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Abstract

Fuzzy modeling is a method to describe input-output
relationships of unknown systems wusing fuzzy inference.
Interpretability is one of the indispensable features of fuzzy
models. This paper discusses the interpretability of fuzzy model
with/without prior knowledge about the target system, Without
prior kmowledge, conciseness of fuzzy model helps humans to
interpret its input-output relationships. In the case where a
human has the knowledge in advance, an interpretable model
could be the one that explicitly explains his/her knowledge. This
paper defines the conciseness of fuzzy models, and formulates the
conciseness measure. Experimental results shew that the obtained
concise mode] has the essential interpretable feature, The results
also show that human's knowledge changes the most
interpretable model from the most concise model.

I. INTRODUCTION

Problems of describing input-output relationships of
unknown systems from data have attracted much attention in
many fields. Fuzzy modeling is one of the effective tools for
solving the problems. The distinguishing feature of fuzzy
model is in that it is interpretable. However, there have been
few reports on quantitative analysis of the interpretability of
fuzzy models.

The interpretability of fuzzy models has been evaluated
simply by the number of fuzzy rules, the number of
membership functions [1], or the degree of freedom term of
AlIC (Akaike's Information Criterion) [2, 3]. Matsushita,
Furuhashi, et al. [1] discussed hierarchical fuzzy modeling for
identifying  interpretable  fuzzy  models. However,
automatically derived fuzzy models are not often linguistically
interpretable, as recognized in [4 - 6].  The interpretability of
fuzzy models also depends on other factors such as
shape/allocation of membership functions, and more on
interpreter’s prior knowledge.

This paper studies the interpretability of fuzzy models by
separating the cases where prior knowledge is available or not.
This paper defines conciseness of fuzzy models that is an
essential factor for the iterpretability. Without prior
knowledge, input-output relationships of a “concise” fuzzy
model are easy for a human to understand. This paper
introduces De Luca and Termini’s fuzzy entropy [7] as a
conciseness measure that evaluates the shape of membership
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function. This paper also presents a new measure derived on
the analogy of relative entropy. This new measure is also a
conciseness measure that evaluates the deviation of allocation
of membership functions on the universe of discourse. A
combination of these two measures is shown to be a good
conciseness measure.

In the case where a human has a priori knowledge about
the target system in advance, a concise model is not always
interpretable. In this case, an interpretable model could be the
one that explicitly explains human’s knowledge. Experimental
results show that the obtained concise model has the essential
interpretable feature. The results also show that human’s
knowledge changes the most interpretable model from the
most concise model.
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I1. INTERPRETABILITY AND CONCISENESS

Interpretability of fuzzy models heavily depends on
human’s prior knowledge. If we have profound knowledge
about the target system, an interpretable model could be the
one that makes our knowledge explicit. Even though the fuzzy
model had many parameters and the input-cutput relationships
were highly non-linear, our knowledge helps us to interpret the
relationships. Even a concise model is not interpretable, if it
dees not fit into our prior knowledge.

In the case where we have no a priori knowledge, a
concise fuzzy model could be easy for a human to interpret.
Assuming that four types of fuzzy models are given as shown
in Fig.l. All the models in this figure are single-input
single-output ones. Fig.1(a) shows a case where crisp
membership functions S, M, and B are allocated equidistantly
on the universe of discourse in the antecedent. The output is
depicted with granules Op, Op, and O This model is
interpreted as

[fxisS thenyis Op
[fxis M then yis Oy
[fxisB then yis Os.

The granules S, M, B, Og, O, and Os help us to grasp the
input-output relationships. We interpret the models in Fig. 1 in
the form of above rules with the granules. Thus the medel in
Fig. 1(a) with crisp and equidistantly allocared granules is
interpretable.

Fig.1(b) and (c) show cases with Gaussian and triangular
membership functions, respectively. Fig.1(d) is the case where
triangular membership functions are allocated unevenly. Every
model can be interpreted as the above three rules. But it
becomes more and more difficult to make correspondence
between the models and the three rules. The model in Fig.1(d)
is the most difficult to interpret among the four models in
Fig.1.

Assume that we have the following knowledge about the
target system: “the non-lincarity of the system becomes
stronger with larger x”. In this case, the interpretability of the
models in Fig. ! changes drastically from the above
observation. We may think that the model in Fig. 1{d) is the
most interpretable, because this model fits our knowledge
most.

Interpretability of fuzzy models depends on prior
knowiedge. For quantitative analysis of interpretability, this
paper limits the discussions in the following sections to the
cases where no prior knowledge is available.

1I1. Fuzzy MODEL

A single-input single-output fuzzy model with simplified
fuzzy inference[8] is used in this paper.

The output y of a fuzzy model with the input x is given by

NM
y= Zﬂa (x)¢; Y]
i

where y(x) and ¢, ( = 1,..., N,) are grade of membership in
the antecedent part and singleton in the consequent part,
respectively. &, is the number of membership functiens.

The following conditions are used to make the discussion
about the conciseness simple:
(a) For all x & X, membership functions udx) (i = 1,..., Np)
satisfy

Ny
> #x)=1 @
i=1
{b) Two membership functions overlap where 1 > y{x}) > 0 (i =
1,..., Np).
(c) Each membership function g(x) is similar with respect to
the center point x = g, in the sense that

3) = 1 -1 =23) 3

where giy(x) and g (x) are left/right hand side membership
functions, respectively.
{d) All the fuzzy sets are convex.

1V. CONCISENESS GF FUZZY MODEL

The conciseness of fuzzy models is defined as the easiness
for grasping the correspondence between the discrete fuzzy
rules and the continuous values.

A. Definition of Conciseness
The conciseness of fuzzy models is defined in this paper as
follows:

Definition 1(Conciseness of Fuzzy Model)

Fuzzy medel 4 is more concise than fuzzy model B, if the
membership functions in A are more uniformly distributed
across the unjverse of discourse than the membership
functions in B, and the shapes of membership functions in 4
are less fuzzy than in B.

B. De Luca and Termini's fuzzy entropy
De Luca and Termini [7] defined fuzzy entropy of fuzzy set
Aas

() = [ a0 n () - g0~ -0} @

where 1,(x) is the membership function of fuzzy set A. If y,(x)
= (.5 for all x on the support of 4, then the fuzzy entropy of
fuzzy set A is the maximum.

This fuzzy entropy can distinguish the shapes of
membership functions, i.e. trianguiar, Gaussian, etc., and
coincides with a part of the definition of conciseness.

With the conditions (a) and (b} in Section 1II, De Luca and
Termini's entropy is simplified. Assuming that two
membership functions g,(x) and pg(x) are overlapping and for
all xe [xy, x3], fy(x) + palx) = 1, then

d(4)= [ panp (0} (5)

C. Measure for Deviation of Membership Function
De Luca and Termini’s entropy cannot distinguish similar
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membership functions shown in Fig2. Two membership
functions 4 and C are similar in the sense that the membership
function 4 coincides with € by extending the horizontal axis x
of the left hand side membership function g, and shrinking
that of the right hand side membership function 1 ,.

Fig. 2 Symmetrical/asymmetrical membership function

This paper defines a quantitative measure of deviation of a
membership function from symmetry on the analogy of
relative entropy, This is also a good candidate for the
conciseness measure of fuzzy models. The membership
function is assumed to satisfy the conditions (a) - (d) in
Section II1. This measure is defined by considering eq. (5).

Definition 2 (Measure for Deviation)
The measure for deviation of fuzzy set 4 from symmetry is
given by

r(4)=[" (;: rlnh}dx (6)
" H o4

where x; and x; are the left and right points of the support of
fuzzy set 4, respectively; u,(x) is the membership function of

fuzzy set 4; uc{x) is the symmetrical membership function of
fuzzy set C, which has the same support as that of fuzzy set 4.

Fig. 2 illustrates an example of fuzzy set 4 and C.

D. New Measure
One way of combining the two measures is summation.
By summing the fuzzy entropy d{4) in eq.(5) and the measure
for deviation of a membership function H(4) in eq.(6), a new
measure dHA) is obtained.
dr(A)=d(4)+r(4)

=~[uchnp,)dx. (7)

E. Average Measure

Average measure dr,, is introduced to evaluate the shapes
and allocations of N, fuzzy sets A4; (i = 1,.,, N,} on the
universe of discourse X on x-axis.

The average measure dr,,, is deﬁned as
|
v = Zdr(A) 't))
N’ —
where dr{4) is the new measure in (7), which evaluates the
shape and deviation of a membership function, N, is the

number of fuzzy sets 4; (i = 1,..., N,) on the universe of
discourse X on x-axis.
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V. NUMERICAL RESULTS

This section describes results of a numerical experiment to
demonstrate the feasibility of the average fuzzy entropy for
evaluation of the conciseness of fuzzy models. For simplicity,
the following single-input single-output function is used as a
target function. Fig. 3 depicts this function.

j 1-2x 0<x<1/)

T e aems (i2<as))

®

Input-output pairs of data were generated using this function.
The conditions (a) - (d) in Section Il were imposed on the
model. The accuracy of the obtained model was measured by
mean squared error.

f(xn

Fig. 3 Target function

To examine the relationships between the average measurce
dr.: and the accuracy, 1000 fuzzy medels were randomly
generated and their values of average measure and accuracy
were calculated. Fig. 4 shows the obtained results. Among
them, the fuzzy models near the Pareto front are shown in Fig.
5.
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Fig. 4 Generated fuzzy models

In this paper, the shape of membership functions was fixed
to triangular and the number of membership functions of a
fuzzy model was set at 6. Each dot in Fig. 4 corresponds to a
fuzzy mode!l that has a unique allocation of membership
functions. From Fig. 4, it is observed that the average measure
and the accuracy are in conflict as indicated with the solid line.

Fig-3 (1)(2)(3) show the allocations of the membership
functions of the fuzzy models (1)(2)(3), which were on the
Pareto front in Fig.4 indicated by the circles. The less the
average measure was, the more equidistant the allocation of
membership functions was.

VI. DISCUSSION

Assume that we have no prior knowledge about the target



system represented in eq.(9). From the collected input-output
pairs of data, we have obtained the models in Fig. 5. The
question here is which model is the most interpretable. The
model in Fig. 5 (3} has equidistantly allocated membership
functions. Although this model is less accurate, it is easier to
get the rough idea about the input-output relationships from
this model than from other models in Fig. 5. The average
measure of the model in Fig. 5 (3) is the smallest, and this
measure coincides with the observation of conciseness.
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(1) Accuracy:  0.0103 1
Average measure | 0.0072

0
2) Accuracy: 0.0
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Fig. 5 Allocation of membership functions of

obtained models on the Pareto front in Fig. 4

Next, assume that we have the knowledge about the target
system a priori. This knowledge is expressed, for example, as
“it is linear and decreasing on the left half of the universe of
discourse, and is sharply rising up from the central point with
increasing x.” In this case, we may think the model in Fig. 5
(1) is the most interpretable among the models in this figure,
because this model fits our prior knowledge most. Cn the other
hand, the model in Fig. 5 (3) is the least interpretable now.
This case shows that the interpretability of models depends on
our knowledge.

VII. CONCLUSION
This paper discussed interpretability of fuzzy models by

separating the cases with/without prior knowledge about target
systems. Interpretability depends on the knowledge. For

quantitative analysis of interpretability, this paper presented a
new measure of conciseness of fuzzy models by focusing the
cases where no prior knowledge was available. This paper
defined the conciseness of fuzzy models, and quantified the
conciseness by introducing De Lucaz and Termini’s fuzzy
entropy, and also defined a new measure of the deviation of a
membership function from symmetry. By combining the new
measure and De Luca and Termini's measure the new measure
for the conciseness was derived. Based on the new measure,
the average measure was defined to evaluate the shapes and
the deviation of allocation of membership functions of fuzzy
models. Experimental results showed that the new measure
coincide with the observation of conciseness, and it was in
conflict with the accuracy of fuzzy models. The resulis also
showed that the least concise model was the most interpretable
in the case where we had no prior knowledge. The
interpretability was shown to be changed with a priori
knowledge about the target system.
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