows for the

compact formulation of (7):

biðxkÞ ¼ wiAiðxkÞ

¼ wi exp

�

 1

2
ðxk 
 viÞTðF iÞ
1ðxk 
 viÞ

�
ð10Þ

where vi ¼ ½v1;i; . . . ; vn;i�T denotes the center of the

ith multivariate Gaussian and F i stands for a dia-

gonal matrix that contains the r2
i;j variances.

The fuzzy classifier defined by the previous

equations is in fact a quadratic Bayes classifier

when F i in (4) contains only diagonal elements

(variances). (For more details, refer to the paper of

Baraldi and Blonda (1999), which overviews this

issue.)

In this case, the AiðxÞ membership functions

and the wi certainty factors can be calculated from
the parameters of the Bayes classifier following

Eqs. (4) and (10) as

AiðxÞ ¼ pðxjciÞj2pF ijn=2; wi ¼
P ðciÞ

j2pF ijn=2
ð11Þ
2.3. Bayes classifier based on mixture of density

models

One of the possible extensions of the classical

quadratic Bayes classifier is to use mixture of

models for estimating the class-conditional densi-

ties. The usage of mixture models in Bayes classi-
fiers is not so widespread (Kambhatala, 1996). In

these solutions each conditional density is modeled

by a separate mixture of models. A possible criti-

cism of such Bayes classifiers is that in a sense they
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are modeling too much: for each class many aspects

of the data are modeled which may or may not play

a role in discriminating between the classes.

In this paper a new approach is presented. The

pðcijxÞ posteriori densities are modeled by R > C
mixture of models (clusters)

pðcijxÞ ¼
XR
l¼1

pðrljxÞP ðcijrlÞ ð12Þ

where pðrljxÞ represents the a posteriori probabil-

ity of x has been generated by the rlth local model

and PðcijrlÞ denotes the prior probability of this

model represents the class ci.
Similarly to (2) pðrljxÞ can be written as

pðrijxÞ ¼
pðxjriÞP ðriÞ

pðxÞ ¼ pðxjriÞP ðriÞPR
j¼1 pðxjrjÞP ðrjÞ

ð13Þ

By using this mixture of density models the

posteriori class probability can be expressed fol-

lowing Eqs. (2), (12) and (13) as

pðcijxÞ ¼
pðxjciÞP ðciÞ

pðxÞ

¼
XR
l¼1

pðxjriÞP ðriÞPR
j¼1 pðxjrjÞP ðrjÞ

P ðcijrlÞ

¼
PR

l¼1 pðxjriÞP ðriÞPðcijrlÞ
pðxÞ ð14Þ

The Bayes decision rule can be thus formulated
similarly to (3) as

x is assigned to ci

()
XR
l¼1

pðxjrlÞPðrlÞP ðcijrlÞ

P
XR
l¼1

pðxjrlÞP ðrlÞPðcjjrlÞ 8j 6¼ i ð15Þ

where the pðxjrlÞ distribution is represented by

Gaussians similarly to (4).

2.4. Extended fuzzy classifier

A new fuzzy model that is able to represent

Bayes classifier defined by (15) can be obtained.

The idea is to define the consequent of the fuzzy

rule as the probabilities of the given rule represents

the c1; . . . ; cC classes:
ri : If x1 is Ai;1ðx1;kÞ and . . . xn is Ai;nðxn;kÞ
then ŷyk ¼ c1 with P ðc1jriÞ; . . . ; ŷyk ¼ cC

with P ðcCjriÞ½wi� ð16Þ

Similarly to Takagi–Sugeno fuzzy models

(Takagi and Sugeno, 1985), the rules of the fuzzy

model are aggregated using the normalized fuzzy

mean formula and the output of the classifier is
determined by the label of the class that has the

highest activation:

ŷyk ¼ ci� ; i� ¼ arg max
16 i6C

PR
l¼1 blðxkÞP ðcijrlÞPR

i¼1 blðxkÞ
ð17Þ

where blðxkÞ has the meaning expressed by (7).

As the previous equation can be rewritten using

only its numerator, the obtained expression is

identical to the Gaussian mixtures of Bayes clas-

sifiers (15) when similarly to (11) the parameters of

the fuzzy model are calculated as

AiðxÞ ¼ pðxjriÞj2pF ijn=2; wi ¼
P ðriÞ

j2pF ijn=2
ð18Þ

The main advantage of the previously presented

classifier is that the fuzzy model can consist of

more rules than classes and every rule can describe
more than one class. Hence, as a given class will be

described by a set of rules, it should not be a

compact geometrical object (hyper-ellipsoid).

The aim of the remaining part of the paper is

to propose a new clustering-based technique for

the identification of the fuzzy classifier presented

above. In addition, a new method for the selection

of the antecedent variables (features) of the model
will be described.
3. Supervised fuzzy clustering

The objective of clustering is to partition the

identification data Z into R clusters. This means,

each observation consists of input and output
variables, grouped into a row vector zk ¼ ½xT

k ; yk�,
where the k subscript denotes the k ¼ 1; . . . ;N th

row of the Z pattern matrix. The fuzzy partition is

represented by the U ¼ ½li;k�R�N matrix, where the

li;k element of the matrix represents the degree of
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membership, how the zk observation is in the

cluster i ¼ 1; . . . ;R.
The clustering is based on the minimization of

the sum of weighted D2
i;k squared distances between

the data points and the gi cluster prototypes that

contains the parameters of the clusters.

JðZ;U ; gÞ ¼
XR
i¼1

XN
k¼1

ðli;kÞ
mD2

i;kðzk; riÞ ð19Þ

where m is a fuzzy weighting exponent that de-

termines the fuzziness of the resulting clusters. As

m approaches one from above, the partition be-

comes hard (li;k 2 f0; 1g), and vi are the ordinary
means of the clusters. As m ! 1, the partition

becomes fuzzy (li;k ¼ 1=R) and the cluster means

are all equal to the grand mean of Z. Usually, m
is often chosen as m ¼ 2.

Classical fuzzy clustering algorithms are used to

estimate the distribution of the data. Hence, they

do not utilize the class label of each data point

available for the identification. Furthermore, the
obtained clusters cannot be directly used to build

the classifier. In the following a new cluster pro-

totype and the related distance measure will be

introduced that allows the direct supervised iden-

tification of fuzzy classifiers. As the clusters are

used to obtain the parameters of the fuzzy classi-

fier, the distance measure is defined similarly to the

distance measure of the Bayes classifier (5):

1

D2
i;kðzk; riÞ

¼ P ðriÞ
Yn
j¼1

exp 
 1

2

ðxj;k 
 vi;jÞ2

r2
i;j

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gath–Geva clustering

� P ðcj ¼ ykjriÞ ð20Þ

This distance measure consists of two terms. The
first term is based on the geometrical distance be-

tween the vi cluster centers and the xk observation

vector, while the second is based on the probability

that the rith cluster describes the density of the class

of the kth data, Pðcj ¼ ykjriÞ. It is interesting to note

that this distance measure only slightly differs from

the unsupervised GG clustering algorithm which

can also be interpreted in a probabilistic frame-
work (Gath and Geva, 1989). However, the novelty

of the proposed approach is the second term, which

allows the use of class labels.
To get a fuzzy partitioning space, the member-

ship values have to satisfy the following condi-

tions:

U 2 Rc�N jli;k 2 ½0; 1� 8i; k;XR
i¼1

li;k ¼ 1 8k; 0 <
XN
k¼1

li;k < N 8i ð21Þ

The minimization of the (22) functional repre-

sents a non-linear optimization problem that is

subject to constraints defined by (21) and can be

solved by using a variety of available methods. The
most popular method, is the alternating optimi-

zation (AO), which consists of the application of

Picard iteration through the first-order conditions

for the stationary points of (22), which can be found

by adjoining the constraints (21) to J by means

of LaGrange multipliers (Hoppner et al., 1999),

JðZ;U ; g; kÞ ¼
XR
i¼1

XN
k¼1

ðli;kÞ
mD2

i;kðzk; riÞ

þ
XN
k¼1

kk

XR
i¼1

li;k

 

 1

!
ð22Þ

and by setting the gradients of J with respect to Z,

U , g and k to zero.

Hence, similarly to the update equations of GG

clustering algorithm, the following equations will

result in a solution that satisfies the (22) con-

straints.

Initialization Given a set of data Z specify R,
choose a termination tolerance � > 0. Initialize

the U ¼ ½li;k�R�N partition matrix randomly,

where li;k denotes the membership that the zk
data is generated by the ith cluster.

Repeat for l ¼ 1; 2; . . .
Step 1 Calculate the parameters of the clusters
• Calculate the centers and standard de-
viation of the Gaussian membership

functions (the diagonal elements of

the F i covariance matrices):
v
ðlÞ
i ¼

PN
k¼1 ðl

ðl
1Þ
i;k ÞmxkPN

k¼1 ðl
ðl
1Þ
i;k Þm

;

r2;ðlÞ
i;j ¼

PN
k¼1 ðl

ðl
1Þ
i;k Þmðxj;k 
 vj;kÞ2PN
k¼1 ðl

ðl
1Þ
i;k Þm

ð23Þ
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• Estimate the consequent probability

parameters,
pðcijrjÞ ¼
P

kjyk¼ci
ðlðl
1Þ

j;k ÞmPN
k¼1 ðl

ðl
1Þ
j;k Þm

;

16 i6C; 16 j6R ð24Þ
• A priori probability of the cluster and

the weight (impact) of the rules:
P ðriÞ ¼
1

N

XN
k¼1

ðlðl
1Þ
i;k Þm;

wi ¼ P ðriÞ
Yn
j¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

i;j

q ð25Þ

Step 2 Compute the distance measure D2
i;kðzk; riÞ

by (20).

Step 3 Update the partition matrix

lðlÞ
i;k ¼ 1PR

j¼1 ðDi;kðzk; riÞ=Dj;kðzk; rjÞÞ2=ðm
1Þ ;

16 i6R; 16 k6N ð26Þ

until kU ðlÞ 
U ðl
1Þk < �.

The remainder of this section is concerned with

the theoretical convergence properties of the pro-

posed algorithm. Since, this algorithm is the

member of the family of algorithms discussed in

(Hathaway and Bezdek, 1993), the following dis-

cussion is based on the results of Hathaway and

Bezdek (1993). Using LaGrange multiplier theory,
it is easily shown that for D2

i;kðzk; riÞP 0, (26) de-

fines U ðlþ1Þ to be a global minimizer of the re-

stricted cost function (22). From this it follows

that the proposed iterative algorithm is a special

case of grouped coordinate minimization, and the

general convergence theory from (Bezdek et al.,

1987) can be applied for reasonable choices of

D2
i;kðzk; riÞ to shown that any limit point of

an iteration sequence will be a minimizer, or at

worst a saddle point of the cost function J . The
local convergence result in (Bezdek et al., 1987)

states that if the distance measures D2
i;kðzk; riÞ are

sufficiently smooth and a standard convexity holds

at a minimizer of J , then any iteration sequence

started with U ð0Þ sufficiently close to U� will con-

verge to the minima. Furthermore, the rate of
convergence of the sequence will be c-linear. This
means that there is a norm k � k and constants

0 < c < 1 and l0 > 0, such that for all lP l0, the
sequence of errors felg ¼ fkðU lÞ 
 ðU�Þkg satis-

fies the inequality elþ1 < cel.
4. Feature selection based on interclass separability

Using too many input variables may result in

difficulties in the interpretability capabilities of the

obtained classifier. Hence, selection of the relevant

features is usually necessary. Others have focused

on reducing the antecedent variables by similarity
analysis of the fuzzy sets (Roubos and Setnes,

2000), however this method is not very suitable for

feature selection. In this section Fischer interclass

separability method (Cios et al., 1998) is modified

which is based on statistical properties of the data.

The interclass separability criterion is based on the

FB between-class and the FW within-class covari-

ance matrices that sum up to the total covariance
of the data FT ¼ FW þ FB, where

FW ¼
XR
l¼1

P ðrlÞF l;

FB ¼
XR
l¼1

P ðrlÞðvl 
 v0ÞTðvl 
 v0Þ;

v0 ¼
XR
l¼1

P ðrlÞvl

ð27Þ

The feature interclass seperability selection cri-

terion is a trade-off between FW and FB:

J ¼ detFB

detFW

ð28Þ

The importance of a feature is measured by

leaving out the interested feature and calculating J
for the reduced covariance matrices. The feature

selection is a step-wise procedure, when in every

step the least needed feature is deleted from the
model.

In the current implementation of the algorithm

after fuzzy clustering and initial model formulation

a given number of features are selected by contin-

uously checking the decrease of the perfor-

mance of the classifier. To increase the classification
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performance, the final classifier is identified based

on the re-clustering of reduced data which have

smaller dimensionality because of the neglected

input variables.
5. Performance evaluation

In order to examine the performance of the

proposed identification method two well-known

multidimensional classification benchmark prob-

lems are presented in this section. The studied

Wisconsin breast cancer and Wine data come from

the UCI Repository of Machine Learning Data-
bases (http://www.ics.uci.edu).

The performance of the obtained classifiers was

measured by 10-fold cross validation. The data

divided into ten sub-sets of cases that have similar

size and class distributions. Each sub-set is left out

once, while the other nine are applied for the

construction of the classifier which is subsequently

validated for the unseen cases in the left-out sub-
set.

5.1. Example 1: the Wisconsin breast cancer clas-

sification problem

The Wisconsin breast cancer data is widely used

to test the effectiveness of classification and rule

extraction algorithms. The aim of the classification
is to distinguish between benign and malignant

cancers based on the available nine measurements:

x1 clump thickness, x2 uniformity of cell size, x3
uniformity of cell shape, x4 marginal adhesion, x5
single epithelial cell size, x6 bare nuclei, x7 bland
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Fig. 1. Wisconsin breast cancer data: two classes and
chromatin, x8 normal nuclei, and x9 mitosis (data

shown in Fig. 1). The attributes have integer value

in the range (Baraldi and Blonda, 1999; Hoppner

et al., 1999). The original database contains 699

instances however 16 of these are omitted because

these are incomplete, which is common with other
studies. The class distribution is 65.5% benign and

34.5% malignant, respectively.

The advanced version of C4.5 gives misclas-

sification of 5.26% on 10-fold cross validation

(94.74% correct classification) with tree size

25� 0.5 (Quinlan, 1996). Nauck and Kruse (1999)

combined neuro-fuzzy techniques with interactive

strategies for rule pruning to obtain a fuzzy classi-
fier. An initial rule-base was made by applying two

sets for each input, resulting in 29 ¼ 512 rules

which was reduced to 135 by deleting the non-

firing rules.Aheuristic data-driven learningmethod

was applied instead of gradient descent learning,

which is not applicable for triangular membership

functions. Semantic properties were taken into ac-

count by constraining the search space. They final
fuzzy classifier could be reduced to two rules with

5–6 features only, with a misclassification of 4.94%

on 10-fold validation (95.06% classification accu-

racy). Rule-generating methods that combine GA

and fuzzy logic were also applied to this problem

(Pe~nna-Reyes and Sipper, 2000). In this method the

number of rules to be generated needs to be deter-

mined a priori. This method constructs a fuzzy
model that has four membership functions and one

rule with an additional else part. Setiono (2000) has

generated similar compact classifier by a two-step

rule extraction from a feedforward neural network

trained on preprocessed data.
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nine attributes (class 1: 1–445, class 2: 446–683).

http://www.ics.uci.edu
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As Table 1 shows, our fuzzy rule-based classifier

is one of the most compact models in the literature

with such high accuracy.

In the current implementation of the algorithm

after fuzzy clustering an initial fuzzy model is

generated that utilizes all the nine information
profile data about the patient. A step-wise feature

reduction algorithm has been used where in every

step one feature has been removed continuously

checking the decrease of the performance of the

classifier on the training data. To increase the

classification performance, the classifier is re-

identified in every step by re-clustering of reduced

data which have smaller dimensionality because of
the neglected input variables. As Table 2 shows,

our supervised clustering approach gives better

results than utilizing the GG clustering algorithm

in the same identification scheme.

The 10-fold validation experiment with the

proposed approach showed 95.57% average clas-

sification accuracy, with 90.00% as the worst and

95.57% as the best performance. This is really
good for such a small classifier as compared with

previously reported results (Table 1). As the error

estimates are either obtained from 10-fold cross

validation or from testing the solution once by

using the 50% of the data as training set, the re-
Table 1

Classification rates and model complexity for classifiers constructed f

Author Method ]

Setiono (2000) NeuroRule 1f 4

Setiono (2000) NeuroRule 2a 3

Pe~nna-Reyes and Sipper (2000) Fuzzy-GA1 1

Pe~nna-Reyes and Sipper (2000) Fuzzy-GA2 3

Nauck and Kruse (1999) NEFCLASS 2

\ Denotes results from averaging a 10-fold validation.

Table 2

Classification rates and model complexity for classifiers constructed f

Method Min Acc. Mean Acc. Max Acc.

GG: R ¼ 2 84.28 90.99 95.71

Sup: R ¼ 2 84.28 92.56 98.57

GG: R ¼ 4 88.57 95.14 98.57

Sup: R ¼ 4 90.00 95.57 98.57

Results from a 10-fold validation. GG: Gath–Geva clustering based
sults given in Table 1 are only roughly compar-

able.

5.2. Example 2: the wine classification problem

The wine data contains the chemical analysis of
178 wines grown in the same region in Italy but

derived from three different cultivars. The problem

is to distinguish the three different types based on

13 continuous attributes derived from chemical

analysis (Fig. 2). Corcoran and Sen (1994) applied

all the 178 samples for learning 60 non-fuzzy if–

then rules in a real-coded genetic-based-machine

learning approach. They used a population of 1500
individuals and applied 300 generations, with full

replacement, to come up with the following result

for 10 independent trials: best classification rate

100%, average classification rate 99.5% and worst

classification rate 98.3% which is three misclassifi-

cations. Ishibuchi et al. (1999) applied all the 178

samples designing a fuzzy classifier with 60 fuzzy

rules by means of an integer-coded genetic algo-
rithm and grid partitioning. Their population

contained 100 individuals and they applied 1000

generations, with full replacement, to come up with

the following result for 10 independent trials: best

classification rate 99.4% (one misclassification),
or the Wisconsin breast cancer problem

Rules ] Conditions Accuracy (%)

4 97.36

11 98.1

4 97.07

16 97.36

10–12 95.06\

or the Wisconsin breast cancer problem

Min ] Feat. Mean ] Feat. Max ] Feat.

8 8.9 9

7 8 9

9 9 9

8 8.7 9

classifier, Sup: proposed method.
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Fig. 2. Wine data: three classes and 13 attributes.
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average classification rate 98.5% and worst classi-

fication rate 97.8% (four misclassifications). In

both approaches the final rule base contains 60

rules. The main difference is the number of model
evaluations that was necessary to come to the final

result.

Firstly, for comparison purposes, a fuzzy clas-

sifier, that utilizes all the 13 information profile

data about the wine has been identified by the

proposed clustering algorithm based on all the 178

samples. Fuzzy models with three and six rules

were identified. The three rule-model gave only
two misclassification (correct percentage 98.9%).

When a cluster was added to improve the perfor-
Table 3

Classification rates on the wine data for 10 independent runs

Method Best result (%) Average result

Corcoran and Sen (1994) 100 99.5

Ishibuchi et al. (1999) 99.4 98.5

GG clustering 95.5 95.5

Sup (13 features) 98.9 98.9

Sup (13 features) 99.4 99.4
mance of this model, the obtained classifier gave

only one misclassification (99.4%). The classifica-

tion power of the identified models is then com-

pared with fuzzy models with the same number of
rules obtained by GG clustering, as GG clustering

can be considered the unsupervised version of the

proposed clustering algorithm. The GG identified

fuzzy model achieves eight misclassifications cor-

responding to a correct percentage of 95.5%, when

three rules are used in the fuzzy model, while six

misclassifications (correct percentage 96.6%) in the

case of four rules. The results are summarized in
Table 3. As it is shown, the performance of the

obtained classifiers are comparable to those in
(%) Worst result (%) Rules Model evaluations

98.3 60 150 000

97.8 60 6000

95.5 3 1

98.9 3 1

99.4 4 1



Table 4

Classification rates and model complexity for classifiers constructed for the Wine classification problem

Method Min Acc. Mean Acc. Max Acc. Min ] Feat. Mean ] Feat. Max ] Feat.

GG: R ¼ 3 83.33 94.38 100 10 12.4 13

Sup: R ¼ 3 88.88 97.77 100 12 12.6 13

GG: R ¼ 3 88.23 95.49 100 4 4.8 5

Sup: R ¼ 3 76.47 94.87 100 4 4.8 5

GG: R ¼ 6 82.35 94.34 100 4 4.9 5

Sup: R ¼ 6 88.23 97.15 100 4 4.8 5

Results from averaging a 10-fold validation.
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(Corcoran and Sen, 1994; Ishibuchi et al., 1999),

but use far less rules (3–5 compared to 60) and less

features.

These results indicate that the proposed clus-

tering method effectively utilizes the class labels.
As can be seen from Table 3, because of the sim-

plicity of the proposed clustering algorithm, the

proposed approach is attractive in comparison

with other iterative and optimization schemes that

involves extensive intermediate optimization to

generate fuzzy classifiers.

The 10-fold validation is a rigorous test of the

classifier identification algorithms. These experi-
ments showed 97.77% average classification accu-
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Fig. 3. Membership functions ob
racy, with 88.88% as the worst and 100% as the

best performance (Table 4). The above presented

automatic model reduction technique removed

only one feature without the decrease of the clas-

sification performance on the training data. Hence,
to avoid possible local minima, the feature selec-

tion algorithm is used to select only five features,

and the proposed scheme has been applied again

to identify a model based on the selected five at-

tributes. This compact model with average 4.8

rules showed 97.15% average classification accu-

racy, with 88.23% as the worst and 100% as the

best performance. The resulted membership func-
tions and the selected features are shown in Fig. 3.
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Comparing the fuzzy sets in Fig. 3 with the data in

Fig. 2 shows that the obtained rules are highly

interpretable. For example, the Flavonoids are

divided in low, medium and high, which is clearly

visible in the data.
6. Conclusions

In this paper a new fuzzy classifier has been

presented to represent Bayes classifiers defined by

mixture of Gaussians density model. The novelty

of this new model is that each rule can represent

more than one classes with different probabilities.
For the identification of the fuzzy classifier a su-

pervised clustering method has been worked out

that is the modification of the unsupervised GG

clustering algorithm. In addition, a method for the

selection of the relevant input variables has been

presented. The proposed identification approach is

demonstrated by the Wisconsin breast cancer and

the wine benchmark classification problems. The
comparison to GG clustering and GA-tuned fuzzy

classifiers indicates that the proposed supervised

clustering method effectively utilizes the class

labels and able to identify compact and accurate

fuzzy systems.
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