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Abstract 

In this paper, we propose a genetic-algorithm-based ap- 
proach for extracting a small number of fuzzy if-then rules 
with clear linguistic meanings from numerical input-output 
data. The goal of our fuzzy rule extraction is to linguisti- 
cally describe the input-output relation of a nonlinear func- 
tion with many input variables in a human understandable 
manner. In other words, the goal is to construct a comprehen- 
sible fuzzy rule-based system from numerical input-output 
data. The comprehensibility of a fuzzy rule-based system is 
evaluated by three criteria: linguistic interpretability of fuzzy 
if-then rules, simplicity of fuzzy if-then rules, and compact- 
ness of a fuzzy rule-based system. That is, a comprehensible 
fuzzy rule-based system consists of a small number of simple 
fuzzy if-then rules with clear linguistic meanings. In order 
to cover a multi-dimensional input space by a small num- 
ber of fuzzy if-then rules, we use general rules with many 
“don’t care” conditions in the antecedent part. Such general 
rules are also preferable from a viewpoint of the simplicity of 
fuzzy if-then rules. Since nonlinear functions can not be al- 
ways approximated by only general rules, some specific rules 
with many linguistic conditions may be also required in many 
cases. Thus our fuzzy rule-based system is a mixture of gen- 
eral and specific fuzzy if-then rules. In this paper, we first il- 
lustrate the necessity of general rules with many “don’t care” 
conditions when we try to construct compact fuzzy rule-based 
systems for high-dimensional problems without the exponen- 
tial increase in the number of fuzzy if-then rules. Next we 
demonstrate that a standard fuzzy reasoning method some- 
times leads to counter-intuitive results when some specific 
rules are included in other general rules. Then we illustrate 
a fuzzy reasoning method for realizing default hierarchies of 
fuzzy if-then rules. The default hierarchies mean that specific 
rules have priority over general rules when output values are 
inferred by fuzzy if-then rules. Finally we show how genetic 
algorithms can he utilized for generating a small number of 
fuzzy if-then rules from numerical input-output data. 

1. Introduction 

Fuzzy systems based on fuzzy if-then rules have been 
successfully applied to various control problems [l,Zl. In 

those applications, fuzzy rule-based systems are used asap- 
proximators of nonlinear functions. It was shown that they 
have high capability to approximate nonlinear functions L3.41. 
Their main advantage over black-box type approximaton 
such as neural networks is the high comprehensibility of 
fuzzy if-then rules. When a fuzzy rule-based system is used 
for approximately realizing a nonlinear function with two in- 
put variables, fuzzy if-then rules are usually written in a tabu- 
lar form. In this case, we can linguistically understand the 
fuzzy rule-based system and imagine the 3-D shape of its 
input-output relation. This is because the antecedent and con- 
sequent pans of each fuzzy if-then rule are specified by lin- 
guistic values such as “small” and “large”. In Fig. I ,  we show 
an example of a fuzzy rule table for approximately realizing a 
nonlinear function. The two-dimensional input space [0, 112 
in Fig. 1 is partitioned into 25 fuzzy subspaces by five lin- 
guistic values on each input variable (S: small, MS: medium 
snnll, M: medium, ML: medium large, and L: large). Fig. I 
shows 25 fuzzy if-then rules such as “If 11 is small and 2‘2 is 
small then y is large”. From the 25 fuzzy if-then rules in Fig. 
I ,  we can imagine the 3-D shape of the input-output relation 
of the fuzzy rule-based system. The imagined shape may he 
something like Fig. 2. 

The main difficulty in applying fuzzy rule-based systems 
to high-dimensional problems is the exponential increase in 
the number of fuzzy if-then rules with the dimensionality of 
input spaces. For example, if we use five linguistic values for 
each input variable as in Fig. 1, the size of fuzzy rule tables 
is 5“ for an n-dimensional problem (e.g., 5” = 25 for n = 2 
and 5” = 3125 for n = 5). 

Such exponential increase deteriorates the comprehensi- 
bility of fuzzy rule-based systems. That is, it is imprac- 
tical for human users to manually examine thousands of 
fuzzy if-then rules. One approach to the handling of high- 
dimensional problems by fuzzy if-then rules is the use of 
multi-dimensional antecedent fuzzy sets whose membership 
functions are directly defined on the input space. In this ap- 
proach, the antecedent part of each fuzzy if-then rule is not 
defined by a combination of linguistic values but directly 
specified by a single multi-dimensional fuzzy set. The use of 
multi-dimensional antecedent fuzzy sets can drastically de- 
crease the number of fuzzy if-then rules for high-dimensional 
problems. It also increases the flexibility of fuzzy if-then 
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Figure 1: Tabular form representation of 25 fuzzy rules 
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Figure 2: Input-output relation realized by the fuzzy rules. 

rules. One drawback of this approach is that the linguistic 
interpretation of each fuzzy if-then rule is not always easy. 
Another approach is the use of a hierarchical structure where 
several subsystems are hierarchically combined into a multi- 
layer fuzzy rule-based system. Each subsystem is a fuzzy 
rule-based system with a few inputs. The main advantage 
of this approach over standard &e., plain) fuzzy rule-based 
systems is that the number of input variables to each subsys- 
tem is small. This means that the number of fuzzy if-then 
rules is also small. From a viewpoint of the comprehensi- 
bility of fuzzy rule-based systems, this approach inherently 
involves difficulties in interpreting intermediate and output 
subsystems whose inputs are supplied by lower subsystems. 
That is, it is very difficult for human users to understand (or 
interpret) each fuzzy if-then rule in such subsystems because 
their inputs have no clear physical meanings. 

Fuzzy if-then rules in this paper are used for linguistically 
describing the input-output relation of a nonlinear function 
with many input variables in a human understandable man- 
ner. In other words, our goal is to construct a comprehensible 
fuzzy rule-based system from numerical input-output data. 
For avoiding the exponential increase in the number of fuzzy 
if-then rules, we use general rules with many “don’t care” 
conditions in the antecedent part. Since specific rules with 

many antecedent conditions mey be also required for func- 
tion approximation, our fuzzy rule-based system is a mixture 
of general and specific fuzzy if-then rules. In this paper, we 
propose a framework of genetic-algorithm-based rule extrac- 
tion from numerical iriput-output data for linguistically de- 
scribing a nonlinear function with many input variables in a 
human understandable manner. 

2. Fuzzy Reasoning with General Fuzzy If-Then Rules 

2.1. Fuzzy If-Then Rules for High-Dimensional Problems 

For approximately realizing a nonlinear function with n 
input variables, we use fuzzy if-then rules of the following 
form: 

Rule Rj: If z, is A,1 and . . . and x3> is A,,, 
then y is Bj. j = 1,2 .  . . .A’, (1) 

where j is a rule index, ilji’s are antecedent fuzzy sets with 
linguistic labels such as small and large (i.e., ilji’s are lin- 
guistic values), Bj is a consequent linguistic value, N is the 
total number of fuzzy if-then rules, x is an n-dimensional 
input vector x = (zl,. . . , z,,), and y is an output variable. 
Examples of fuzzy if-then rules with typical linguistic val- 
ues are shown in Fig. 1. In this paper, we assume that the 
input space of the nonlinear function is the n-dimensional 
unit hyper-cube [0, 11”. We also assume that the output space 
is the unit interval [0, 11. Thus our problem is to approxi- 
mately realize the nonlinear mapping from [0, 11” to [0, 11. 
We use the five linguistic values in Fig. 1 for all the input and 
output variables. In this case, the size of a fuzzy rule table 
(i.e., the number of fuzzy if-then rules) is calculated for an 
n-dimensional problem as shown in Table 1. 

From Table I ,  we can see that a fuzzy rule-based system 
is not comprehensible for human users when the number of 
input variables is more than two. Even in the case of 1% = 3, 
it is a troublesome task for human users to manually examine 
each of 125 fuzzy if-then rules. The number of fuzzy if-then 
rules can be drastically decreased if we use only general fuzzy 
if-then rules with many “don’t care” conditions [5]. Let us 
define the length of a fuzzy if-then rule by the number of 
antecedent conditions excluding “don’t care”. For example, 
the length of the following fuzzy if-then rule is two: 

If X I  is small and x2 is don’t care and 2 3  is don’t care 
and xq is don’r care and xg is large then y is large. (2) 

This fuzzy if-then rule can be rewritten by omitting the 
“don’t care” conditions as “If X I  is small and x5 is large 
then y is large” with the two antecedent conditions. If we 
use only general fuzzy if-then rules whose lengths are two or 
less, the number of fuzzy if-then rules is calculated tor an n- 
dimensional problem as shown in Table 2. For example, in 
the case of n = 2, there are 25 rules of the length 2, 10 rules 
of the length 1, and a single rule of the length 0. The fuzzy 
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Table I: The number of fuzzy if-then rules for an n-dimensional problem 

n = 1  I n = 2  I n = 3  I n = 4  1 n = 5  I n = 6  I n = 7  I n = 8  1 n = 9  I n = 10 
I 3125 I 15625 178125 1390625 1 1953125 I9765625 5 625 

Table 2: The number of general fuzzy if-then rules for an n-dimensional problem. 

n = l  I n = 2  I n = 3  I n = 4  I n = 5  1 n = 6  I n = 7  I n = 8  1 n = 9  I n=10 
6 1  36 1 91 I 171 I 276 1 406 I 561 I 741 I 946 I 1176 

if-then rule of the length 0, which has no antecedent condi- 
tion, is written in the form “y is Bj”. From the comparison 
between Table 1 and Table 2, we can see that the number of 
general fuzzy if-then rules is very small if compared with the 
total number of fuzzy if-then rules of the length n. Since a 
general fuzzy if-then rule has only a few antecedent condi- 
tions, it can cover a large area of the input space. This means 
that the entire input space can he covered by a small num- 
ber of general fuzzy if-then rules. Since nonlineal- functions 
can not he always approximated by only general rules, some 
specific rules with many antecedent conditions may be also 
necessary in many cases. Thus our fuzzy rule-based system 
is a mixture of general and specific fuzzy if-then rules. 

2.2. Simplified Fuzzy Reasoning 

One of the most frequently used fuzzy reasoning meth- 
ods for function approximation problems is the simplified 
fuzzy reasoning method [6] .  In the simplified fuzzy rea- 
soning method, the estimated value y for the input vector 
x = (z,, . . . , zn) is calculated from the N fuzzy if-then rules 
in ( I )  as follows: 

N N 

where b.j is a representative real number (i.e., modal value) 
of the consequent fuzzy set Bj, and p j ( x )  is the compati- 
bility grade of the input vector x with the j-th fuzzy if-then 
rule Rj. In computer simulations of this paper, we use the 
center of the triangular membership function of each conse- 
quent fuzzy set Bj as its representative real number b j .  The 
compatibility grade pi (x) is often defined by the following 
product operation: 

(4) 

where p j i (z ; )  is the membership function of the antecedent 
fuzzy set Aj;. 

Let us illustrate the simplified fuzzy reasoning method by 
some numerical examples. The first example does not include 
“don’t care” conditions. We applied the simplified fuzzy rea- 
soning method to the 25 fuzzy if-then rules in Fig. l .  The 
shape of the estimated nonlinear function i = y(x) is de- 
picted in Fig. 2. From the comparison between Fig. l and 

P j ( X )  = Pjl(”1) x PLjZ(Q) x ( . .  x P j n ( z n ) ,  

Fig. 2, we can see that the estimated nonlinear function 
3 = S(x) coincides with our intuitive understanding of the 
25 fuzzy if-then rules in Fig. 1. 

Next we consider the following mixture of general and 
specific fuzzy if-then rules: 

RA : y is small, 
RB: If 21 is srnall then y is medium, 
Rc: If 21 is small and 12 is small then y is large 

Let us try to imagine the 3-D shape of the nonlinear function 
realized by these three fuzzy if-then rules. The imagined 3-D 
shape may he something like Fig. 2. If we use these three 
fuzzy if-then rules in the following hierarchical manner, they 
are almost the same as the 25 fuzzy if-then rules in Fig. I .  

If .CI is small and 22 is small then y is large 
else {if z1 is small then y is medium 

else y is small). ( 5 )  

In this hierarchical structure, the most specific rule Rc has 
priority over the other rules R.4 and fib. in inferring the out- 
put value y. If the antecedent conditions of Rc are not sat- 
isfied by the input vector, the next rule Rn has priority over 
RA. The most general rule RA is used only when the input 
vector is not compatible with the other rules. It seems that 
we usually use our knowledge in such a hierarchical man- 
ner when we have general rules together with specific (or ex- 
ceptional) rules. That is, a specific rule is usually used with 
priority over a general rule when the antecedent conditions 
of both rules are satisfied. Such a default hierarchy of non- 
fuzzy rules was discussed in Holland et al. [ 7 ] .  The priority 
of specific rules has been discussed in the AI community (see, 
for example, Poole [XI). We applied the simplified fuzzy rea- 
soning method to the three fuzzy if-then rules RA, RB and 
Rc. The shape of the estimated nonlinear function y = y(x) 
is depicted in Fig. 3 (a). Unfortunately the shape in Fig. 3 
(a) does not coincide with our intuitive understanding of the 
three fuzzy if-then rules. 

2.3. Fuzzy Reasoning for Default Hierarchies 

We have illustrated that the simplified fuzzy reasoning 
method can not handle the default hierarchy of fuzzy if-then 
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(a) Simplified fuzzy reasoning method. 

1.0 

(b) Our fuzzy reasoning method. 

Figure 3: Shape of the estimated nonlinear function y = 
YW. 

rules in  the previous section. As a result, estimated nonlin- 
ear functions do not always coincide with our intuition. For 
obtaining intuitively acceptable results, we modify the sim- 
plified fuzzy reasoning method as follows: 

Y = G(x) = c d(Rj,  x) . b j  p j (x) /  Z d ( R j ,  X) . ~ j ( x ) ,  

(6) 
where d(Rj ,  x) is a function describing the specificity of the 
fuzzy if-then rule Rj. The value of $(Rj,  x) becomes small 
when Rj includes other specific rules compatible with the in- 
put vector x. In this case, the weight of Rj is discounted in 
the fuzzy reasoning. More specifically, we define O(Ri, x) as 

N N 

j=1 j = l  

A i e l  
BIER, 

where the inclusion relation Rk & Rj between two fuzzy if- 
then rules & and Rj is defined by their antecedent fuzzy sets 
&’sand Aji’s as 

R k G R i e A k i G A j i  for i = l , Z , . . . , n  . (8) 

In (7). the weight of the fuzzy if-then rule Rj is discounted 
when Rj includes other specific rules. If Rj includes no fuzzy 
if-then rule, d(Rj ,x )  is specified as d (Rj ,x)  = 1. 

First we applied the proposed fuzzy reasoning method to 
the 25 fuzzy if-then rules in Fig. 1. Since no inclusion re- 
lation holds among the 25 fuzzy if-then rule, the same re- 
sult (i.e., Fig. 2) was obtained by the proposed fuzzy rea- 
soning method as in the case of the simplified fuzzy reason- 
ing method. Next we applied the proposed fuzzy reasoning 
method to the three fuzzy if-then rules RA,  Ro and Rc.  
Since the inclusion relation Rc i, RE & R A  holds, $ ( E j ,  x )  
in ( 7 )  is written as 

d ( R A , X ) = ( l - @ B ( X ) )  ( l - P C ( X ) ) ,  

~ ( R E , X )  = 1 - p c ( x ) ,  
d(Rc ,x)  = 1. (9) 

The shape of the estimated nonlinear function 1/ = y ( x )  is 
depicted in Fig. 3 (b). From Fig. 3 (b). we can see that the 
estimated nonlinear function coincides with our intuition. 

3. Genetic-Algorithm-Based Approach 

3.1. Basic Idea 

We have already shown that general fuzzy if-then rules 
with many “don’t care“ conditions are necessary for con- 
structing a compact fuzzy rule-based system with high com- 
prehensibility for a high-dimensional problem. We have also 
modified the simplified fuzzy reasoning method for obtaining 
intuitively acceptable fuzzy reasoning results from a mixture 
of general and specific fuzzy if-then rules where default hi- 
erarchies exist. Our goal in this section is to extract a small 
number of fuzzy if-then rules from numerical input-output 
data for constructing a cornpact fuzzy rule-based system. Our 
approach to the fuzzy rule extraction is based on the two ideas 
we have already discussed: general fuzzy if-then rules and 
default hierarchies. Genetic algorithms are used in our ap- 
proach for linding a small number of fuzzy if-then rules with 
high approximation ability. 

We explain our approach using the five linguistic values 
in Fig. I for the simplicity of explanation. Of course, a col- 
lection of tailored linguistic values should be specified for 
appropriately describing each input (or output) variable in  a 
particular application. As we have already explained, we also 
use “don’t care” as an antecedent fuzzy set. When we ap- 
proximately realize a nonlinear function with n input vari- 
ables by fuzzy if-then rules, there exist (5 + 1)“ combina- 
tions of antecedent fuzzy sets. For each combination of an- 
tecedent fuzzy sets, one of the five linguistic values is chosen 
as its consequent fuzzy set. Thus the total number of possible 
fuzzy if-then rules is 5 x (5 + l)n. Let SALL he the set of 
these 5 x (5 + 1)“ fuzzy if-then rules. We denote a subset of 
SALL by S. Our rule extraction can be described as finding 
a compact subset S with high approximation ability. The ap- 
proximation ability of the rule set S is measured by the total 
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absoluteerroron trainingdata (x , ,y , ) ,p= 1,2,- . . ,m: 

where yp is the estimated output value for yp. In (IO),  yp is 
calculated by the proposed fuzzy reasoning method from the 
fuzzy if-then rules in the rule set S. Of course, we can use 
the total squared error as the performance measure instead 
of (IO).  If there is no compatible fuzzy if-then rule with the 
input vector x p ,  yp can not be calculated. In this case, we 
define /y, - ypl as ly, ~ u p /  = 1, which is the maximum 
value of possible errors. 

Since our goal is to find a small number of fuzzy if-then 
rules, the size of the rule set 5’ (i.e., the number of fuzzy if- 
then rules included in S )  is another criterion for measuring 
the quality of S. It is directly minimized by genetic algo- 
rithms. Thus our problem can be written as 

Minimize z ( S )  = e(S)  
+Wcompoctness ’ Cardinnlity(S) 

subject to S C S A L L ,  (11) 

where z ( S )  is an objective function to be minimized, 
W C ~ , , , ~ . ~ ~ ~ ~ ~ ~  is a positive weight, and Cardinality(S) is 
the number of fuzzy if-then rules included in S. When the 
direct minimization of the size of S is difficult, we introduce 
the upper limit N,,, of the number of fuzzy if-then rules and 
modify the formulation in (1  I )  as follows: 

Minimize z ( S )  = e (S )  
subject to S & SAL, 

and Cardinality(S) 5 Nm,,, (12) 

3.2. Fuzzy Rule Selection 

The rule extraction problem formulated in (11) can be 
handled as a rule selection problem in a similar manner to 
Ishibuchi et a1.[10] where genetic algorithms were used for 
selecting a small number of fuzzy if-then rules for pattern 
classification problems. Let N be the total number of fuzzy 
if-then rules included in the rule set SALL. In this case, a sub- 
set S of SAL, can be coded as a binary string of the length 
N :  S = slsz.. ‘SN where s, = 1 and s, = 0 mean the 
inclusion and the exclusion of the j-th fuzzy if-then rule, re- 
spectively. That is, the binary string S = slsz.. s~ is de- 
codedasS={E,ls,  = l , j =  1,2,...N}.Sinceourobjec- 
tive function in (1 1) should be minimized, we define a fitness 
function as follows for applying genetic algorithms to the rule 
selection problem. 

f i tness(S) = - e ( S )  
- W C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Curdinalily(S). (13) 

Let us illustrate the rule selection method through com- 
puter simulations on several numerical examples. First we 

generated 212 = 441 numerical input-output pairs from 
Fig. 3 (a) by specifying input vectors xp = ( + I ,  x p 2 )  as 
zpi  = 0.00,0.05, . .  . ,  1.00 for i = 1 , 2 .  Since the non- 
linear function to he linguistically described has two input 
variables, the total number of possible fuzzy if-then rules is 
N = 5 x G x 6 = 180. Each subset of these 180 fuzzy if-then 
rules is denoted by a binary string of the length 180. A ge- 
netic algorithm was applied to the 441 input-output pairs for 
selecting a small number of fuzzy if-then rules from these 180 
rules. The following three fuzzy if-then rules were selected: 

RA: y is small, 
RB: If x1 is small then y is medium small, 
Ec: If x l  is small and 1 2  is small then y is medium. 

We can see that the obtained three fuzzy if-then rules lin- 
guistically describe the shape of the nonlinear function in Fig. 
3(a) very well. For comparison, we applied the same genetic 
algorithm to the 441 input-output data using the simplified 
fuzzy reasoning method. In this case, we also obtained three 
fuzzy if-then rules. Two rules are RA and R,. The other rule 
is not F,= but Hc: “If .c1 is small and x2 is small then y is 
large”. 

Next we generated 113 = 1331 numerical input-output 
pairs from the following nonlinear function by specifying in-  
put vectors xp = (xp1,xp2,xp3) as x,’i = 0.0,0.1, . . . ,  1.0 
f o r i =  1 , 2 , 3 .  

1 

1 + exp{ C(-60zpi + 55)} 1’ 3 

i=l 
2 

z p j E [ 0 , 1 ] f o r i = 1 , 2 , 3 .  (14) 

Since the nonlinear function involves three input variables, 
the total number of possible fuzzy if-then rules is N = 5 x 
GxGxG = 1080. Ageneticalgorithmwasappliedtothe 1331 
numerical input-output pairs for selecting a small number of 
fuzzy if-then rules from these 1080 rules. The following two 
fuzzy if-then rules were selected: 

( 
Yp = 

y is small, 
If z1 is large and xz is large and 2 3  is large 

then y is medium. 

From the two fuzzy if-then rules, we can understand the 
shape of the input-output relation of the nonlinear function. 

3.3. Rule Generation 

When the total number of possible fuzzy if-then rules is 
intractably large, we can not use the rule selection method in 
the previous subsection. In that case, we use genetic algo- 
rithms for generating fuzzy if-then  rule^. Each fuzzy if-then 
rule is denoted by its antecedent and consequent fuzzy sets. 
For example, a fuzzy if-then rule “If 11 is small and zz is 
don’t care and x3 is medium small then y is large” is coded 
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as “1025” where each linguistic value is represented in the 
following manner: 

0: don’t care, 1: small, 2: medium small, 
3: medium, 4: medium large, 5 :  large. 

In general, a fuzzy if-then rule is denoted by a string of the 
length ( n  + 1) where 1~ is the number of input variables of 
the nonlinear function to be approximated. A rule set S is 
coded as a concatenated string where each substring denotes a 
fuzzy if-then rule. When we solve the rule extraction problem 
formulated in (121, a rule set S is denoted by a string of the 
length (T I  + 1) . N,,,, where NmaX is the upper limit of the 
number of fuzzy if-then rules. Since the objective function 
in (12) is to be minimized, we define a fitness function as 
follows: 

f i tness(S) = -e(S).  (15)  

By specifying N,,, as NmaX = 5, we applied the rule 
generation method in this subsection to the numerical exam- 
ples in the previous subsection. Almost the same simulation 
results as in the previous subsection were obtained by the rule 
generation method. Since the number of fuzzy if-then rules 
was not minimized in this method, unnecessary fuzzy if-then 
rules were sometimes included in the final solutions. 

4. Conclusion 

In this paper, we proposed a genetic-algorithm-based ap- 
proach to the linguistic modeling of nonlinear functions with 
many input variables. For constructing a compact fuzzy rule- 
based system for a high-dimensional problem, we utilized 
general fuzzy if-then rules with many “don’t care” condi- 
tions. Our fuzzy rule-based system was a mixture of gen- 
eral and specific fuzzy if-then rules. We modified the simpli- 
fied fuzzy reasoning method for representing default hierar- 
chies of fuzzy if-then rules. The default hierarchies mean 
that specific fuzzy if-then rules have priority over general 
rules. Two characteristic features of our linguistic modeling 
are the use of general fuzzy if-then rules and the fuzzy reason- 
ing method based on the default hierarchies of fuzzy if-then 
rules. Through computer simulations, we demonstrated that 
genetic algorithms can find a small number of fuzzy if-then 
rules from numerical input-output data. 
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